forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
163 lines (131 loc) · 4.45 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
from paddlenlp.utils.env import MODEL_HOME
def parse_args():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--task_name", type=str, default='sst-2', help="Task name.")
parser.add_argument(
"--optimizer",
type=str,
default='adadelta',
help="Optimizer to use, only support[adam|adadelta].")
parser.add_argument(
"--lr", type=float, default=1.0, help="Learning rate for optimizer.")
parser.add_argument(
"--num_layers", type=int, default=1, help="Layers number of LSTM.")
parser.add_argument(
"--emb_dim", type=int, default=300, help="Embedding dim.")
parser.add_argument(
"--output_dim", type=int, default=2, help="Number of classifications.")
parser.add_argument(
"--hidden_size", type=int, default=300, help="Hidden size of LSTM")
parser.add_argument(
"--batch_size", type=int, default=64, help="Batch size of training.")
parser.add_argument(
"--max_epoch",
type=int,
default=12,
help="Max number of epochs for training.")
parser.add_argument(
"--max_seq_length",
type=int,
default=128,
help="Max length for sentence.")
parser.add_argument(
"--n_iter",
type=int,
default=20,
help="Number of iterations for one sample in data augmentation.")
parser.add_argument(
"--dropout_prob", type=float, default=0.0, help="Drop probability.")
parser.add_argument(
"--init_scale",
type=float,
default=0.1,
help="Init scale for parameter")
parser.add_argument(
"--log_freq",
type=int,
default=10,
help="The frequency to print evaluation logs.")
parser.add_argument(
"--save_steps",
type=int,
default=100,
help="The frequency to print evaluation logs.")
parser.add_argument(
"--padding_idx",
type=int,
default=0,
help="The padding index of embedding.")
parser.add_argument(
"--model_name",
type=str,
default='bert-base-uncased',
help="Teacher model's name. Maybe its tokenizer would be loaded and used by small model."
)
parser.add_argument(
"--teacher_dir", type=str, help="Teacher model's directory.")
parser.add_argument(
"--vocab_path",
type=str,
default=os.path.join(MODEL_HOME, 'bert-base-uncased',
'bert-base-uncased-vocab.txt'),
help="Student model's vocab path.")
parser.add_argument(
"--output_dir",
type=str,
default='models',
help="Directory to save models .")
parser.add_argument(
"--init_from_ckpt",
type=str,
default=None,
help="The path of layer and optimizer to be loaded.")
parser.add_argument(
"--whole_word_mask",
action="store_true",
help="If True, use whole word masking method in data augmentation in distilling."
)
parser.add_argument(
"--embedding_name",
type=str,
default=None,
help="The name of pretrained word embedding.")
parser.add_argument(
"--vocab_size",
type=int,
default=10000,
help="Student model's vocab size.")
parser.add_argument(
"--alpha",
type=float,
default=0.0,
help="Weight balance between cross entropy loss and mean square loss.")
parser.add_argument(
"--seed",
type=int,
default=2021,
help="Random seed for model parameter initialization, data augmentation and so on."
)
parser.add_argument(
"--device",
default="gpu",
choices=["gpu", "cpu", "xpu"],
help="Device selected for inference.")
args = parser.parse_args()
return args