-
Notifications
You must be signed in to change notification settings - Fork 16
/
prepare_dataset.py
129 lines (118 loc) · 4.29 KB
/
prepare_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright 2021 Tencent
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
import h5py
import scipy.io as io
import numpy as np
import os
import glob
import argparse
from matplotlib import pyplot as plt
from scipy.ndimage.filters import gaussian_filter
import scipy
import cv2
import scipy.spatial
# define the argparser
def get_args_parser():
parser = argparse.ArgumentParser('Data Preprocess', add_help=False)
parser.add_argument('--data_path', type=str, help='root path of the dataset')
return parser
# the function to generate the density map, with provided points
def generate_density_map(shape=(5, 5), points=None, f_sz=15, sigma=4):
"""
generate density map given head coordinations
"""
im_density = np.zeros(shape[0:2])
h, w = shape[0:2]
if len(points) == 0:
return im_density
# iterate over all the points
for j in range(len(points)):
# create the gaussian kernel
H = matlab_style_gauss2D((f_sz, f_sz), sigma)
# limit the bound
x = np.minimum(w, np.maximum(1, np.abs(np.int32(np.floor(points[j, 0])))))
y = np.minimum(h, np.maximum(1, np.abs(np.int32(np.floor(points[j, 1])))))
if x > w or y > h:
continue
# get the rect around each head
x1 = x - np.int32(np.floor(f_sz / 2))
y1 = y - np.int32(np.floor(f_sz / 2))
x2 = x + np.int32(np.floor(f_sz / 2))
y2 = y + np.int32(np.floor(f_sz / 2))
dx1 = 0
dy1 = 0
dx2 = 0
dy2 = 0
change_H = False
if x1 < 1:
dx1 = np.abs(x1) + 1
x1 = 1
change_H = True
if y1 < 1:
dy1 = np.abs(y1) + 1
y1 = 1
change_H = True
if x2 > w:
dx2 = x2 - w
x2 = w
change_H = True
if y2 > h:
dy2 = y2 - h
y2 = h
change_H = True
x1h = 1 + dx1
y1h = 1 + dy1
x2h = f_sz - dx2
y2h = f_sz - dy2
if change_H:
H = matlab_style_gauss2D((y2h - y1h + 1, x2h - x1h + 1), sigma)
# attach the gaussian kernel to the rect of this head
im_density[y1 - 1:y2, x1 - 1:x2] = im_density[y1 - 1:y2, x1 - 1:x2] + H
return im_density
def matlab_style_gauss2D(shape=(3, 3), sigma=0.5):
m, n = [(ss - 1.) / 2. for ss in shape]
y, x = np.ogrid[-m:m + 1, -n:n + 1]
h = np.exp(-(x * x + y * y) / (2. * sigma * sigma))
h[h < np.finfo(h.dtype).eps * h.max()] = 0
sumh = h.sum()
if sumh != 0:
h /= sumh
return h
if __name__ == '__main__':
parser = argparse.ArgumentParser('Data Preprocess', parents=[get_args_parser()])
args = parser.parse_args()
# get all image of the dataset
img_paths = []
for root, dirs, files in os.walk(args.data_path):
for img_path in files:
# only jpg image
if img_path.endswith('.jpg'):
img_paths.append(os.path.join(root, img_path))
# iterate over all images
for img_path in img_paths:
print(img_path)
# get the path of the GT
gt_path = img_path.replace('.jpg', '.txt')
gt = []
# read gt line by line
with open(gt_path) as f_label:
for line in f_label:
x = float(line.strip().split(' ')[0])
y = float(line.strip().split(' ')[1])
gt.append([x, y])
# load the image
image = cv2.imread(img_path)
# generate the density map
positions = generate_density_map(shape=image.shape, points=np.array(gt), f_sz=15, sigma=4)
# save the density map
with h5py.File(img_path.replace('.jpg', '_sigma4.h5').replace('images', 'ground_truth'), 'w') as hf:
hf['density'] = positions