-
-
Notifications
You must be signed in to change notification settings - Fork 4.4k
/
Copy pathhash_blake2b.c
551 lines (480 loc) · 15.6 KB
/
hash_blake2b.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/**
* @addtogroup hash Hash algorithms
* @{
* @file
* @author [Daniel Murrow](https://github.com/dsmurrow)
* @brief [Blake2b cryptographic hash
* function](https://www.rfc-editor.org/rfc/rfc7693)
*
* The Blake2b cryptographic hash function provides
* hashes for data that are secure enough to be used in
* cryptographic applications. It is designed to perform
* optimally on 64-bit platforms. The algorithm can output
* digests between 1 and 64 bytes long, for messages up to
* 128 bits in length. Keyed hashing is also supported for
* keys up to 64 bytes in length.
*/
#include <assert.h> /// for asserts
#include <inttypes.h> /// for fixed-width integer types e.g. uint64_t and uint8_t
#include <stdio.h> /// for IO
#include <stdlib.h> /// for malloc, calloc, and free. As well as size_t
/* Warning suppressed is in blake2b() function, more
* details are over there */
#ifdef __GNUC__
#pragma GCC diagnostic ignored "-Wshift-count-overflow"
#elif _MSC_VER
#pragma warning(disable : 4293)
#endif
/**
* @brief the size of a data block in bytes
*/
#define bb 128
/**
* @brief max key length for BLAKE2b
*/
#define KK_MAX 64
/**
* @brief max length of BLAKE2b digest in bytes
*/
#define NN_MAX 64
/**
* @brief ceiling division macro without floats
*
* @param a dividend
* @param b divisor
*/
#define CEIL(a, b) (((a) / (b)) + ((a) % (b) != 0))
/**
* @brief returns minimum value
*/
#define MIN(a, b) ((a) < (b) ? (a) : (b))
/**
* @brief returns maximum value
*/
#define MAX(a, b) ((a) > (b) ? (a) : (b))
/**
* @brief macro to rotate 64-bit ints to the right
* Ripped from RFC 7693
*/
#define ROTR64(n, offset) (((n) >> (offset)) ^ ((n) << (64 - (offset))))
/**
* @brief zero-value initializer for u128 type
*/
#define U128_ZERO \
{ \
0, 0 \
}
/** 128-bit number represented as two uint64's */
typedef uint64_t u128[2];
/** Padded input block containing bb bytes */
typedef uint64_t block_t[bb / sizeof(uint64_t)];
static const uint8_t R1 = 32; ///< Rotation constant 1 for mixing function G
static const uint8_t R2 = 24; ///< Rotation constant 2 for mixing function G
static const uint8_t R3 = 16; ///< Rotation constant 3 for mixing function G
static const uint8_t R4 = 63; ///< Rotation constant 4 for mixing function G
static const uint64_t blake2b_iv[8] = {
0x6A09E667F3BCC908, 0xBB67AE8584CAA73B, 0x3C6EF372FE94F82B,
0xA54FF53A5F1D36F1, 0x510E527FADE682D1, 0x9B05688C2B3E6C1F,
0x1F83D9ABFB41BD6B, 0x5BE0CD19137E2179}; ///< BLAKE2b Initialization vector
///< blake2b_iv[i] = floor(2**64 *
///< frac(sqrt(prime(i+1)))),
///< where prime(i) is the i:th
///< prime number
static const uint8_t blake2b_sigma[12][16] = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3},
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4},
{7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8},
{9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13},
{2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9},
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11},
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10},
{6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5},
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0},
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5,
3}}; ///< word schedule permutations for each round of the algorithm
/**
* @brief put value of n into dest
*
* @param dest 128-bit number to get copied from n
* @param n value put into dest
*
* @returns void
*/
static inline void u128_fill(u128 dest, size_t n)
{
dest[0] = n & UINT64_MAX;
if (sizeof(n) > 8)
{
/* The C standard does not specify a maximum length for size_t,
* although most machines implement it to be the same length as
* uint64_t. On machines where size_t is 8 bytes long this will issue a
* compiler warning, which is why it is suppressed. But on a machine
* where size_t is greater than 8 bytes, this will work as normal. */
dest[1] = n >> 64;
}
else
{
dest[1] = 0;
}
}
/**
* @brief increment an 128-bit number by a given amount
*
* @param dest the value being incremented
* @param n what dest is being increased by
*
* @returns void
*/
static inline void u128_increment(u128 dest, uint64_t n)
{
/* Check for overflow */
if (UINT64_MAX - dest[0] <= n)
{
dest[1]++;
}
dest[0] += n;
}
/**
* @brief blake2b mixing function G
*
* Shuffles values in block v depending on
* provided indeces a, b, c, and d. x and y
* are also mixed into the block.
*
* @param v array of words to be mixed
* @param a first index
* @param b second index
* @param c third index
* @param d fourth index
* @param x first word being mixed into v
* @param y second word being mixed into y
*
* @returns void
*/
static void G(block_t v, uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint64_t x,
uint64_t y)
{
v[a] += v[b] + x;
v[d] = ROTR64(v[d] ^ v[a], R1);
v[c] += v[d];
v[b] = ROTR64(v[b] ^ v[c], R2);
v[a] += v[b] + y;
v[d] = ROTR64(v[d] ^ v[a], R3);
v[c] += v[d];
v[b] = ROTR64(v[b] ^ v[c], R4);
}
/**
* @brief compression function F
*
* Securely mixes the values in block m into
* the state vector h. Value at v[14] is also
* inverted if this is the final block to be
* compressed.
*
* @param h the state vector
* @param m message vector to be compressed into h
* @param t 128-bit offset counter
* @param f flag to indicate whether this is the final block
*
* @returns void
*/
static void F(uint64_t h[8], block_t m, u128 t, int f)
{
int i;
block_t v;
/* v[0..7] := h[0..7] */
for (i = 0; i < 8; i++)
{
v[i] = h[i];
}
/* v[8..15] := IV[0..7] */
for (; i < 16; i++)
{
v[i] = blake2b_iv[i - 8];
}
v[12] ^= t[0]; /* v[12] ^ (t mod 2**w) */
v[13] ^= t[1]; /* v[13] ^ (t >> w) */
if (f)
{
v[14] = ~v[14];
}
for (i = 0; i < 12; i++)
{
const uint8_t *s = blake2b_sigma[i];
G(v, 0, 4, 8, 12, m[s[0]], m[s[1]]);
G(v, 1, 5, 9, 13, m[s[2]], m[s[3]]);
G(v, 2, 6, 10, 14, m[s[4]], m[s[5]]);
G(v, 3, 7, 11, 15, m[s[6]], m[s[7]]);
G(v, 0, 5, 10, 15, m[s[8]], m[s[9]]);
G(v, 1, 6, 11, 12, m[s[10]], m[s[11]]);
G(v, 2, 7, 8, 13, m[s[12]], m[s[13]]);
G(v, 3, 4, 9, 14, m[s[14]], m[s[15]]);
}
for (i = 0; i < 8; i++)
{
h[i] ^= v[i] ^ v[i + 8];
}
}
/**
* @brief driver function to perform the hashing as described in specification
*
* pseudocode: (credit to authors of RFC 7693 listed above)
* FUNCTION BLAKE2( d[0..dd-1], ll, kk, nn )
* |
* | h[0..7] := IV[0..7] // Initialization Vector.
* |
* | // Parameter block p[0]
* | h[0] := h[0] ^ 0x01010000 ^ (kk << 8) ^ nn
* |
* | // Process padded key and data blocks
* | IF dd > 1 THEN
* | | FOR i = 0 TO dd - 2 DO
* | | | h := F( h, d[i], (i + 1) * bb, FALSE )
* | | END FOR.
* | END IF.
* |
* | // Final block.
* | IF kk = 0 THEN
* | | h := F( h, d[dd - 1], ll, TRUE )
* | ELSE
* | | h := F( h, d[dd - 1], ll + bb, TRUE )
* | END IF.
* |
* | RETURN first "nn" bytes from little-endian word array h[].
* |
* END FUNCTION.
*
* @param dest destination of hashing digest
* @param d message blocks
* @param dd length of d
* @param ll 128-bit length of message
* @param kk length of secret key
* @param nn length of hash digest
*
* @returns 0 upon successful hash
*/
static int BLAKE2B(uint8_t *dest, block_t *d, size_t dd, u128 ll, uint8_t kk,
uint8_t nn)
{
uint8_t bytes[8];
uint64_t i, j;
uint64_t h[8];
u128 t = U128_ZERO;
/* h[0..7] = IV[0..7] */
for (i = 0; i < 8; i++)
{
h[i] = blake2b_iv[i];
}
h[0] ^= 0x01010000 ^ (kk << 8) ^ nn;
if (dd > 1)
{
for (i = 0; i < dd - 1; i++)
{
u128_increment(t, bb);
F(h, d[i], t, 0);
}
}
if (kk != 0)
{
u128_increment(ll, bb);
}
F(h, d[dd - 1], ll, 1);
/* copy bytes from h to destination buffer */
for (i = 0; i < nn; i++)
{
if (i % sizeof(uint64_t) == 0)
{
/* copy values from uint64 to 8 u8's */
for (j = 0; j < sizeof(uint64_t); j++)
{
uint16_t offset = 8 * j;
uint64_t mask = 0xFF;
mask <<= offset;
bytes[j] = (h[i / 8] & (mask)) >> offset;
}
}
dest[i] = bytes[i % 8];
}
return 0;
}
/**
* @brief blake2b hash function
*
* This is the front-end function that sets up the argument for BLAKE2B().
*
* @param message the message to be hashed
* @param len length of message (0 <= len < 2**128) (depends on sizeof(size_t)
* for this implementation)
* @param key optional secret key
* @param kk length of optional secret key (0 <= kk <= 64)
* @param nn length of output digest (1 <= nn < 64)
*
* @returns NULL if heap memory couldn't be allocated. Otherwise heap allocated
* memory nn bytes large
*/
uint8_t *blake2b(const uint8_t *message, size_t len, const uint8_t *key,
uint8_t kk, uint8_t nn)
{
uint8_t *dest = NULL;
uint64_t long_hold;
size_t dd, has_key, i;
size_t block_index, word_in_block;
u128 ll;
block_t *blocks;
if (message == NULL)
{
len = 0;
}
if (key == NULL)
{
kk = 0;
}
kk = MIN(kk, KK_MAX);
nn = MIN(nn, NN_MAX);
dd = MAX(CEIL(kk, bb) + CEIL(len, bb), 1);
blocks = calloc(dd, sizeof(block_t));
if (blocks == NULL)
{
return NULL;
}
dest = malloc(nn * sizeof(uint8_t));
if (dest == NULL)
{
free(blocks);
return NULL;
}
/* If there is a secret key it occupies the first block */
for (i = 0; i < kk; i++)
{
long_hold = key[i];
long_hold <<= 8 * (i % 8);
word_in_block = (i % bb) / 8;
/* block_index will always be 0 because kk <= 64 and bb = 128*/
blocks[0][word_in_block] |= long_hold;
}
has_key = kk > 0 ? 1 : 0;
for (i = 0; i < len; i++)
{
/* long_hold exists because the bit-shifting will overflow if we don't
* store the value */
long_hold = message[i];
long_hold <<= 8 * (i % 8);
block_index = has_key + (i / bb);
word_in_block = (i % bb) / 8;
blocks[block_index][word_in_block] |= long_hold;
}
u128_fill(ll, len);
BLAKE2B(dest, blocks, dd, ll, kk, nn);
free(blocks);
return dest;
}
/** @} */
/**
* @brief Self-test implementations
* @returns void
*/
static void assert_bytes(const uint8_t *expected, const uint8_t *actual,
uint8_t len)
{
uint8_t i;
assert(expected != NULL);
assert(actual != NULL);
assert(len > 0);
for (i = 0; i < len; i++)
{
assert(expected[i] == actual[i]);
}
}
/**
* @brief testing function
*
* @returns void
*/
static void test()
{
uint8_t *digest = NULL;
/* "abc" example straight out of RFC-7693 */
uint8_t abc[3] = {'a', 'b', 'c'};
uint8_t abc_answer[64] = {
0xBA, 0x80, 0xA5, 0x3F, 0x98, 0x1C, 0x4D, 0x0D, 0x6A, 0x27, 0x97,
0xB6, 0x9F, 0x12, 0xF6, 0xE9, 0x4C, 0x21, 0x2F, 0x14, 0x68, 0x5A,
0xC4, 0xB7, 0x4B, 0x12, 0xBB, 0x6F, 0xDB, 0xFF, 0xA2, 0xD1, 0x7D,
0x87, 0xC5, 0x39, 0x2A, 0xAB, 0x79, 0x2D, 0xC2, 0x52, 0xD5, 0xDE,
0x45, 0x33, 0xCC, 0x95, 0x18, 0xD3, 0x8A, 0xA8, 0xDB, 0xF1, 0x92,
0x5A, 0xB9, 0x23, 0x86, 0xED, 0xD4, 0x00, 0x99, 0x23};
digest = blake2b(abc, 3, NULL, 0, 64);
assert_bytes(abc_answer, digest, 64);
free(digest);
uint8_t key[64] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,
0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15,
0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20,
0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36,
0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f};
uint8_t key_answer[64] = {
0x10, 0xeb, 0xb6, 0x77, 0x00, 0xb1, 0x86, 0x8e, 0xfb, 0x44, 0x17,
0x98, 0x7a, 0xcf, 0x46, 0x90, 0xae, 0x9d, 0x97, 0x2f, 0xb7, 0xa5,
0x90, 0xc2, 0xf0, 0x28, 0x71, 0x79, 0x9a, 0xaa, 0x47, 0x86, 0xb5,
0xe9, 0x96, 0xe8, 0xf0, 0xf4, 0xeb, 0x98, 0x1f, 0xc2, 0x14, 0xb0,
0x05, 0xf4, 0x2d, 0x2f, 0xf4, 0x23, 0x34, 0x99, 0x39, 0x16, 0x53,
0xdf, 0x7a, 0xef, 0xcb, 0xc1, 0x3f, 0xc5, 0x15, 0x68};
digest = blake2b(NULL, 0, key, 64, 64);
assert_bytes(key_answer, digest, 64);
free(digest);
uint8_t zero[1] = {0};
uint8_t zero_key[64] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,
0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15,
0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20,
0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36,
0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f};
uint8_t zero_answer[64] = {
0x96, 0x1f, 0x6d, 0xd1, 0xe4, 0xdd, 0x30, 0xf6, 0x39, 0x01, 0x69,
0x0c, 0x51, 0x2e, 0x78, 0xe4, 0xb4, 0x5e, 0x47, 0x42, 0xed, 0x19,
0x7c, 0x3c, 0x5e, 0x45, 0xc5, 0x49, 0xfd, 0x25, 0xf2, 0xe4, 0x18,
0x7b, 0x0b, 0xc9, 0xfe, 0x30, 0x49, 0x2b, 0x16, 0xb0, 0xd0, 0xbc,
0x4e, 0xf9, 0xb0, 0xf3, 0x4c, 0x70, 0x03, 0xfa, 0xc0, 0x9a, 0x5e,
0xf1, 0x53, 0x2e, 0x69, 0x43, 0x02, 0x34, 0xce, 0xbd};
digest = blake2b(zero, 1, zero_key, 64, 64);
assert_bytes(zero_answer, digest, 64);
free(digest);
uint8_t filled[64] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,
0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15,
0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20,
0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36,
0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f};
uint8_t filled_key[64] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,
0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15,
0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20,
0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36,
0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f};
uint8_t filled_answer[64] = {
0x65, 0x67, 0x6d, 0x80, 0x06, 0x17, 0x97, 0x2f, 0xbd, 0x87, 0xe4,
0xb9, 0x51, 0x4e, 0x1c, 0x67, 0x40, 0x2b, 0x7a, 0x33, 0x10, 0x96,
0xd3, 0xbf, 0xac, 0x22, 0xf1, 0xab, 0xb9, 0x53, 0x74, 0xab, 0xc9,
0x42, 0xf1, 0x6e, 0x9a, 0xb0, 0xea, 0xd3, 0x3b, 0x87, 0xc9, 0x19,
0x68, 0xa6, 0xe5, 0x09, 0xe1, 0x19, 0xff, 0x07, 0x78, 0x7b, 0x3e,
0xf4, 0x83, 0xe1, 0xdc, 0xdc, 0xcf, 0x6e, 0x30, 0x22};
digest = blake2b(filled, 64, filled_key, 64, 64);
assert_bytes(filled_answer, digest, 64);
free(digest);
printf("All tests have successfully passed!\n");
}
/**
* @brief main function
*
* @returns 0 on successful program exit
*/
int main()
{
test();
return 0;
}