-
Notifications
You must be signed in to change notification settings - Fork 7
/
preprocess_generate_training_dataset.py
118 lines (93 loc) · 5.68 KB
/
preprocess_generate_training_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#!/usr/bin/python
#coding=utf8
# 状态:已完成
# 2018-11-20 21:01:06.253452+0800 generate_training_dataset[869:10656] documentsDirectory is: /Users/arcstone_mems_108/Library/Developer/CoreSimulator/Devices/EA1FA0AA-6981-4C15-A34D-89445CF6E171/data/Containers/Data/Application/59E990BC-69EF-4617-ADA0-C053C4DAEA83/Documents
# 2018-11-20 21:01:06.253610+0800 generate_training_dataset[869:10656] resourcePath is: /Users/arcstone_mems_108/Library/Developer/CoreSimulator/Devices/EA1FA0AA-6981-4C15-A34D-89445CF6E171/data/Containers/Bundle/Application/3465A461-4850-4887-BE1B-CB21FB442FEA/generate_training_dataset.app
# 2018-11-20 21:01:06.270228+0800 generate_training_dataset[869:10656] self.edgeImageView.layer.anchorPoint is: {0.5, 0.5}
# 2018-11-20 21:01:06.462324+0800 generate_training_dataset[869:10656] --debug, 0-0, IMG_3172.JPG, picture12.jpg
# 2018-11-20 21:01:06.823104+0800 generate_training_dataset[869:10734] background: 0/97, rect: 1/130, valid transform: 3, invalid transform: 18
# 2018-11-20 21:01:06.989153+0800 generate_training_dataset[869:10656] --debug, 0-1, IMG_3172.JPG,
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import os
import numpy as np
import cv2
import imghdr
import csv
from tensorflow import flags
# 第一个是参数名称,第二个参数是默认值,第三个是参数描述, 用于支持接受命令行传递参数
flags.DEFINE_string('dataset_root_dir', '', 'Root directory to put all the training data.')
flags.DEFINE_string('dataset_folder_name', '', 'Folder name for training data. Can contain sub folder name.')
FLAGS = flags.FLAGS
if FLAGS.dataset_root_dir == '':
print('must set dataset_root_dir')
exit()
if FLAGS.dataset_folder_name == '':
print('must set dataset_folder_name')
exit()
'''
example:
python preprocess_generate_training_dataset.py --dataset_root_dir dataset \
--dataset_folder_name generate_sample_by_ios_image_size_256_256_thickness_0.2
'''
if __name__ == "__main__":
image_dataset_dir = os.path.join(FLAGS.dataset_root_dir, FLAGS.dataset_folder_name)
if not os.path.exists(image_dataset_dir):
print('path: {} is not exist, please check your data'.format(image_dataset_dir))
csv_file_path = os.path.join(FLAGS.dataset_root_dir, '{}.csv'.format(FLAGS.dataset_folder_name))
f = open(csv_file_path, 'wb')
csv_writer = csv.writer(f)
# !! TensorFlow 读取 csv 的时候,不需要也不会处理这一行 title 信息,只会直接读取数据
# csv_writer.writerow(['image_name', 'annotation_image_name'])
images = []
path_prefix = FLAGS.dataset_folder_name + '/'
for root, dirs, files in os.walk(image_dataset_dir):
for name in files:
filepath = os.path.join(root, name)
# print('file path is:{}'.format(filepath))
# http://stackoverflow.com/questions/889333/how-to-check-if-a-file-is-a-valid-image-file
what = imghdr.what(filepath)
if what == 'jpeg' or what == 'png':
'''
# 用下面这种方式检测 image 的有效性太慢了,放弃
image = cv2.imread(filepath, cv2.IMREAD_UNCHANGED)
# 运行的时候发现图片集里有异常图片,会遇到下面这几种问题
if image is None:
print('image is None, path is: {}\n'.format(filepath))
continue
if len(image.shape) != 3:
print('image.shape is: {}, path is: {}\n'.format(image.shape, filepath))
continue
'''
if name.endswith('.jpg'):
# 符合条件的图片
name = os.path.splitext(name)[0]
# print('get_images_in_path, filepath is: {}, file name is: {}'.format(filepath, name))
images.append(name[:-6])# name is like: zZu7xlG8IE_random_size_19_32_1_color,需要移除后面的 '_color' 字段
# http://stackoverflow.com/questions/10645959/how-do-i-remove-the-last-n-characters-from-a-string
print('total {} *_color.jpg images'.format(len(images)))
for name in images:
color_image_name = name + '_color.jpg'
annotation_image_name = name + '_annotation.png'
annotation_gray_image_name = name + '_annotation_gray.png'
annotation_thresh_gray_image_name = name + '_annotation_thresh_gray.png'
color_image_path = os.path.join(image_dataset_dir, color_image_name)
annotation_image_path = os.path.join(image_dataset_dir, annotation_image_name)
annotation_gray_image_path = os.path.join(image_dataset_dir, annotation_gray_image_name)
annotation_thresh_gray_image_path = os.path.join(image_dataset_dir, annotation_thresh_gray_image_name)
image = cv2.imread(annotation_image_path, cv2.IMREAD_UNCHANGED)
if image is None:
print('annotation image is None, path is: {}'.format(annotation_image_path))
continue
grayImage = cv2.cvtColor(image, cv2.COLOR_BGRA2GRAY)
cv2.imwrite(annotation_gray_image_path, grayImage)
# 二值化,这张图才是训练样本中的 Y
ret, threshGrayImage = cv2.threshold(grayImage, 20, 255, cv2.THRESH_BINARY)
cv2.imwrite(annotation_thresh_gray_image_path, threshGrayImage)
# csv 里面保存的不是绝对路径,在 input_pipeline.py 里面还是需要根据FLAGS.dataset_root_dir进行拼装
csv_writer.writerow([FLAGS.dataset_folder_name + '/' + color_image_name,
FLAGS.dataset_folder_name + '/' + annotation_thresh_gray_image_name])
f.close()
print('finished')