-
-
Notifications
You must be signed in to change notification settings - Fork 45.9k
/
binary_exponentiation.py
196 lines (165 loc) · 5.05 KB
/
binary_exponentiation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
"""
Binary Exponentiation
This is a method to find a^b in O(log b) time complexity and is one of the most commonly
used methods of exponentiation. The method is also useful for modular exponentiation,
when the solution to (a^b) % c is required.
To calculate a^b:
- If b is even, then a^b = (a * a)^(b / 2)
- If b is odd, then a^b = a * a^(b - 1)
Repeat until b = 1 or b = 0
For modular exponentiation, we use the fact that (a * b) % c = ((a % c) * (b % c)) % c
"""
def binary_exp_recursive(base: float, exponent: int) -> float:
"""
Computes a^b recursively, where a is the base and b is the exponent
>>> binary_exp_recursive(3, 5)
243
>>> binary_exp_recursive(11, 13)
34522712143931
>>> binary_exp_recursive(-1, 3)
-1
>>> binary_exp_recursive(0, 5)
0
>>> binary_exp_recursive(3, 1)
3
>>> binary_exp_recursive(3, 0)
1
>>> binary_exp_recursive(1.5, 4)
5.0625
>>> binary_exp_recursive(3, -1)
Traceback (most recent call last):
...
ValueError: Exponent must be a non-negative integer
"""
if exponent < 0:
raise ValueError("Exponent must be a non-negative integer")
if exponent == 0:
return 1
if exponent % 2 == 1:
return binary_exp_recursive(base, exponent - 1) * base
b = binary_exp_recursive(base, exponent // 2)
return b * b
def binary_exp_iterative(base: float, exponent: int) -> float:
"""
Computes a^b iteratively, where a is the base and b is the exponent
>>> binary_exp_iterative(3, 5)
243
>>> binary_exp_iterative(11, 13)
34522712143931
>>> binary_exp_iterative(-1, 3)
-1
>>> binary_exp_iterative(0, 5)
0
>>> binary_exp_iterative(3, 1)
3
>>> binary_exp_iterative(3, 0)
1
>>> binary_exp_iterative(1.5, 4)
5.0625
>>> binary_exp_iterative(3, -1)
Traceback (most recent call last):
...
ValueError: Exponent must be a non-negative integer
"""
if exponent < 0:
raise ValueError("Exponent must be a non-negative integer")
res: int | float = 1
while exponent > 0:
if exponent & 1:
res *= base
base *= base
exponent >>= 1
return res
def binary_exp_mod_recursive(base: float, exponent: int, modulus: int) -> float:
"""
Computes a^b % c recursively, where a is the base, b is the exponent, and c is the
modulus
>>> binary_exp_mod_recursive(3, 4, 5)
1
>>> binary_exp_mod_recursive(11, 13, 7)
4
>>> binary_exp_mod_recursive(1.5, 4, 3)
2.0625
>>> binary_exp_mod_recursive(7, -1, 10)
Traceback (most recent call last):
...
ValueError: Exponent must be a non-negative integer
>>> binary_exp_mod_recursive(7, 13, 0)
Traceback (most recent call last):
...
ValueError: Modulus must be a positive integer
"""
if exponent < 0:
raise ValueError("Exponent must be a non-negative integer")
if modulus <= 0:
raise ValueError("Modulus must be a positive integer")
if exponent == 0:
return 1
if exponent % 2 == 1:
return (binary_exp_mod_recursive(base, exponent - 1, modulus) * base) % modulus
r = binary_exp_mod_recursive(base, exponent // 2, modulus)
return (r * r) % modulus
def binary_exp_mod_iterative(base: float, exponent: int, modulus: int) -> float:
"""
Computes a^b % c iteratively, where a is the base, b is the exponent, and c is the
modulus
>>> binary_exp_mod_iterative(3, 4, 5)
1
>>> binary_exp_mod_iterative(11, 13, 7)
4
>>> binary_exp_mod_iterative(1.5, 4, 3)
2.0625
>>> binary_exp_mod_iterative(7, -1, 10)
Traceback (most recent call last):
...
ValueError: Exponent must be a non-negative integer
>>> binary_exp_mod_iterative(7, 13, 0)
Traceback (most recent call last):
...
ValueError: Modulus must be a positive integer
"""
if exponent < 0:
raise ValueError("Exponent must be a non-negative integer")
if modulus <= 0:
raise ValueError("Modulus must be a positive integer")
res: int | float = 1
while exponent > 0:
if exponent & 1:
res = ((res % modulus) * (base % modulus)) % modulus
base *= base
exponent >>= 1
return res
if __name__ == "__main__":
from timeit import timeit
a = 1269380576
b = 374
c = 34
runs = 100_000
print(
timeit(
f"binary_exp_recursive({a}, {b})",
setup="from __main__ import binary_exp_recursive",
number=runs,
)
)
print(
timeit(
f"binary_exp_iterative({a}, {b})",
setup="from __main__ import binary_exp_iterative",
number=runs,
)
)
print(
timeit(
f"binary_exp_mod_recursive({a}, {b}, {c})",
setup="from __main__ import binary_exp_mod_recursive",
number=runs,
)
)
print(
timeit(
f"binary_exp_mod_iterative({a}, {b}, {c})",
setup="from __main__ import binary_exp_mod_iterative",
number=runs,
)
)