-
-
Notifications
You must be signed in to change notification settings - Fork 4.4k
/
Copy pathadaline_learning.c
419 lines (357 loc) · 12.7 KB
/
adaline_learning.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
/**
* \file
* \brief [Adaptive Linear Neuron
* (ADALINE)](https://en.wikipedia.org/wiki/ADALINE) implementation
* \details
* <img
* src="https://upload.wikimedia.org/wikipedia/commons/b/be/Adaline_flow_chart.gif"
* width="200px">
* [source](https://commons.wikimedia.org/wiki/File:Adaline_flow_chart.gif)
* ADALINE is one of the first and simplest single layer artificial neural
* network. The algorithm essentially implements a linear function
* \f[ f\left(x_0,x_1,x_2,\ldots\right) =
* \sum_j x_jw_j+\theta
* \f]
* where \f$x_j\f$ are the input features of a sample, \f$w_j\f$ are the
* coefficients of the linear function and \f$\theta\f$ is a constant. If we
* know the \f$w_j\f$, then for any given set of features, \f$y\f$ can be
* computed. Computing the \f$w_j\f$ is a supervised learning algorithm wherein
* a set of features and their corresponding outputs are given and weights are
* computed using stochastic gradient descent method.
* \author [Krishna Vedala](https://github.com/kvedala)
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
/**
* @addtogroup machine_learning Machine learning algorithms
* @{
* @addtogroup adaline Adaline learning algorithm
* @{
*/
/** Maximum number of iterations to learn */
#define MAX_ADALINE_ITER 500 // INT_MAX
/** structure to hold adaline model parameters */
struct adaline
{
double eta; /**< learning rate of the algorithm */
double *weights; /**< weights of the neural network */
int num_weights; /**< number of weights of the neural network */
};
/** convergence accuracy \f$=1\times10^{-5}\f$ */
#define ADALINE_ACCURACY 1e-5
/**
* Default constructor
* \param[in] num_features number of features present
* \param[in] eta learning rate (optional, default=0.1)
* \returns new adaline model
*/
struct adaline new_adaline(const int num_features, const double eta)
{
if (eta <= 0.f || eta >= 1.f)
{
fprintf(stderr, "learning rate should be > 0 and < 1\n");
exit(EXIT_FAILURE);
}
// additional weight is for the constant bias term
int num_weights = num_features + 1;
struct adaline ada;
ada.eta = eta;
ada.num_weights = num_weights;
ada.weights = (double *)malloc(num_weights * sizeof(double));
if (!ada.weights)
{
perror("Unable to allocate error for weights!");
return ada;
}
// initialize with random weights in the range [-50, 49]
for (int i = 0; i < num_weights; i++) ada.weights[i] = 1.f;
// ada.weights[i] = (double)(rand() % 100) - 50);
return ada;
}
/** delete dynamically allocated memory
* \param[in] ada model from which the memory is to be freed.
*/
void delete_adaline(struct adaline *ada)
{
if (ada == NULL)
return;
free(ada->weights);
};
/** [Heaviside activation
* function](https://en.wikipedia.org/wiki/Heaviside_step_function) <img
* src="https://upload.wikimedia.org/wikipedia/commons/d/d9/Dirac_distribution_CDF.svg"
* width="200px"/>
* @param x activation function input
* @returns \f$f(x)= \begin{cases}1 & \forall\; x > 0\\ -1 & \forall\; x \le0
* \end{cases}\f$
*/
int adaline_activation(double x) { return x > 0 ? 1 : -1; }
/**
* Operator to print the weights of the model
* @param ada model for which the values to print
* @returns pointer to a NULL terminated string of formatted weights
*/
char *adaline_get_weights_str(const struct adaline *ada)
{
static char out[100]; // static so the value is persistent
sprintf(out, "<");
for (int i = 0; i < ada->num_weights; i++)
{
sprintf(out, "%s%.4g", out, ada->weights[i]);
if (i < ada->num_weights - 1)
sprintf(out, "%s, ", out);
}
sprintf(out, "%s>", out);
return out;
}
/**
* predict the output of the model for given set of features
*
* \param[in] ada adaline model to predict
* \param[in] x input vector
* \param[out] out optional argument to return neuron output before applying
* activation function (`NULL` to ignore)
* \returns model prediction output
*/
int adaline_predict(struct adaline *ada, const double *x, double *out)
{
double y = ada->weights[ada->num_weights - 1]; // assign bias value
for (int i = 0; i < ada->num_weights - 1; i++) y += x[i] * ada->weights[i];
if (out) // if out variable is not NULL
*out = y;
// quantizer: apply ADALINE threshold function
return adaline_activation(y);
}
/**
* Update the weights of the model using supervised learning for one feature
* vector
*
* \param[in] ada adaline model to fit
* \param[in] x feature vector
* \param[in] y known output value
* \returns correction factor
*/
double adaline_fit_sample(struct adaline *ada, const double *x, const int y)
{
/* output of the model with current weights */
int p = adaline_predict(ada, x, NULL);
int prediction_error = y - p; // error in estimation
double correction_factor = ada->eta * prediction_error;
/* update each weight, the last weight is the bias term */
for (int i = 0; i < ada->num_weights - 1; i++)
{
ada->weights[i] += correction_factor * x[i];
}
ada->weights[ada->num_weights - 1] += correction_factor; // update bias
return correction_factor;
}
/**
* Update the weights of the model using supervised learning for an array of
* vectors.
*
* \param[in] ada adaline model to train
* \param[in] X array of feature vector
* \param[in] y known output value for each feature vector
* \param[in] N number of training samples
*/
void adaline_fit(struct adaline *ada, double **X, const int *y, const int N)
{
double avg_pred_error = 1.f;
int iter;
for (iter = 0;
(iter < MAX_ADALINE_ITER) && (avg_pred_error > ADALINE_ACCURACY);
iter++)
{
avg_pred_error = 0.f;
// perform fit for each sample
for (int i = 0; i < N; i++)
{
double err = adaline_fit_sample(ada, X[i], y[i]);
avg_pred_error += fabs(err);
}
avg_pred_error /= N;
// Print updates every 200th iteration
// if (iter % 100 == 0)
printf("\tIter %3d: Training weights: %s\tAvg error: %.4f\n", iter,
adaline_get_weights_str(ada), avg_pred_error);
}
if (iter < MAX_ADALINE_ITER)
printf("Converged after %d iterations.\n", iter);
else
printf("Did not converged after %d iterations.\n", iter);
}
/** @}
* @}
*/
/**
* test function to predict points in a 2D coordinate system above the line
* \f$x=y\f$ as +1 and others as -1.
* Note that each point is defined by 2 values or 2 features.
* \param[in] eta learning rate (optional, default=0.01)
*/
void test1(double eta)
{
struct adaline ada = new_adaline(2, eta); // 2 features
const int N = 10; // number of sample points
const double saved_X[10][2] = {{0, 1}, {1, -2}, {2, 3}, {3, -1},
{4, 1}, {6, -5}, {-7, -3}, {-8, 5},
{-9, 2}, {-10, -15}};
double **X = (double **)malloc(N * sizeof(double *));
const int Y[10] = {1, -1, 1, -1, -1,
-1, 1, 1, 1, -1}; // corresponding y-values
for (int i = 0; i < N; i++)
{
X[i] = (double *)saved_X[i];
}
printf("------- Test 1 -------\n");
printf("Model before fit: %s\n", adaline_get_weights_str(&ada));
adaline_fit(&ada, X, Y, N);
printf("Model after fit: %s\n", adaline_get_weights_str(&ada));
double test_x[] = {5, -3};
int pred = adaline_predict(&ada, test_x, NULL);
printf("Predict for x=(5,-3): % d\n", pred);
assert(pred == -1);
printf(" ...passed\n");
double test_x2[] = {5, 8};
pred = adaline_predict(&ada, test_x2, NULL);
printf("Predict for x=(5, 8): % d\n", pred);
assert(pred == 1);
printf(" ...passed\n");
// for (int i = 0; i < N; i++)
// free(X[i]);
free(X);
delete_adaline(&ada);
}
/**
* test function to predict points in a 2D coordinate system above the line
* \f$x+3y=-1\f$ as +1 and others as -1.
* Note that each point is defined by 2 values or 2 features.
* The function will create random sample points for training and test purposes.
* \param[in] eta learning rate (optional, default=0.01)
*/
void test2(double eta)
{
struct adaline ada = new_adaline(2, eta); // 2 features
const int N = 50; // number of sample points
double **X = (double **)malloc(N * sizeof(double *));
int *Y = (int *)malloc(N * sizeof(int)); // corresponding y-values
for (int i = 0; i < N; i++) X[i] = (double *)malloc(2 * sizeof(double));
// generate sample points in the interval
// [-range2/100 , (range2-1)/100]
int range = 500; // sample points full-range
int range2 = range >> 1; // sample points half-range
for (int i = 0; i < N; i++)
{
double x0 = ((rand() % range) - range2) / 100.f;
double x1 = ((rand() % range) - range2) / 100.f;
X[i][0] = x0;
X[i][1] = x1;
Y[i] = (x0 + 3. * x1) > -1 ? 1 : -1;
}
printf("------- Test 2 -------\n");
printf("Model before fit: %s\n", adaline_get_weights_str(&ada));
adaline_fit(&ada, X, Y, N);
printf("Model after fit: %s\n", adaline_get_weights_str(&ada));
int N_test_cases = 5;
double test_x[2];
for (int i = 0; i < N_test_cases; i++)
{
double x0 = ((rand() % range) - range2) / 100.f;
double x1 = ((rand() % range) - range2) / 100.f;
test_x[0] = x0;
test_x[1] = x1;
int pred = adaline_predict(&ada, test_x, NULL);
printf("Predict for x=(% 3.2f,% 3.2f): % d\n", x0, x1, pred);
int expected_val = (x0 + 3. * x1) > -1 ? 1 : -1;
assert(pred == expected_val);
printf(" ...passed\n");
}
for (int i = 0; i < N; i++) free(X[i]);
free(X);
free(Y);
delete_adaline(&ada);
}
/**
* test function to predict points in a 3D coordinate system lying within the
* sphere of radius 1 and centre at origin as +1 and others as -1. Note that
* each point is defined by 3 values but we use 6 features. The function will
* create random sample points for training and test purposes.
* The sphere centred at origin and radius 1 is defined as:
* \f$x^2+y^2+z^2=r^2=1\f$ and if the \f$r^2<1\f$, point lies within the sphere
* else, outside.
*
* \param[in] eta learning rate (optional, default=0.01)
*/
void test3(double eta)
{
struct adaline ada = new_adaline(6, eta); // 2 features
const int N = 50; // number of sample points
double **X = (double **)malloc(N * sizeof(double *));
int *Y = (int *)malloc(N * sizeof(int)); // corresponding y-values
for (int i = 0; i < N; i++) X[i] = (double *)malloc(6 * sizeof(double));
// generate sample points in the interval
// [-range2/100 , (range2-1)/100]
int range = 200; // sample points full-range
int range2 = range >> 1; // sample points half-range
for (int i = 0; i < N; i++)
{
double x0 = ((rand() % range) - range2) / 100.f;
double x1 = ((rand() % range) - range2) / 100.f;
double x2 = ((rand() % range) - range2) / 100.f;
X[i][0] = x0;
X[i][1] = x1;
X[i][2] = x2;
X[i][3] = x0 * x0;
X[i][4] = x1 * x1;
X[i][5] = x2 * x2;
Y[i] = (x0 * x0 + x1 * x1 + x2 * x2) <= 1 ? 1 : -1;
}
printf("------- Test 3 -------\n");
printf("Model before fit: %s\n", adaline_get_weights_str(&ada));
adaline_fit(&ada, X, Y, N);
printf("Model after fit: %s\n", adaline_get_weights_str(&ada));
int N_test_cases = 5;
double test_x[6];
for (int i = 0; i < N_test_cases; i++)
{
double x0 = ((rand() % range) - range2) / 100.f;
double x1 = ((rand() % range) - range2) / 100.f;
double x2 = ((rand() % range) - range2) / 100.f;
test_x[0] = x0;
test_x[1] = x1;
test_x[2] = x2;
test_x[3] = x0 * x0;
test_x[4] = x1 * x1;
test_x[5] = x2 * x2;
int pred = adaline_predict(&ada, test_x, NULL);
printf("Predict for x=(% 3.2f,% 3.2f): % d\n", x0, x1, pred);
int expected_val = (x0 * x0 + x1 * x1 + x2 * x2) <= 1 ? 1 : -1;
assert(pred == expected_val);
printf(" ...passed\n");
}
for (int i = 0; i < N; i++) free(X[i]);
free(X);
free(Y);
delete_adaline(&ada);
}
/** Main function */
int main(int argc, char **argv)
{
srand(time(NULL)); // initialize random number generator
double eta = 0.1; // default value of eta
if (argc == 2) // read eta value from commandline argument if present
eta = strtof(argv[1], NULL);
test1(eta);
printf("Press ENTER to continue...\n");
getchar();
test2(eta);
printf("Press ENTER to continue...\n");
getchar();
test3(eta);
return 0;
}