-
-
Notifications
You must be signed in to change notification settings - Fork 4.4k
/
Copy pathdurand_kerner_roots.c
252 lines (217 loc) · 7.07 KB
/
durand_kerner_roots.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
/**
* @file
* \brief Compute all possible approximate roots of any given polynomial using
* [Durand Kerner
* algorithm](https://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method)
*
* \author [Krishna Vedala](https://github.com/kvedala)
*
* Test the algorithm online:
* https://gist.github.com/kvedala/27f1b0b6502af935f6917673ec43bcd7
*
* Try the highly unstable Wilkinson's polynomial:
* ```
* ./numerical_methods/durand_kerner_roots.c 1 -210 20615 -1256850 53327946
* -1672280820 40171771630 -756111184500 11310276995381 -135585182899530
* 1307535010540395 -10142299865511450 63030812099294896 -311333643161390640
* 1206647803780373360 -3599979517947607200 8037811822645051776
* -12870931245150988800 13803759753640704000 -8752948036761600000
* 2432902008176640000
* ```
* Sample implementation results to compute approximate roots of the equation
* \f$x^4-1=0\f$:\n
* <img
* src="https://raw.githubusercontent.com/TheAlgorithms/C/docs/images/numerical_methods/durand_kerner_error.svg"
* width="400" alt="Error evolution during root approximations computed every
* iteration."/> <img
* src="https://raw.githubusercontent.com/TheAlgorithms/C/docs/images/numerical_methods/durand_kerner_roots.svg"
* width="400" alt="Roots evolution - shows the initial approximation of the
* roots and their convergence to a final approximation along with the iterative
* approximations" />
*/
#include <complex.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#define ACCURACY 1e-10 /**< maximum accuracy limit */
/**
* Evaluate the value of a polynomial with given coefficients
* \param[in] coeffs coefficients of the polynomial
* \param[in] degree degree of polynomial
* \param[in] x point at which to evaluate the polynomial
* \returns \f$f(x)\f$
*/
long double complex poly_function(long double *coeffs, unsigned int degree,
long double complex x)
{
long double complex out = 0.;
unsigned int n;
for (n = 0; n < degree; n++) out += coeffs[n] * cpow(x, degree - n - 1);
return out;
}
/**
* create a textual form of complex number
* \param[in] x point at which to evaluate the polynomial
* \returns pointer to converted string
*/
const char *complex_str(long double complex x)
{
static char msg[50];
double r = creal(x);
double c = cimag(x);
sprintf(msg, "% 7.04g%+7.04gj", r, c);
return msg;
}
/**
* check for termination condition
* \param[in] delta point at which to evaluate the polynomial
* \returns 0 if termination not reached
* \returns 1 if termination reached
*/
char check_termination(long double delta)
{
static long double past_delta = INFINITY;
if (fabsl(past_delta - delta) <= ACCURACY || delta < ACCURACY)
return 1;
past_delta = delta;
return 0;
}
/***
* the comandline inputs are taken as coeffiecients of a polynomial
*/
int main(int argc, char **argv)
{
long double *coeffs = NULL;
long double complex *s0 = NULL;
unsigned int degree = 0;
unsigned int n, i;
if (argc < 2)
{
printf(
"Please pass the coefficients of the polynomial as commandline "
"arguments.\n");
return 0;
}
degree = argc - 1; /* detected polynomial degree */
coeffs = (long double *)malloc(
degree * sizeof(long double)); /* store all input coefficients */
s0 = (long double complex *)malloc(
(degree - 1) *
sizeof(long double complex)); /* number of roots = degree-1 */
/* initialize random seed: */
srand(time(NULL));
if (!coeffs || !s0)
{
perror("Unable to allocate memory!");
if (coeffs)
free(coeffs);
if (s0)
free(s0);
return EXIT_FAILURE;
}
#if defined(DEBUG) || !defined(NDEBUG)
/**
* store intermediate values to a CSV file
*/
FILE *log_file = fopen("durand_kerner.log.csv", "wt");
if (!log_file)
{
perror("Unable to create a storage log file!");
free(coeffs);
free(s0);
return EXIT_FAILURE;
}
fprintf(log_file, "iter#,");
#endif
printf("Computing the roots for:\n\t");
for (n = 0; n < degree; n++)
{
coeffs[n] = strtod(argv[n + 1], NULL);
if (n < degree - 1 && coeffs[n] != 0)
printf("(%Lg) x^%d + ", coeffs[n], degree - n - 1);
else if (coeffs[n] != 0)
printf("(%Lg) x^%d = 0\n", coeffs[n], degree - n - 1);
double tmp;
if (n > 0)
coeffs[n] /= tmp; /* numerical errors less when the first
coefficient is "1" */
else
{
tmp = coeffs[0];
coeffs[0] = 1;
}
/* initialize root approximations with random values */
if (n < degree - 1)
{
s0[n] = (long double)rand() + (long double)rand() * I;
#if defined(DEBUG) || !defined(NDEBUG)
fprintf(log_file, "root_%d,", n);
#endif
}
}
#if defined(DEBUG) || !defined(NDEBUG)
fprintf(log_file, "avg. correction");
fprintf(log_file, "\n0,");
for (n = 0; n < degree - 1; n++)
fprintf(log_file, "%s,", complex_str(s0[n]));
#endif
double tol_condition = 1;
unsigned long iter = 0;
clock_t end_time, start_time = clock();
while (!check_termination(tol_condition) && iter < INT_MAX)
{
long double complex delta = 0;
tol_condition = 0;
iter++;
#if defined(DEBUG) || !defined(NDEBUG)
fprintf(log_file, "\n%ld,", iter);
#endif
for (n = 0; n < degree - 1; n++)
{
long double complex numerator =
poly_function(coeffs, degree, s0[n]);
long double complex denominator = 1.0;
for (i = 0; i < degree - 1; i++)
if (i != n)
denominator *= s0[n] - s0[i];
delta = numerator / denominator;
if (isnan(cabsl(delta)) || isinf(cabsl(delta)))
{
printf("\n\nOverflow/underrun error - got value = %Lg",
cabsl(delta));
goto end;
}
s0[n] -= delta;
tol_condition = fmaxl(tol_condition, fabsl(cabsl(delta)));
#if defined(DEBUG) || !defined(NDEBUG)
fprintf(log_file, "%s,", complex_str(s0[n]));
#endif
}
// tol_condition /= (degree - 1);
#if defined(DEBUG) || !defined(NDEBUG)
if (iter % 500 == 0)
{
printf("Iter: %lu\t", iter);
for (n = 0; n < degree - 1; n++) printf("\t%s", complex_str(s0[n]));
printf("\t\tabsolute average change: %.4g\n", tol_condition);
}
fprintf(log_file, "%.4g", tol_condition);
#endif
}
end:
end_time = clock();
#if defined(DEBUG) || !defined(NDEBUG)
fclose(log_file);
#endif
printf("\nIterations: %lu\n", iter);
for (n = 0; n < degree - 1; n++) printf("\t%s\n", complex_str(s0[n]));
printf("absolute average change: %.4g\n", tol_condition);
printf("Time taken: %.4g sec\n",
(end_time - start_time) / (double)CLOCKS_PER_SEC);
free(coeffs);
free(s0);
return 0;
}