forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport_model.py
61 lines (50 loc) · 2.22 KB
/
export_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# -*- coding: UTF-8 -*-
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import paddle
from paddle.static import InputSpec
import paddlenlp as ppnlp
from paddlenlp.data import Vocab
from data import load_vocab
from model import BiGruCrf
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--data_dir", type=str, default=None, help="The folder where the dataset is located.")
parser.add_argument("--params_path", type=str, default='./checkpoints/final.pdparams', help="The path of model parameter to be loaded.")
parser.add_argument("--output_path", type=str, default='./infer_model/static_graph_params', help="The path of model parameter in static graph to be saved.")
parser.add_argument("--emb_dim", type=int, default=128, help="The dimension in which a word is embedded.")
parser.add_argument("--hidden_size", type=int, default=128, help="The number of hidden nodes in the GRU layer.")
args = parser.parse_args()
# yapf: enable
def main():
word_vocab = load_vocab(os.path.join(args.data_dir, 'word.dic'))
label_vocab = load_vocab(os.path.join(args.data_dir, 'tag.dic'))
model = BiGruCrf(args.emb_dim, args.hidden_size,
len(word_vocab), len(label_vocab))
state_dict = paddle.load(args.params_path)
model.set_dict(state_dict)
model.eval()
model = paddle.jit.to_static(
model,
input_spec=[
InputSpec(
shape=[None, None], dtype="int64", name='token_ids'), InputSpec(
shape=[None], dtype="int64", name='length')
])
# Save in static graph model.
paddle.jit.save(model, args.output_path)
if __name__ == "__main__":
main()