-
Notifications
You must be signed in to change notification settings - Fork 4
/
dilated.py
446 lines (359 loc) · 17.6 KB
/
dilated.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import tensorflow as tf
import numpy as np
import six
import sys
"""
This script provides different 2d dilated convolutions.
I appreciate ideas for a more efficient implementation of the proposed two smoothed dilated convolutions.
"""
def _dilated_conv2d(dilated_type, x, kernel_size, num_o, dilation_factor, name,
top_scope, biased=False):
if dilated_type == 'regular':
return _regular_dilated_conv2d(x, kernel_size, num_o, dilation_factor, name, top_scope, biased)
elif dilated_type == 'decompose':
return _decomposed_dilated_conv2d(x, kernel_size, num_o, dilation_factor, name, top_scope, biased)
elif dilated_type == 'smooth_GI':
return _smoothed_dilated_conv2d_GI(x, kernel_size, num_o, dilation_factor, name, top_scope, biased)
elif dilated_type == 'smooth_SSC':
return _smoothed_dilated_conv2d_SSC(x, kernel_size, num_o, dilation_factor, name, top_scope, biased)
elif dilated_type == 'average_filter':
return _averaged_dilated_conv2d(x, kernel_size, num_o, dilation_factor, name, top_scope, biased)
elif dilated_type == 'gaussian_filter':
return _gaussian_dilated_conv2d_fix(x, kernel_size, num_o, dilation_factor, name, top_scope, biased)
elif dilated_type == 'aggregation':
return _combinational_layer_fix(x, kernel_size, num_o, dilation_factor, name, top_scope, biased)
else:
print('dilated_type ERROR!')
print("Please input: regular, decompose, smooth_GI or smooth_SSC")
sys.exit(-1)
def _regular_dilated_conv2d(x, kernel_size, num_o, dilation_factor, name,
top_scope, biased=False):
"""
Dilated conv2d without BN or relu.
"""
num_x = x.shape[3].value
with tf.variable_scope(name) as scope:
w = tf.get_variable('weights', shape=[kernel_size, kernel_size, num_x, num_o])
o = tf.nn.atrous_conv2d(x, w, dilation_factor, padding='SAME')
if biased:
b = tf.get_variable('biases', shape=[num_o])
o = tf.nn.bias_add(o, b)
return o
def _averaged_dilated_conv2d(x, kernel_size, num_o, dilation_factor, name, top_scope, biased=False):
"""
Dilated conv2d with antecedent average filter and without BN or relu.
"""
num_x = x.shape[3].value
filter_size = dilation_factor - 1
# perform averaging (as seprable convolution)
w_avg_value = 1.0/(filter_size*filter_size)
w_avg = tf.Variable(tf.constant(w_avg_value,
shape=[filter_size,filter_size,num_x,1]), name='w_avg')
o = tf.nn.depthwise_conv2d_native(x, w_avg, [1,1,1,1], padding='SAME')
with tf.variable_scope(name) as scope:
w = tf.get_variable('weights', shape=[kernel_size, kernel_size, num_x, num_o])
o = tf.nn.atrous_conv2d(o, w, dilation_factor, padding='SAME')
if biased:
b = tf.get_variable('biases', shape=[num_o])
o = tf.nn.bias_add(o, b)
return o
def _gaussian_dilated_conv2d_fix(x, kernel_size, num_o, dilation_factor, name, top_scope, biased=False):
"""
Dilated conv2d with antecedent gaussian filter and without BN or relu.
"""
num_x = x.shape[3].value
filter_size = dilation_factor - 1
# perform gaussian filtering (as seprable convolution)
sigma = 1.00
# create kernel grid
ax = np.arange(-filter_size // 2 + 1., filter_size // 2 + 1.)
xx, yy = np.meshgrid(ax, ax)
kernel = np.exp(-(xx**2 + yy**2))
mask = np.zeros([filter_size,filter_size, 1, 1, 1], dtype=np.float32)
mask[:, :, 0, 0, 0] = kernel
w_gauss_value = tf.Variable(tf.constant(0.0,
shape=[filter_size,filter_size, 1,1,1]), name='w_gauss_value',trainable=False)
# create gaussian filter
w_gauss_value = tf.add(w_gauss_value, tf.constant(mask, dtype=tf.float32))
w_gauss_value = tf.div(w_gauss_value, tf.exp(2.0 * sigma**2))
w_gauss_value = tf.div(w_gauss_value, tf.reduce_sum(w_gauss_value))
# perform separable convolution
o_gauss = tf.expand_dims(x, -1)
o_gauss = tf.nn.conv3d(o_gauss, w_gauss_value, strides=[1,1,1,1,1], padding='SAME')
o_gauss = tf.squeeze(o_gauss, -1)
with tf.variable_scope(name) as scope:
# perform dilated convolution
w = tf.get_variable('weights', shape=[kernel_size, kernel_size, num_x, num_o])
o = tf.nn.atrous_conv2d(o_gauss, w, dilation_factor, padding='SAME')
if biased:
b = tf.get_variable('biases', shape=[num_o])
o = tf.nn.bias_add(o, b)
return o
def _gaussian_dilated_conv2d_oneLearned(x, kernel_size, num_o, dilation_factor, name, top_scope, biased=False):
"""
Dilated conv2d with antecedent gaussian filter and without BN or relu.
"""
num_x = x.shape[3].value
filter_size = dilation_factor - 1
sigma = _get_sigma(top_scope)
# create kernel grid
ax = np.arange(-filter_size // 2 + 1., filter_size // 2 + 1.)
xx, yy = np.meshgrid(ax, ax)
kernel = np.exp(-(xx**2 + yy**2))
mask = np.zeros([filter_size,filter_size, 1, 1, 1], dtype=np.float32)
mask[:, :, 0, 0, 0] = kernel
w_gauss_value = tf.Variable(tf.constant(0.0,
shape=[filter_size,filter_size, 1,1,1]), name='w_gauss_value',trainable=False)
# create gaussian filter
w_gauss_value = tf.add(w_gauss_value, tf.constant(mask, dtype=tf.float32))
w_gauss_value = tf.div(w_gauss_value, tf.exp(2.0 * sigma**2))
w_gauss_value = tf.div(w_gauss_value, tf.reduce_sum(w_gauss_value))
# perform separable convolution
o_gauss = tf.expand_dims(x, -1)
o_gauss = tf.nn.conv3d(o_gauss, w_gauss_value, strides=[1,1,1,1,1], padding='SAME')
o_gauss = tf.squeeze(o_gauss, -1)
with tf.variable_scope(name) as scope:
# perform dilated convolution
w = tf.get_variable('weights', shape=[kernel_size, kernel_size, num_x, num_o])
o = tf.nn.atrous_conv2d(o_gauss, w, dilation_factor, padding='SAME')
if biased:
b = tf.get_variable('biases', shape=[num_o])
o = tf.nn.bias_add(o, b)
return o
def _get_sigma(name):
"""
Return sigma vector
"""
with tf.variable_scope(name) as scope:
# init sigma if not already done
try:
sigma = tf.get_variable('gauss_sigma', shape=[1], initializer=tf.constant_initializer([1.0]))
# get sigma if already initialized
except ValueError:
scope.reuse_variables()
sigma = tf.get_variable('gauss_sigma')
return sigma
def _gaussian_dilated_conv2d_allLearned(x, kernel_size, num_o, dilation_factor, name, top_scope, biased=False):
"""
Dilated conv2d with antecedent gaussian filter and without BN or relu.
"""
num_x = x.shape[3].value
filter_size = dilation_factor - 1
with tf.variable_scope(name) as scope:
# perform gaussian filtering (as seprable convolution)
# init sigma value with 1
sigma_init = 1.00
init = tf.constant_initializer(sigma_init)
sigma = tf.get_variable('gauss_sigma', shape=[1], initializer=init)
# create kernel grid
ax = np.arange(-filter_size // 2 + 1., filter_size // 2 + 1.)
xx, yy = np.meshgrid(ax, ax)
kernel = np.exp(-(xx**2 + yy**2))
mask = np.zeros([filter_size,filter_size, 1, 1, 1], dtype=np.float32)
mask[:, :, 0, 0, 0] = kernel
w_gauss_value = tf.Variable(tf.constant(0.0,
shape=[filter_size,filter_size, 1,1,1]), name='w_gauss_value',trainable=False)
# create gaussian filter
w_gauss_value = tf.add(w_gauss_value, tf.constant(mask, dtype=tf.float32))
w_gauss_value = tf.div(w_gauss_value, tf.exp(2.0 * sigma**2))
w_gauss_value = tf.div(w_gauss_value, tf.reduce_sum(w_gauss_value))
# perform separable convolution
o_gauss = tf.expand_dims(x, -1)
o_gauss = tf.nn.conv3d(o_gauss, w_gauss_value, strides=[1,1,1,1,1], padding='SAME')
o_gauss = tf.squeeze(o_gauss, -1)
# perform dilated convolution
w = tf.get_variable('weights', shape=[kernel_size, kernel_size, num_x, num_o])
o = tf.nn.atrous_conv2d(o_gauss, w, dilation_factor, padding='SAME')
if biased:
b = tf.get_variable('biases', shape=[num_o])
o = tf.nn.bias_add(o, b)
return o
def _combinational_layer_learned(x, kernel_size, num_o, dilation_factor, name, top_scope, biased=False):
"""
Combination of Gaussian, Average, SSC prefilter together with non per-filtered input
"""
num_x = x.shape[3].value
fix_w_size = dilation_factor * 2 - 1
filter_size = dilation_factor - 1
# perform average filtering (as seprable convolution)
w_avg_value = 1.0/(filter_size*filter_size)
w_avg = tf.Variable(tf.constant(w_avg_value,
shape=[filter_size,filter_size,num_x,1]), name='w_avg')
o_avg = tf.nn.depthwise_conv2d_native(x, w_avg, [1,1,1,1], padding='SAME')
# perform gaussian filtering
sigma = _get_sigma(top_scope)
ax = np.arange(-filter_size // 2 + 1., filter_size // 2 + 1.)
xx, yy = np.meshgrid(ax, ax)
kernel = np.exp(-(xx**2 + yy**2))
w_gauss_value = tf.Variable(tf.constant(0.0,
shape=[filter_size,filter_size, 1,1,1]), name='w_gauss_value',trainable=False)
mask = np.zeros([filter_size,filter_size, 1, 1, 1], dtype=np.float32)
mask[:, :, 0, 0, 0] = kernel
# create gaussian filter
w_gauss_value = tf.add(w_gauss_value, tf.constant(mask, dtype=tf.float32))
w_gauss_value = tf.div(w_gauss_value, tf.exp(2.0 * sigma**2))
w_gauss_value = tf.div(w_gauss_value, tf.reduce_sum(w_gauss_value))
# perform separable convolution
o_gauss = tf.expand_dims(x, -1)
o_gauss = tf.nn.conv3d(o_gauss, w_gauss_value, strides=[1,1,1,1,1], padding='SAME')
o_gauss = tf.squeeze(o_gauss, -1)
# get c vector
c_ = _get_c_vector(top_scope)
with tf.variable_scope(name) as scope:
# perform SSC convolution
fix_w = tf.get_variable('fix_w', shape=[fix_w_size, fix_w_size, 1, 1, 1], initializer=tf.zeros_initializer)
mask = np.zeros([fix_w_size, fix_w_size, 1, 1, 1], dtype=np.float32)
mask[dilation_factor - 1, dilation_factor - 1, 0, 0, 0] = 1
fix_w = tf.add(fix_w, tf.constant(mask, dtype=tf.float32))
o_ssc = tf.expand_dims(x, -1)
o_ssc = tf.nn.conv3d(o_ssc, fix_w, strides=[1,1,1,1,1], padding='SAME')
o_ssc = tf.squeeze(o_ssc, -1)
# perform aggregation (combine pre filters)
o = c_[0]*x + c_[2]*o_avg + c_[1]*o_gauss + c_[3]*o_ssc
# perform dilated convolution
w = tf.get_variable('weights', shape=[kernel_size, kernel_size, num_x, num_o])
o = tf.nn.atrous_conv2d(o, w, dilation_factor, padding='SAME')
if biased:
b = tf.get_variable('biases', shape=[num_o])
o = tf.nn.bias_add(o, b)
return o
def _combinational_layer_fix(x, kernel_size, num_o, dilation_factor, name, top_scope, biased=False):
"""
Combination of Gaussian, Average, SSC prefilter together with non per-filtered input
"""
num_x = x.shape[3].value
fix_w_size = dilation_factor * 2 - 1
filter_size = dilation_factor - 1
# perform average filtering (as seprable convolution)
w_avg_value = 1.0/(filter_size*filter_size)
w_avg = tf.Variable(tf.constant(w_avg_value,
shape=[filter_size,filter_size,num_x,1]), name='w_avg')
o_avg = tf.nn.depthwise_conv2d_native(x, w_avg, [1,1,1,1], padding='SAME')
# perform gaussian filtering
sigma = 1.0
ax = np.arange(-filter_size // 2 + 1., filter_size // 2 + 1.)
xx, yy = np.meshgrid(ax, ax)
kernel = np.exp(-(xx**2 + yy**2))
w_gauss_value = tf.Variable(tf.constant(0.0,
shape=[filter_size,filter_size, 1,1,1]), name='w_gauss_value',trainable=False)
mask = np.zeros([filter_size,filter_size, 1, 1, 1], dtype=np.float32)
mask[:, :, 0, 0, 0] = kernel
# create gaussian filter
w_gauss_value = tf.add(w_gauss_value, tf.constant(mask, dtype=tf.float32))
w_gauss_value = tf.div(w_gauss_value, tf.exp(2.0 * sigma**2))
w_gauss_value = tf.div(w_gauss_value, tf.reduce_sum(w_gauss_value))
# perform separable convolution
o_gauss = tf.expand_dims(x, -1)
o_gauss = tf.nn.conv3d(o_gauss, w_gauss_value, strides=[1,1,1,1,1], padding='SAME')
o_gauss = tf.squeeze(o_gauss, -1)
# get c vector
c_ = _get_c_vector(top_scope)
with tf.variable_scope(name) as scope:
# perform SSC convolution
fix_w = tf.get_variable('fix_w', shape=[fix_w_size, fix_w_size, 1, 1, 1], initializer=tf.zeros_initializer)
mask = np.zeros([fix_w_size, fix_w_size, 1, 1, 1], dtype=np.float32)
mask[dilation_factor - 1, dilation_factor - 1, 0, 0, 0] = 1
fix_w = tf.add(fix_w, tf.constant(mask, dtype=tf.float32))
o_ssc = tf.expand_dims(x, -1)
o_ssc = tf.nn.conv3d(o_ssc, fix_w, strides=[1,1,1,1,1], padding='SAME')
o_ssc = tf.squeeze(o_ssc, -1)
# perform aggregation (combine pre filters)
o = c_[0]*x + c_[1]*o_avg + c_[2]*o_gauss + c_[3]*o_ssc
# perform dilated convolution
w = tf.get_variable('weights', shape=[kernel_size, kernel_size, num_x, num_o])
o = tf.nn.atrous_conv2d(o, w, dilation_factor, padding='SAME')
if biased:
b = tf.get_variable('biases', shape=[num_o])
o = tf.nn.bias_add(o, b)
return o
def _get_c_vector(name):
"""
Return c vector
"""
with tf.variable_scope(name) as scope:
# init vector if not already done
try:
c_ = tf.get_variable('c_vector', shape=[4], initializer=tf.constant_initializer([0.25, 0.25, 0.25, 0.25]))
# get vector if already initialized
except ValueError:
scope.reuse_variables()
c_ = tf.get_variable('c_vector')
# perform soft-max to ensure values in [0,1]
c_.assign(tf.nn.softmax(c_))
return c_
def _decomposed_dilated_conv2d(x, kernel_size, num_o, dilation_factor, name, top_scope, biased=False):
"""
Decomposed dilated conv2d without BN or relu.
"""
# padding so that the input dims are multiples of dilation_factor
H = tf.shape(x)[1]
W = tf.shape(x)[2]
pad_bottom = (dilation_factor - H % dilation_factor) if H % dilation_factor != 0 else 0
pad_right = (dilation_factor - W % dilation_factor) if W % dilation_factor != 0 else 0
pad = [[0, pad_bottom], [0, pad_right]]
# decomposition to smaller-sized feature maps
# [N,H,W,C] -> [N*d*d, H/d, W/d, C]
o = tf.space_to_batch(x, paddings=pad, block_size=dilation_factor)
# perform regular conv2d
num_x = x.shape[3].value
with tf.variable_scope(name) as scope:
w = tf.get_variable('weights', shape=[kernel_size, kernel_size, num_x, num_o])
s = [1, 1, 1, 1]
o = tf.nn.conv2d(o, w, s, padding='SAME')
if biased:
b = tf.get_variable('biases', shape=[num_o])
o = tf.nn.bias_add(o, b)
o = tf.batch_to_space(o, crops=pad, block_size=dilation_factor)
return o
def _smoothed_dilated_conv2d_GI(x, kernel_size, num_o, dilation_factor, name, top_scope, biased=False):
"""
Smoothed dilated conv2d via the Group Interaction (GI) layer without BN or relu.
"""
# padding so that the input dims are multiples of dilation_factor
H = tf.shape(x)[1]
W = tf.shape(x)[2]
pad_bottom = (dilation_factor - H % dilation_factor) if H % dilation_factor != 0 else 0
pad_right = (dilation_factor - W % dilation_factor) if W % dilation_factor != 0 else 0
pad = [[0, pad_bottom], [0, pad_right]]
# decomposition to smaller-sized feature maps
# [N,H,W,C] -> [N*d*d, H/d, W/d, C]
o = tf.space_to_batch(x, paddings=pad, block_size=dilation_factor)
# perform regular conv2d
num_x = x.shape[3].value
with tf.variable_scope(name) as scope:
w = tf.get_variable('weights', shape=[kernel_size, kernel_size, num_x, num_o])
s = [1, 1, 1, 1]
o = tf.nn.conv2d(o, w, s, padding='SAME')
fix_w = tf.Variable(tf.eye(dilation_factor*dilation_factor), name='fix_w')
l = tf.split(o, dilation_factor*dilation_factor, axis=0)
os = []
for i in six.moves.range(0, dilation_factor*dilation_factor):
os.append(fix_w[0, i] * l[i])
for j in six.moves.range(1, dilation_factor*dilation_factor):
os[i] += fix_w[j, i] * l[j]
o = tf.concat(os, axis=0)
if biased:
b = tf.get_variable('biases', shape=[num_o])
o = tf.nn.bias_add(o, b)
o = tf.batch_to_space(o, crops=pad, block_size=dilation_factor)
return o
def _smoothed_dilated_conv2d_SSC(x, kernel_size, num_o, dilation_factor, name, top_scope, biased=False):
"""
Smoothed dilated conv2d via the Separable and Shared Convolution (SSC) without BN or relu.
"""
num_x = x.shape[3].value
fix_w_size = dilation_factor * 2 - 1
with tf.variable_scope(name) as scope:
fix_w = tf.get_variable('fix_w', shape=[fix_w_size, fix_w_size, 1, 1, 1], initializer=tf.zeros_initializer)
mask = np.zeros([fix_w_size, fix_w_size, 1, 1, 1], dtype=np.float32)
mask[dilation_factor - 1, dilation_factor - 1, 0, 0, 0] = 1
fix_w = tf.add(fix_w, tf.constant(mask, dtype=tf.float32))
o = tf.expand_dims(x, -1)
o = tf.nn.conv3d(o, fix_w, strides=[1,1,1,1,1], padding='SAME')
o = tf.squeeze(o, -1)
w = tf.get_variable('weights', shape=[kernel_size, kernel_size, num_x, num_o])
o = tf.nn.atrous_conv2d(o, w, dilation_factor, padding='SAME')
if biased:
b = tf.get_variable('biases', shape=[num_o])
o = tf.nn.bias_add(o, b)
return o