-
Theorie
- Machine Learning vs. Statistische Modellierung
- Grundlagen der Bayesschen Modellierung
- Pymc3 – Ein probabilistisches Programmierframework
-
Praxis
- Unsicherheit beherrschen: Bayessche Lineare Modelle
- Informationen teilen: Bayessche Hierarchische Modelle
Install docker on your environment following these instructions.
After having installed docker, build the image as follows (this needs to be done only once):
docker build -t bayes_workshop .
Run the container with the following command:
(NOTE: The following command was tested on osx and linux. For docker on windows, this can be slightly different)
docker run -p 8888:8888 \
-v $(PWD)/2_praxis/:/home/jovyan/praxis/ \
-v $(PWD)/data/:/home/jovyan/data/ \
-v $(PWD)/utils/:/home/jovyan/utils/ \
bayes_workshop
And then just copy paste the http://127.... (with token) into your browser.
If you want to add additional packages you can do so in two ways:
- Add them permanently by adding it to the requirements.txt.
- Install them in the jupyter notebook by executing
!pip install <YOUR PACKAGE>
in a cell.
-
Theorie: Besseres intuitives Beispiel wählen. - Theorie: Ausbauen von Pymc3 Teil.
- Theorie: Einbauen, wann bayes modellierung besonders sinnvoll ist (ML vs. Stat Modeling).
- Theorie: Übergang von P(H|D) zu real-world Modell glatter machen.
- Praxis: Teil I und II in verschiedenen Sessions.
- Praxis: Teil 0 hinzufügen: Sampling from posterior from scratch (Sampling Idee kennenlernen).