forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_du.py
338 lines (279 loc) · 14.5 KB
/
run_du.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import time
import json
import math
from functools import partial
import numpy as np
import paddle
from paddle.io import DataLoader
from args import parse_args
import paddlenlp as ppnlp
from paddlenlp.data import Pad, Stack, Tuple, Dict
from paddlenlp.transformers import BertForQuestionAnswering, BertTokenizer
from paddlenlp.transformers import ErnieForQuestionAnswering, ErnieTokenizer
from paddlenlp.transformers import ErnieGramForQuestionAnswering, ErnieGramTokenizer
from paddlenlp.transformers import RobertaForQuestionAnswering, RobertaTokenizer
from paddlenlp.transformers import LinearDecayWithWarmup
from paddlenlp.metrics.squad import squad_evaluate, compute_prediction
from paddlenlp.datasets import load_dataset
MODEL_CLASSES = {
"bert": (BertForQuestionAnswering, BertTokenizer),
"ernie": (ErnieForQuestionAnswering, ErnieTokenizer),
"ernie_gram": (ErnieGramForQuestionAnswering, ErnieGramTokenizer),
"roberta": (RobertaForQuestionAnswering, RobertaTokenizer)
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
paddle.seed(args.seed)
@paddle.no_grad()
def evaluate(model, data_loader, args):
model.eval()
all_start_logits = []
all_end_logits = []
tic_eval = time.time()
for batch in data_loader:
input_ids, token_type_ids = batch
start_logits_tensor, end_logits_tensor = model(input_ids,
token_type_ids)
for idx in range(start_logits_tensor.shape[0]):
if len(all_start_logits) % 1000 == 0 and len(all_start_logits):
print("Processing example: %d" % len(all_start_logits))
print('time per 1000:', time.time() - tic_eval)
tic_eval = time.time()
all_start_logits.append(start_logits_tensor.numpy()[idx])
all_end_logits.append(end_logits_tensor.numpy()[idx])
all_predictions, _, _ = compute_prediction(
data_loader.dataset.data, data_loader.dataset.new_data,
(all_start_logits, all_end_logits), False, args.n_best_size,
args.max_answer_length)
# Can also write all_nbest_json and scores_diff_json files if needed
with open('prediction.json', "w", encoding='utf-8') as writer:
writer.write(
json.dumps(
all_predictions, ensure_ascii=False, indent=4) + "\n")
squad_evaluate(
examples=data_loader.dataset.data,
preds=all_predictions,
is_whitespace_splited=False)
model.train()
class CrossEntropyLossForSQuAD(paddle.nn.Layer):
def __init__(self):
super(CrossEntropyLossForSQuAD, self).__init__()
def forward(self, y, label):
start_logits, end_logits = y
start_position, end_position = label
start_position = paddle.unsqueeze(start_position, axis=-1)
end_position = paddle.unsqueeze(end_position, axis=-1)
start_loss = paddle.nn.functional.cross_entropy(
input=start_logits, label=start_position)
end_loss = paddle.nn.functional.cross_entropy(
input=end_logits, label=end_position)
loss = (start_loss + end_loss) / 2
return loss
def run(args):
paddle.set_device(args.device)
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
rank = paddle.distributed.get_rank()
task_name = args.task_name.lower()
args.model_type = args.model_type.lower()
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
set_seed(args)
if rank == 0:
if os.path.exists(args.model_name_or_path):
print("init checkpoint from %s" % args.model_name_or_path)
model = model_class.from_pretrained(args.model_name_or_path)
if paddle.distributed.get_world_size() > 1:
model = paddle.DataParallel(model)
def prepare_train_features(examples):
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
# NOTE: Almost the same functionality as HuggingFace's prepare_train_features function. The main difference is
# that HugggingFace uses ArrowTable as basic data structure, while we use list of dictionary instead.
contexts = [examples[i]['context'] for i in range(len(examples))]
questions = [examples[i]['question'] for i in range(len(examples))]
tokenized_examples = tokenizer(
questions,
contexts,
stride=args.doc_stride,
max_seq_len=args.max_seq_length)
# Let's label those examples!
for i, tokenized_example in enumerate(tokenized_examples):
# We will label impossible answers with the index of the CLS token.
input_ids = tokenized_example["input_ids"]
cls_index = input_ids.index(tokenizer.cls_token_id)
# The offset mappings will give us a map from token to character position in the original context. This will
# help us compute the start_positions and end_positions.
offsets = tokenized_example['offset_mapping']
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
sequence_ids = tokenized_example['token_type_ids']
# One example can give several spans, this is the index of the example containing this span of text.
sample_index = tokenized_example['overflow_to_sample']
answers = examples[sample_index]['answers']
answer_starts = examples[sample_index]['answer_starts']
# Start/end character index of the answer in the text.
start_char = answer_starts[0]
end_char = start_char + len(answers[0])
# Start token index of the current span in the text.
token_start_index = 0
while sequence_ids[token_start_index] != 1:
token_start_index += 1
# End token index of the current span in the text.
token_end_index = len(input_ids) - 1
while sequence_ids[token_end_index] != 1:
token_end_index -= 1
# Minus one more to reach actual text
token_end_index -= 1
# Detect if the answer is out of the span (in which case this feature is labeled with the CLS index).
if not (offsets[token_start_index][0] <= start_char and
offsets[token_end_index][1] >= end_char):
tokenized_examples[i]["start_positions"] = cls_index
tokenized_examples[i]["end_positions"] = cls_index
else:
# Otherwise move the token_start_index and token_end_index to the two ends of the answer.
# Note: we could go after the last offset if the answer is the last word (edge case).
while token_start_index < len(offsets) and offsets[
token_start_index][0] <= start_char:
token_start_index += 1
tokenized_examples[i]["start_positions"] = token_start_index - 1
while offsets[token_end_index][1] >= end_char:
token_end_index -= 1
tokenized_examples[i]["end_positions"] = token_end_index + 1
return tokenized_examples
if args.do_train:
if args.train_file:
train_ds = load_dataset(task_name, data_files=args.train_file)
else:
train_ds = load_dataset(task_name, splits='train')
train_ds.map(prepare_train_features, batched=True)
train_batch_sampler = paddle.io.DistributedBatchSampler(
train_ds, batch_size=args.batch_size, shuffle=True)
train_batchify_fn = lambda samples, fn=Dict({
"input_ids": Pad(axis=0, pad_val=tokenizer.pad_token_id),
"token_type_ids": Pad(axis=0, pad_val=tokenizer.pad_token_type_id),
"start_positions": Stack(dtype="int64"),
"end_positions": Stack(dtype="int64")
}): fn(samples)
train_data_loader = DataLoader(
dataset=train_ds,
batch_sampler=train_batch_sampler,
collate_fn=train_batchify_fn,
return_list=True)
num_training_steps = args.max_steps if args.max_steps > 0 else len(
train_data_loader) * args.num_train_epochs
num_train_epochs = math.ceil(num_training_steps /
len(train_data_loader))
lr_scheduler = LinearDecayWithWarmup(
args.learning_rate, num_training_steps, args.warmup_proportion)
# Generate parameter names needed to perform weight decay.
# All bias and LayerNorm parameters are excluded.
decay_params = [
p.name for n, p in model.named_parameters()
if not any(nd in n for nd in ["bias", "norm"])
]
optimizer = paddle.optimizer.AdamW(
learning_rate=lr_scheduler,
epsilon=args.adam_epsilon,
parameters=model.parameters(),
weight_decay=args.weight_decay,
apply_decay_param_fun=lambda x: x in decay_params)
criterion = CrossEntropyLossForSQuAD()
global_step = 0
tic_train = time.time()
for epoch in range(num_train_epochs):
for step, batch in enumerate(train_data_loader):
global_step += 1
input_ids, token_type_ids, start_positions, end_positions = batch
logits = model(
input_ids=input_ids, token_type_ids=token_type_ids)
loss = criterion(logits, (start_positions, end_positions))
if global_step % args.logging_steps == 0:
print(
"global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s"
% (global_step, epoch + 1, step + 1, loss,
args.logging_steps / (time.time() - tic_train)))
tic_train = time.time()
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.clear_grad()
if global_step % args.save_steps == 0 or global_step == num_training_steps:
if rank == 0:
output_dir = os.path.join(args.output_dir,
"model_%d" % global_step)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# need better way to get inner model of DataParallel
model_to_save = model._layers if isinstance(
model, paddle.DataParallel) else model
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
print('Saving checkpoint to:', output_dir)
if global_step == num_training_steps:
break
def prepare_validation_features(examples):
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
# NOTE: Almost the same functionality as HuggingFace's prepare_train_features function. The main difference is
# that HugggingFace uses ArrowTable as basic data structure, while we use list of dictionary instead.
contexts = [examples[i]['context'] for i in range(len(examples))]
questions = [examples[i]['question'] for i in range(len(examples))]
tokenized_examples = tokenizer(
questions,
contexts,
stride=args.doc_stride,
max_seq_len=args.max_seq_length)
# For validation, there is no need to compute start and end positions
for i, tokenized_example in enumerate(tokenized_examples):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
sequence_ids = tokenized_example['token_type_ids']
# One example can give several spans, this is the index of the example containing this span of text.
sample_index = tokenized_example['overflow_to_sample']
tokenized_examples[i]["example_id"] = examples[sample_index]['id']
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
tokenized_examples[i]["offset_mapping"] = [
(o if sequence_ids[k] == 1 else None)
for k, o in enumerate(tokenized_example["offset_mapping"])
]
return tokenized_examples
if args.do_predict and rank == 0:
if args.predict_file:
dev_ds = load_dataset(task_name, data_files=args.predict_file)
else:
dev_ds = load_dataset(task_name, splits='dev')
dev_ds.map(prepare_validation_features, batched=True)
dev_batch_sampler = paddle.io.BatchSampler(
dev_ds, batch_size=args.batch_size, shuffle=False)
dev_batchify_fn = lambda samples, fn=Dict({
"input_ids": Pad(axis=0, pad_val=tokenizer.pad_token_id),
"token_type_ids": Pad(axis=0, pad_val=tokenizer.pad_token_type_id)
}): fn(samples)
dev_data_loader = DataLoader(
dataset=dev_ds,
batch_sampler=dev_batch_sampler,
collate_fn=dev_batchify_fn,
return_list=True)
evaluate(model, dev_data_loader, args)
if __name__ == "__main__":
args = parse_args()
run(args)