forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_opinion.py
174 lines (145 loc) · 6.67 KB
/
predict_opinion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from functools import partial
import numpy as np
import paddle
import paddle.nn.functional as F
from paddlenlp.data import Stack, Tuple, Pad
from paddlenlp.datasets import load_dataset
from paddlenlp.transformers import SkepCrfForTokenClassification, SkepModel, SkepTokenizer
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--params_path", type=str, required=True, help="The path to model parameters to be loaded.")
parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. "
"Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument('--device', choices=['cpu', 'gpu', 'xpu'], default="gpu", help="Select which device to train model, defaults to gpu.")
args = parser.parse_args()
# yapf: enable
def convert_example(example, tokenizer, max_seq_length=512, is_test=False):
"""
Builds model inputs from a sequence or a pair of sequence for sequence classification tasks
by concatenating and adding special tokens. And creates a mask from the two sequences passed
to be used in a sequence-pair classification task.
A skep_ernie_1.0_large_ch/skep_ernie_2.0_large_en sequence has the following format:
::
- single sequence: ``[CLS] X [SEP]``
- pair of sequences: ``[CLS] A [SEP] B [SEP]``
A skep_ernie_1.0_large_ch/skep_ernie_2.0_large_en sequence pair mask has the following format:
::
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
example(obj:`list[str]`): List of input data, containing text and label if it have label.
tokenizer(obj:`PretrainedTokenizer`): This tokenizer inherits from :class:`~paddlenlp.transformers.PretrainedTokenizer`
which contains most of the methods. Users should refer to the superclass for more information regarding methods.
max_seq_len(obj:`int`): The maximum total input sequence length after tokenization.
Sequences longer than this will be truncated, sequences shorter will be padded.
Returns:
input_ids(obj:`list[int]`): The list of token ids.
token_type_ids(obj: `list[int]`): List of sequence pair mask.
"""
tokens = example["tokens"]
encoded_inputs = tokenizer(
tokens,
return_length=True,
is_split_into_words=True,
max_seq_len=max_seq_length)
input_ids = encoded_inputs["input_ids"]
token_type_ids = encoded_inputs["token_type_ids"]
seq_len = encoded_inputs["seq_len"]
return input_ids, token_type_ids, seq_len
@paddle.no_grad()
def predict(model, data_loader, label_map):
"""
Given a prediction dataset, it gives the prediction results.
Args:
model(obj:`paddle.nn.Layer`): A model to classify texts.
data_loader(obj:`paddle.io.DataLoader`): The dataset loader which generates batches.
label_map(obj:`dict`): The label id (key) to label str (value) map.
"""
model.eval()
results = []
for input_ids, token_type_ids, seq_lens in data_loader:
preds = model(input_ids, token_type_ids, seq_lens=seq_lens)
tags = parse_predict_result(preds.numpy(), seq_lens.numpy(), label_map)
results.extend(tags)
return results
def parse_predict_result(predictions, seq_lens, label_map):
"""
Parses the prediction results to the label tag.
"""
pred_tag = []
for idx, pred in enumerate(predictions):
seq_len = seq_lens[idx]
# drop the "[CLS]" and "[SEP]" token
tag = [label_map[i] for i in pred[1:seq_len - 1]]
pred_tag.append(tag)
return pred_tag
def create_dataloader(dataset,
mode='train',
batch_size=1,
batchify_fn=None,
trans_fn=None):
if trans_fn:
dataset = dataset.map(trans_fn)
shuffle = True if mode == 'train' else False
if mode == 'train':
batch_sampler = paddle.io.DistributedBatchSampler(
dataset, batch_size=batch_size, shuffle=shuffle)
else:
batch_sampler = paddle.io.BatchSampler(
dataset, batch_size=batch_size, shuffle=shuffle)
return paddle.io.DataLoader(
dataset=dataset,
batch_sampler=batch_sampler,
collate_fn=batchify_fn,
return_list=True)
if __name__ == "__main__":
paddle.set_device(args.device)
test_ds = load_dataset("cote", "dp", splits=['test'])
# The COTE_DP dataset labels with "BIO" schema.
label_map = {0: "B", 1: "I", 2: "O"}
# `no_entity_label` represents that the token isn't an entity.
no_entity_label_idx = 2
skep = SkepModel.from_pretrained('skep_ernie_1.0_large_ch')
model = SkepCrfForTokenClassification(
skep, num_classes=len(test_ds.label_list))
tokenizer = SkepTokenizer.from_pretrained('skep_ernie_1.0_large_ch')
if args.params_path and os.path.isfile(args.params_path):
state_dict = paddle.load(args.params_path)
model.set_dict(state_dict)
print("Loaded parameters from %s" % args.params_path)
trans_func = partial(
convert_example,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length)
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.vocab[tokenizer.pad_token]), # input ids
Pad(axis=0, pad_val=tokenizer.vocab[tokenizer.pad_token]), # token type ids
Stack(dtype='int64'), # sequence lens
): [data for data in fn(samples)]
test_data_loader = create_dataloader(
test_ds,
mode='test',
batch_size=args.batch_size,
batchify_fn=batchify_fn,
trans_fn=trans_func)
results = predict(model, test_data_loader, label_map)
for idx, example in enumerate(test_ds.data):
print(len(example['tokens']), len(results[idx]))
print('Data: {} \t Label: {}'.format(example, results[idx]))