forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
91 lines (74 loc) · 2.45 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
def parse_args():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--learning_rate",
type=float,
default=0.001,
help="learning rate for optimizer")
parser.add_argument(
"--num_layers",
type=int,
default=1,
help="layers number of encoder and decoder")
parser.add_argument(
"--hidden_size",
type=int,
default=100,
help="hidden size of encoder and decoder")
parser.add_argument(
"--batch_size", type=int, default=128, help="Batch size of each step")
parser.add_argument(
"--max_epoch", type=int, default=50, help="max epoch for the training")
parser.add_argument(
"--max_len",
type=int,
default=50,
help="max length for source and target sentence")
parser.add_argument(
"--max_grad_norm",
type=float,
default=5.0,
help="max grad norm for global norm clip")
parser.add_argument(
"--log_freq",
type=int,
default=200,
help="The frequency to print training logs")
parser.add_argument(
"--model_path",
type=str,
default='model',
help="model path for model to save")
parser.add_argument(
"--init_from_ckpt",
type=str,
default=None,
help="The path of checkpoint to be loaded.")
parser.add_argument(
"--infer_output_file",
type=str,
default='infer_output',
help="file name for inference output")
parser.add_argument(
"--beam_size", type=int, default=10, help="file name for inference")
parser.add_argument(
"--device",
default="gpu",
choices=["gpu", "cpu", "xpu"],
help="Device selected for inference.")
args = parser.parse_args()
return args