forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecode.py
340 lines (289 loc) · 12 KB
/
decode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals
import sys
import re
import argparse
import logging
import json
import numpy as np
from collections import namedtuple
import paddle
import paddle.nn as nn
import numpy as np
from paddlenlp.utils.log import logger
def gen_bias(encoder_inputs, decoder_inputs, step):
decoder_bsz, decoder_seqlen = decoder_inputs.shape[:2]
encoder_bsz, encoder_seqlen = encoder_inputs.shape[:2]
attn_bias = paddle.reshape(
paddle.arange(
0, decoder_seqlen, 1, dtype='float32') + 1, [1, -1, 1])
decoder_bias = paddle.cast(
(paddle.matmul(
attn_bias, 1. / attn_bias, transpose_y=True) >= 1.),
'float32') #[1, decoderlen, decoderlen]
encoder_bias = paddle.unsqueeze(
paddle.cast(paddle.ones_like(encoder_inputs), 'float32'),
[1]) #[bsz, 1, encoderlen]
encoder_bias = paddle.expand(
encoder_bias, [encoder_bsz, decoder_seqlen,
encoder_seqlen]) #[bsz,decoderlen, encoderlen]
decoder_bias = paddle.expand(
decoder_bias, [decoder_bsz, decoder_seqlen,
decoder_seqlen]) #[bsz, decoderlen, decoderlen]
if step > 0:
bias = paddle.concat([
encoder_bias, paddle.ones([decoder_bsz, decoder_seqlen, step],
'float32'), decoder_bias
], -1)
else:
bias = paddle.concat([encoder_bias, decoder_bias], -1)
return bias
@paddle.no_grad()
def greedy_search_infilling(model,
token_ids,
token_type_ids,
sos_id,
eos_id,
attn_id,
pad_id,
unk_id,
vocab_size,
max_encode_len=640,
max_decode_len=100,
tgt_type_id=3):
_, logits, info = model(token_ids, token_type_ids)
d_batch, d_seqlen = token_ids.shape
seqlen = paddle.sum(paddle.cast(token_ids != 0, 'int64'), 1, keepdim=True)
has_stopped = np.zeros([d_batch], dtype=np.bool)
gen_seq_len = np.zeros([d_batch], dtype=np.int64)
output_ids = []
past_cache = info['caches']
cls_ids = paddle.ones([d_batch], dtype='int64') * sos_id
attn_ids = paddle.ones([d_batch], dtype='int64') * attn_id
ids = paddle.stack([cls_ids, attn_ids], -1)
for step in range(max_decode_len):
bias = gen_bias(token_ids, ids, step)
pos_ids = paddle.to_tensor(
np.tile(
np.array(
[[step, step + 1]], dtype=np.int64), [d_batch, 1]))
pos_ids += seqlen
_, logits, info = model(
ids,
paddle.ones_like(ids) * tgt_type_id,
pos_ids=pos_ids,
attn_bias=bias,
past_cache=past_cache)
if logits.shape[-1] > vocab_size:
logits[:, :, vocab_size:] = 0
logits[:, :, pad_id] = 0
logits[:, :, unk_id] = 0
logits[:, :, attn_id] = 0
gen_ids = paddle.argmax(logits, -1)
past_cached_k, past_cached_v = past_cache
cached_k, cached_v = info['caches']
cached_k = [
paddle.concat([pk, k[:, :1, :]], 1)
for pk, k in zip(past_cached_k, cached_k)
] # concat cached
cached_v = [
paddle.concat([pv, v[:, :1, :]], 1)
for pv, v in zip(past_cached_v, cached_v)
]
past_cache = (cached_k, cached_v)
gen_ids = gen_ids[:, 1]
ids = paddle.stack([gen_ids, attn_ids], 1)
gen_ids = gen_ids.numpy()
has_stopped |= (gen_ids == eos_id).astype(np.bool)
gen_seq_len += (1 - has_stopped.astype(np.int64))
output_ids.append(gen_ids.tolist())
if has_stopped.all():
break
output_ids = np.array(output_ids).transpose([1, 0])
return output_ids
BeamSearchState = namedtuple('BeamSearchState',
['log_probs', 'lengths', 'finished'])
BeamSearchOutput = namedtuple('BeamSearchOutput',
['scores', 'predicted_ids', 'beam_parent_ids'])
def log_softmax(x):
e_x = np.exp(x - np.max(x))
return np.log(e_x / e_x.sum())
def mask_prob(p, onehot_eos, finished):
is_finished = paddle.cast(paddle.reshape(finished, [-1, 1]) != 0, 'float32')
p = is_finished * (1. - paddle.cast(onehot_eos, 'float32')) * -9999. + (
1. - is_finished) * p
return p
def hyp_score(log_probs, length, length_penalty):
lp = paddle.pow((5. + paddle.cast(length, 'float32')) / 6., length_penalty)
return log_probs / lp
def beam_search_step(state, logits, eos_id, beam_width, is_first_step,
length_penalty):
"""logits.shape == [B*W, V]"""
_, vocab_size = logits.shape
bsz, beam_width = state.log_probs.shape
onehot_eos = paddle.cast(
nn.functional.one_hot(paddle.ones([1], 'int64') * eos_id, vocab_size),
'int64') #[1, V]
probs = paddle.log(nn.functional.softmax(logits)) #[B*W, V]
probs = mask_prob(probs, onehot_eos, state.finished) #[B*W, V]
allprobs = paddle.reshape(state.log_probs, [-1, 1]) + probs #[B*W, V]
not_finished = 1 - paddle.reshape(state.finished, [-1, 1]) #[B*W,1]
not_eos = 1 - onehot_eos
length_to_add = not_finished * not_eos #[B*W,V]
alllen = paddle.reshape(state.lengths, [-1, 1]) + length_to_add
allprobs = paddle.reshape(allprobs, [-1, beam_width * vocab_size])
alllen = paddle.reshape(alllen, [-1, beam_width * vocab_size])
allscore = hyp_score(allprobs, alllen, length_penalty)
if is_first_step:
allscore = paddle.reshape(
allscore,
[bsz, beam_width, -1])[:, 0, :] # first step only consiter beam 0
scores, idx = paddle.topk(allscore, k=beam_width) #[B, W]
next_beam_id = idx // vocab_size #[B, W]
next_word_id = idx % vocab_size
gather_idx = paddle.concat(
[paddle.nonzero(idx != -1)[:, :1], paddle.reshape(idx, [-1, 1])], 1)
next_probs = paddle.reshape(
paddle.gather_nd(allprobs, gather_idx), idx.shape)
next_len = paddle.reshape(paddle.gather_nd(alllen, gather_idx), idx.shape)
gather_idx = paddle.concat([
paddle.nonzero(next_beam_id != -1)[:, :1], paddle.reshape(next_beam_id,
[-1, 1])
], 1)
next_finished = paddle.reshape(
paddle.gather_nd(state.finished, gather_idx),
state.finished.shape) #[gather new beam state according to new beam id]
next_finished += paddle.cast(next_word_id == eos_id, 'int64')
next_finished = paddle.cast(next_finished > 0, 'int64')
next_state = BeamSearchState(
log_probs=next_probs, lengths=next_len, finished=next_finished)
output = BeamSearchOutput(
scores=scores, predicted_ids=next_word_id, beam_parent_ids=next_beam_id)
return output, next_state
@paddle.no_grad()
def beam_search_infilling(model,
token_ids,
token_type_ids,
sos_id,
eos_id,
attn_id,
pad_id,
unk_id,
vocab_size,
max_encode_len=640,
max_decode_len=100,
beam_width=5,
tgt_type_id=3,
length_penalty=1.0):
_, __, info = model(token_ids, token_type_ids)
d_batch, d_seqlen = token_ids.shape
state = BeamSearchState(
log_probs=paddle.zeros([d_batch, beam_width], 'float32'),
lengths=paddle.zeros([d_batch, beam_width], 'int64'),
finished=paddle.zeros([d_batch, beam_width], 'int64'))
outputs = []
def reorder_(t, parent_id):
"""reorder cache according to parent beam id"""
gather_idx = paddle.nonzero(
parent_id != -1)[:, 0] * beam_width + paddle.reshape(parent_id,
[-1])
t = paddle.gather(t, gather_idx)
return t
def tile_(t, times):
_shapes = list(t.shape[1:])
new_shape = [t.shape[0], times] + list(t.shape[1:])
ret = paddle.reshape(
paddle.expand(paddle.unsqueeze(t, [1]), new_shape),
[-1, ] + _shapes)
return ret
cached_k, cached_v = info['caches']
cached_k = [tile_(k, beam_width) for k in cached_k]
cached_v = [tile_(v, beam_width) for v in cached_v]
past_cache = (cached_k, cached_v)
token_ids = tile_(token_ids, beam_width)
seqlen = paddle.sum(paddle.cast(token_ids != 0, 'int64'), 1, keepdim=True)
#log.debug(token_ids.shape)
cls_ids = paddle.ones([d_batch * beam_width], dtype='int64') * sos_id
attn_ids = paddle.ones(
[d_batch * beam_width], dtype='int64') * attn_id # SOS
ids = paddle.stack([cls_ids, attn_ids], -1)
for step in range(max_decode_len):
#log.debug('decode step %d' % step)
bias = gen_bias(token_ids, ids, step)
pos_ids = paddle.to_tensor(
np.tile(
np.array(
[[step, step + 1]], dtype=np.int64),
[d_batch * beam_width, 1]))
pos_ids += seqlen
_, logits, info = model(
ids,
paddle.ones_like(ids) * tgt_type_id,
pos_ids=pos_ids,
attn_bias=bias,
past_cache=past_cache)
if logits.shape[-1] > vocab_size:
logits[:, :, vocab_size:] = 0
logits[:, :, pad_id] = 0
logits[:, :, unk_id] = 0
logits[:, :, attn_id] = 0
output, state = beam_search_step(
state,
logits[:, 1],
eos_id=eos_id,
beam_width=beam_width,
is_first_step=(step == 0),
length_penalty=length_penalty)
outputs.append(output)
past_cached_k, past_cached_v = past_cache
cached_k, cached_v = info['caches']
cached_k = [
reorder_(
paddle.concat([pk, k[:, :1, :]], 1), output.beam_parent_ids)
for pk, k in zip(past_cached_k, cached_k)
] # concat cached
cached_v = [
reorder_(
paddle.concat([pv, v[:, :1, :]], 1), output.beam_parent_ids)
for pv, v in zip(past_cached_v, cached_v)
]
past_cache = (cached_k, cached_v)
pred_ids_flatten = paddle.reshape(output.predicted_ids,
[d_batch * beam_width])
ids = paddle.stack([pred_ids_flatten, attn_ids], 1)
if state.finished.numpy().all():
break
final_ids = paddle.stack([o.predicted_ids for o in outputs], 0)
final_parent_ids = paddle.stack([o.beam_parent_ids for o in outputs], 0)
final_ids = nn.functional.gather_tree(
final_ids, final_parent_ids)[:, :, 0] #pick best beam
final_ids = paddle.transpose(
paddle.reshape(final_ids, [-1, d_batch * 1]), [1, 0])
return final_ids.numpy()
en_patten = re.compile(r'^[a-zA-Z0-9]*$')
def post_process(token):
if token.startswith('##'):
ret = token[2:]
elif token in ['[CLS]', '[SEP]', '[PAD]']:
ret = ''
else:
if en_patten.match(token):
ret = ' ' + token
else:
ret = token
return ret