forked from OpenMined/fl_client
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
353 lines (276 loc) · 11.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import importlib.util
import shutil
from datetime import datetime
from pathlib import Path
import torch
import torch.nn as nn
import torch.optim as optim
from syftbox.lib import Client
from torch.utils.data import ConcatDataset, DataLoader, TensorDataset
from utils import (
ProjectStateCols,
add_public_write_permission,
create_project_state,
get_app_private_data,
read_json,
search_files,
update_project_state,
)
DATASET_FILE_PATTERN = r"^mnist_label_[0-9]\.pt$"
# Exception name to indicate the state cannot advance
# as there are some pre-requisites that are not met
class StateNotReady(Exception):
pass
def init_client_app(client: Client) -> None:
"""
Creates the `fl_client` app in the `api_data` folder
with the following structure:
```
api_data
└── fl_client
└── request
└── running
```
"""
fl_client = client.api_data("fl_client")
for folder in ["request", "running", "done"]:
fl_client_folder = fl_client / folder
fl_client_folder.mkdir(parents=True, exist_ok=True)
# Give public write permission to the request folder
add_public_write_permission(client, fl_client / "request")
# We additionally create a private folder for the client to place the datasets
private_folder_path = get_app_private_data(client, "fl_client")
private_folder_path.mkdir(parents=True, exist_ok=True)
def init_shared_dirs(client: Client, proj_folder: Path) -> None:
"""Creates the shared directories for the project.
These directories are shared between the client and the aggregator.
a. round_weights
b. agg_weights
c. state
"""
round_weights_folder = proj_folder / "round_weights"
agg_weights_folder = proj_folder / "agg_weights"
round_weights_folder.mkdir(parents=True, exist_ok=True)
agg_weights_folder.mkdir(parents=True, exist_ok=True)
# Give public write permission to the round_weights and agg_weights folder
add_public_write_permission(client, agg_weights_folder)
# Create a state folder to track progress of the project
# and give public read permission to the state folder for the aggregator
create_project_state(client, proj_folder)
def load_model_class(model_path: Path) -> type:
"""Load the model class from the model architecture file"""
model_class_name = "FLModel"
spec = importlib.util.spec_from_file_location(model_path.stem, model_path)
model_arch = importlib.util.module_from_spec(spec)
spec.loader.exec_module(model_arch)
model_class = getattr(model_arch, model_class_name)
return model_class
def train_model(proj_folder: Path, round_num: int, dataset_path_files: Path) -> None:
"""
Trains the model for the given round number
"""
round_weights_folder = proj_folder / "round_weights"
agg_weights_folder = proj_folder / "agg_weights"
fl_config_path = proj_folder / "fl_config.json"
fl_config = read_json(fl_config_path)
# Load the Model from the model_arch filename
model_class = load_model_class(proj_folder / fl_config["model_arch"])
model: nn.Module = model_class()
# Load the aggregated weights from the previous round
agg_weights_file = agg_weights_folder / f"agg_model_round_{round_num - 1}.pt"
model.load_state_dict(torch.load(agg_weights_file, weights_only=True))
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=fl_config["learning_rate"])
all_datasets = []
for dataset_path_file in dataset_path_files:
# load the saved mnist subset
images, labels = torch.load(str(dataset_path_file), weights_only=True)
# create a tensordataset
dataset = TensorDataset(images, labels)
all_datasets.append(dataset)
combined_dataset = ConcatDataset(all_datasets)
# create a dataloader for the dataset
train_loader = DataLoader(combined_dataset, batch_size=64, shuffle=True)
# Open log file for writing
logs_folder_path = proj_folder / "logs"
logs_folder_path.mkdir(parents=True, exist_ok=True)
output_logs_path = logs_folder_path / f"training_logs_round_{round_num}.txt"
log_file = open(str(output_logs_path), "w")
# Log training start
start_msg = f"[{datetime.now().isoformat()}] Starting training...\n"
log_file.write(start_msg)
log_file.flush()
update_project_state(
proj_folder,
ProjectStateCols.MODEL_TRAIN_PROGRESS,
f"Training Started for Round {round_num}",
)
# training loop
for epoch in range(fl_config["epoch"]):
running_loss = 0
for images, labels in train_loader:
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# accumulate loss
running_loss += loss.item()
# Calculate average loss for the epoch
avg_loss = running_loss / len(train_loader)
log_msg = f"[{datetime.now().isoformat()}] Epoch {epoch + 1:04d}: Loss = {avg_loss:.6f}\n"
log_file.write(log_msg)
log_file.flush() # Force write to disk
update_project_state(
proj_folder,
ProjectStateCols.MODEL_TRAIN_PROGRESS,
f"Training InProgress for Round {round_num} (Curr Epoc: {epoch}/{fl_config['epoch']})",
)
# Serialize the model
output_model_path = round_weights_folder / f"trained_model_round_{round_num}.pt"
torch.save(model.state_dict(), str(output_model_path))
# Log completion
final_msg = f"[{datetime.now().isoformat()}] Training completed. Final loss: {avg_loss:.6f}\n"
log_file.write(final_msg)
log_file.flush()
log_file.close()
update_project_state(
proj_folder,
ProjectStateCols.MODEL_TRAIN_PROGRESS,
f"Training Completed for Round {round_num}",
)
def shift_project_to_done_folder(
client: Client, proj_folder: Path, total_rounds: int
) -> None:
"""
Moves the project to the `done` folder
a. Create a directory in the `done` folder with the same name as the project
b. moves the agg weights and round weights to the done folder
c. delete the project folder from the running folder
"""
done_proj_folder = client.api_data(f"fl_client/done/{proj_folder.name}")
done_proj_folder.mkdir(parents=True, exist_ok=True)
# Move the agg weights and round weights folder to the done project folder
shutil.move(proj_folder / "agg_weights", done_proj_folder)
shutil.move(proj_folder / "round_weights", done_proj_folder)
# Delete the project folder from the running folder
print(f"Deleting project folder from the running folder: {proj_folder.resolve()}")
shutil.rmtree(proj_folder)
def get_train_datasets(client: Client, proj_folder: Path) -> list[Path]:
# Check if datasets are present in the private folder
dataset_path = get_app_private_data(client, "fl_client")
dataset_path_files = search_files(DATASET_FILE_PATTERN, dataset_path)
if len(dataset_path_files) == 0:
raise StateNotReady(
f"⛔ No dataset found in private folder: {dataset_path.resolve()}"
"Skipping training "
)
update_project_state(proj_folder, ProjectStateCols.DATASET_ADDED, True)
return dataset_path_files
def has_project_completed(client: Client, proj_folder: Path, total_rounds: int) -> bool:
"""Check if the project has completed model training all the rounds."""
agg_weights_folder = proj_folder / "agg_weights"
agg_weights_cnt = len(list(agg_weights_folder.glob("*.pt")))
# Aggregated weights folder include round weights + init seed weight
# If aggregated weights for all rounds are present, then the project is completed
if agg_weights_cnt == total_rounds + 1:
print(f"FL project {proj_folder.name} has completed all the rounds ✅ 🚀")
shift_project_to_done_folder(client, proj_folder, total_rounds)
return True
return False
def perform_model_training(
client: Client,
proj_folder: Path,
dataset_files: list[Path],
) -> None:
"""
Step 2: Has the aggregate sent the weights for the current round x (in the agg_weights folder)
b. The client trains the model on the given round and places the trained model in the round_weights folder
c. It sends the trained model to the aggregator.
d. repeat a until all round completes
"""
round_weights_folder = proj_folder / "round_weights"
agg_weights_folder = proj_folder / "agg_weights"
fl_config_path = proj_folder / "fl_config.json"
fl_config = read_json(fl_config_path)
total_rounds = fl_config["rounds"]
current_round = len(list(round_weights_folder.iterdir())) + 1
# Exit if the project has completed all the rounds.
if has_project_completed(client, proj_folder, total_rounds):
return
# Check if the aggregate has sent the weights for the previous round
# We always use the previous round weights to train the model
# from the agg_weights folder to train for the current round
agg_weights_file = agg_weights_folder / f"agg_model_round_{current_round - 1}.pt"
if not agg_weights_file.is_file():
raise StateNotReady(
f"Aggregator has not sent the weights for the round {current_round}"
)
# Train the model for the given FL round
train_model(proj_folder, current_round, dataset_files)
# Share the trained model to the aggregator
trained_model_file = (
round_weights_folder / f"trained_model_round_{current_round}.pt"
)
share_model_to_aggregator(
client,
fl_config["aggregator"],
proj_folder,
trained_model_file,
)
def share_model_to_aggregator(
client: Client,
aggregator_email: str,
proj_folder: Path,
model_file: Path,
) -> None:
"""Shares the trained model to the aggregator."""
fl_aggregator_app_path = (
client.datasites / f"{aggregator_email}/api_data/fl_aggregator"
)
fl_aggregator_running_folder = fl_aggregator_app_path / "running" / proj_folder.name
fl_aggregator_client_path = (
fl_aggregator_running_folder / "fl_clients" / client.email
)
# Copy the trained model to the aggregator's client folder
shutil.copy(model_file, fl_aggregator_client_path)
def _advance_fl_project(client: Client, proj_folder: Path) -> None:
"""
Iterate over all the project folder, it will try to advance its state.
1. Ensure the project has init directories (like round_weights, agg_weights)
2. Has the aggregate sent the weights for the current round x (in the agg_weights folder)
b. The client trains the model on the given round and places the trained model in the round_weights folder
c. It sends the trained model to the aggregator.
d. repeat a until all round completes
"""
try:
# Init the shared directories for the project
init_shared_dirs(client, proj_folder)
# Retrieve datasets from the private folder if available
dataset_files = get_train_datasets(client, proj_folder)
# Train the model for the given FL round
perform_model_training(client, proj_folder, dataset_files)
except StateNotReady as e:
print(e)
return
def advance_fl_projects(client: Client) -> None:
"""
Iterates over the `running` folder and tries to advance the FL projects
"""
running_folder = client.api_data("fl_client") / "running"
for proj_folder in running_folder.iterdir():
if proj_folder.is_dir():
proj_name = proj_folder.name
print(
f"Advancing FL project {proj_name} -> proj_folder: {proj_folder.resolve()}"
)
_advance_fl_project(client, proj_folder)
def start_app():
client = Client.load()
# Step 1: Init the FL Aggregator App
init_client_app(client)
# Step 2: Advance the FL Projects.
# Iterates over the running folder and tries to advance the FL project
advance_fl_projects(client)
if __name__ == "__main__":
start_app()