- Ubuntu 16.04, CUDA 9.0, GCC 4.9.4
- Python 3.6.x
# We recommend you to use Anaconda/Miniconda to create a conda environment conda create -n vl-bert python=3.6 pip conda activate vl-bert
- PyTorch 1.0.0 or 1.1.0
conda install pytorch=1.1.0 cudatoolkit=9.0 -c pytorch
- Apex (optional, for speed-up and fp16 training)
git clone https://github.com/jackroos/apex cd ./apex pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
- Other requirements:
pip install Cython pip install -r requirements.txt
- Compile
./scripts/init.sh
- In the
data
folder create atalk2car
folder. - Create a
images
folder andannotations
in thetalk2car
folder. - Download the images from here.
- In
annotations
puttalk2car_w_rpn_no_duplicates.json
which you can get from here. - Then run
preprocess_t2c_files_to_coco.py
at the root dir of VL-BERT-master
python scripts/launch.py \
--nproc_per_node 1 \
"talk2car/train_end2end.py" \
--cfg "cfgs/talk2car/base_gt_boxes_4x16G.yaml" \
--model-dir "t2c"
python talk2car/test.py \
--split test \
--cfg cfgs/talk2car/base_gt_boxes_4x16G.yaml \
--ckpt CHECKPOINT\
--gpus 1 \
--result-path result --result-name t2c_vlbert_test