-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_with_lm.py
99 lines (78 loc) · 2.94 KB
/
cnn_with_lm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# CONFIG
# CNN
# LM
import torch
import torchvision
import torch.nn as nn
import math
import torch.nn.functional as F
import numpy as np
from models.VGG import *
import argparse
from data import loaders
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default="./configs/stroke_config/baseline.yaml", help='Path to the config file.')
parser.add_argument('--testing', action="store_true", default=False, help='Run testing version')
#parser.add_argument('--name', type=str, default="", help='Optional - special name for this run')
opts = parser.parse_args()
return opts
device = 'cuda'
# For updating learning rate
def update_lr(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def main(num_epochs = 200,
learning_rate = 0.005,
momentum = 0.5,
log_interval = 500,
*args,
**kwargs):
train_loader, test_loader = loaders.loader(batch_size_train = 100, batch_size_test = 1000)
# Train the model
total_step = len(train_loader)
curr_lr1 = learning_rate
model1 = VGG().to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer1 = torch.optim.Adam(model1.parameters(), lr=learning_rate)
# Train the model
total_step = len(train_loader)
best_accuracy1 = 0
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
# Forward pass
outputs = model1(images)
loss1 = criterion(outputs, labels)
# Backward and optimize
optimizer1.zero_grad()
loss1.backward()
optimizer1.step()
if i == 499:
print("Ordinary Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}"
.format(epoch + 1, num_epochs, i + 1, total_step, loss1.item()))
# Test the model
model1.eval()
with torch.no_grad():
correct1 = 0
total1 = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model1(images)
_, predicted = torch.max(outputs.data, 1)
total1 += labels.size(0)
correct1 += (predicted == labels).sum().item()
if best_accuracy1 >= correct1 / total1:
curr_lr1 = learning_rate * np.asscalar(pow(np.random.rand(1), 3))
update_lr(optimizer1, curr_lr1)
print('Test Accuracy of NN: {} % Best: {} %'.format(100 * correct1 / total1, 100 * best_accuracy1))
else:
best_accuracy1 = correct1 / total1
net_opt1 = model1
print('Test Accuracy of NN: {} % (improvement)'.format(100 * correct1 / total1))
model1.train()
if __name__=='__main__':
main()