forked from pingcap/tidb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstant_propagation.go
660 lines (626 loc) · 22 KB
/
constant_propagation.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
// Copyright 2016 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package expression
import (
"github.com/pingcap/parser/ast"
"github.com/pingcap/parser/mysql"
"github.com/pingcap/parser/terror"
"github.com/pingcap/tidb/sessionctx"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/util/chunk"
"github.com/pingcap/tidb/util/collate"
"github.com/pingcap/tidb/util/disjointset"
"github.com/pingcap/tidb/util/logutil"
"go.uber.org/zap"
)
// MaxPropagateColsCnt means the max number of columns that can participate propagation.
var MaxPropagateColsCnt = 100
type basePropConstSolver struct {
colMapper map[int64]int // colMapper maps column to its index
eqList []*Constant // if eqList[i] != nil, it means col_i = eqList[i]
unionSet *disjointset.IntSet // unionSet stores the relations like col_i = col_j
columns []*Column // columns stores all columns appearing in the conditions
ctx sessionctx.Context
}
func (s *basePropConstSolver) getColID(col *Column) int {
return s.colMapper[col.UniqueID]
}
func (s *basePropConstSolver) insertCol(col *Column) {
_, ok := s.colMapper[col.UniqueID]
if !ok {
s.colMapper[col.UniqueID] = len(s.colMapper)
s.columns = append(s.columns, col)
}
}
// tryToUpdateEQList tries to update the eqList. When the eqList has store this column with a different constant, like
// a = 1 and a = 2, we set the second return value to false.
func (s *basePropConstSolver) tryToUpdateEQList(col *Column, con *Constant) (bool, bool) {
if con.Value.IsNull() {
return false, true
}
id := s.getColID(col)
oldCon := s.eqList[id]
if oldCon != nil {
return false, !oldCon.Equal(s.ctx, con)
}
s.eqList[id] = con
return true, false
}
func validEqualCondHelper(ctx sessionctx.Context, eq *ScalarFunction, colIsLeft bool) (*Column, *Constant) {
var col *Column
var con *Constant
colOk := false
conOk := false
if colIsLeft {
col, colOk = eq.GetArgs()[0].(*Column)
} else {
col, colOk = eq.GetArgs()[1].(*Column)
}
if !colOk {
return nil, nil
}
if colIsLeft {
con, conOk = eq.GetArgs()[1].(*Constant)
} else {
con, conOk = eq.GetArgs()[0].(*Constant)
}
if !conOk {
return nil, nil
}
if ContainMutableConst(ctx, []Expression{con}) {
return nil, nil
}
if !collate.CompatibleCollate(col.GetType().Collate, con.GetType().Collate) {
return nil, nil
}
return col, con
}
// validEqualCond checks if the cond is an expression like [column eq constant].
func validEqualCond(ctx sessionctx.Context, cond Expression) (*Column, *Constant) {
if eq, ok := cond.(*ScalarFunction); ok {
if eq.FuncName.L != ast.EQ {
return nil, nil
}
col, con := validEqualCondHelper(ctx, eq, true)
if col == nil {
return validEqualCondHelper(ctx, eq, false)
}
return col, con
}
return nil, nil
}
// tryToReplaceCond aims to replace all occurrences of column 'src' and try to replace it with 'tgt' in 'cond'
// It returns
// bool: if a replacement happened
// bool: if 'cond' contains non-deterministic expression
// Expression: the replaced expression, or original 'cond' if the replacement didn't happen
//
// For example:
// for 'a, b, a < 3', it returns 'true, false, b < 3'
// for 'a, b, sin(a) + cos(a) = 5', it returns 'true, false, returns sin(b) + cos(b) = 5'
// for 'a, b, cast(a) < rand()', it returns 'false, true, cast(a) < rand()'
func tryToReplaceCond(ctx sessionctx.Context, src *Column, tgt *Column, cond Expression, nullAware bool) (bool, bool, Expression) {
if src.RetType.Tp != tgt.RetType.Tp {
return false, false, cond
}
sf, ok := cond.(*ScalarFunction)
if !ok {
return false, false, cond
}
replaced := false
var args []Expression
if _, ok := unFoldableFunctions[sf.FuncName.L]; ok {
return false, true, cond
}
if _, ok := inequalFunctions[sf.FuncName.L]; ok {
return false, true, cond
}
// See
// https://github.com/pingcap/tidb/issues/15782
// https://github.com/pingcap/tidb/issues/17817
// The null sensitive function's result may rely on the original nullable information of the outer side column.
// Its args cannot be replaced easily.
// A more strict check is that after we replace the arg. We check the nullability of the new expression.
// But we haven't maintained it yet, so don't replace the arg of the control function currently.
if nullAware &&
(sf.FuncName.L == ast.Ifnull ||
sf.FuncName.L == ast.If ||
sf.FuncName.L == ast.Case ||
sf.FuncName.L == ast.NullEQ) {
return false, false, cond
}
for idx, expr := range sf.GetArgs() {
if src.Equal(nil, expr) {
_, coll := cond.CharsetAndCollation(ctx)
if tgt.GetType().Collate != coll {
continue
}
replaced = true
if args == nil {
args = make([]Expression, len(sf.GetArgs()))
copy(args, sf.GetArgs())
}
args[idx] = tgt
} else {
subReplaced, isNonDeterministic, subExpr := tryToReplaceCond(ctx, src, tgt, expr, nullAware)
if isNonDeterministic {
return false, true, cond
} else if subReplaced {
replaced = true
if args == nil {
args = make([]Expression, len(sf.GetArgs()))
copy(args, sf.GetArgs())
}
args[idx] = subExpr
}
}
}
if replaced {
return true, false, NewFunctionInternal(ctx, sf.FuncName.L, sf.GetType(), args...)
}
return false, false, cond
}
type propConstSolver struct {
basePropConstSolver
conditions []Expression
}
// propagateConstantEQ propagates expressions like 'column = constant' by substituting the constant for column, the
// procedure repeats multiple times. An example runs as following:
// a = d & b * 2 = c & c = d + 2 & b = 1 & a = 4, we pick eq cond b = 1 and a = 4
// d = 4 & 2 = c & c = d + 2 & b = 1 & a = 4, we propagate b = 1 and a = 4 and pick eq cond c = 2 and d = 4
// d = 4 & 2 = c & false & b = 1 & a = 4, we propagate c = 2 and d = 4, and do constant folding: c = d + 2 will be folded as false.
func (s *propConstSolver) propagateConstantEQ() {
s.eqList = make([]*Constant, len(s.columns))
visited := make([]bool, len(s.conditions))
for i := 0; i < MaxPropagateColsCnt; i++ {
mapper := s.pickNewEQConds(visited)
if len(mapper) == 0 {
return
}
cols := make([]*Column, 0, len(mapper))
cons := make([]Expression, 0, len(mapper))
for id, con := range mapper {
cols = append(cols, s.columns[id])
cons = append(cons, con)
}
for i, cond := range s.conditions {
if !visited[i] {
s.conditions[i] = ColumnSubstitute(cond, NewSchema(cols...), cons)
}
}
}
}
// propagateColumnEQ propagates expressions like 'column A = column B' by adding extra filters
// 'expression(..., column B, ...)' propagated from 'expression(..., column A, ...)' as long as:
//
// 1. The expression is deterministic
// 2. The expression doesn't have any side effect
//
// e.g. For expression a = b and b = c and c = d and c < 1 , we can get extra a < 1 and b < 1 and d < 1.
// However, for a = b and a < rand(), we cannot propagate a < rand() to b < rand() because rand() is non-deterministic
//
// This propagation may bring redundancies that we need to resolve later, for example:
// for a = b and a < 3 and b < 3, we get new a < 3 and b < 3, which are redundant
// for a = b and a < 3 and 3 > b, we get new b < 3 and 3 > a, which are redundant
// for a = b and a < 3 and b < 4, we get new a < 4 and b < 3 but should expect a < 3 and b < 3
// for a = b and a in (3) and b in (4), we get b in (3) and a in (4) but should expect 'false'
//
// TODO: remove redundancies later
//
// We maintain a unionSet representing the equivalent for every two columns.
func (s *propConstSolver) propagateColumnEQ() {
visited := make([]bool, len(s.conditions))
s.unionSet = disjointset.NewIntSet(len(s.columns))
for i := range s.conditions {
if fun, ok := s.conditions[i].(*ScalarFunction); ok && fun.FuncName.L == ast.EQ {
lCol, lOk := fun.GetArgs()[0].(*Column)
rCol, rOk := fun.GetArgs()[1].(*Column)
// TODO: Enable hybrid types in ConstantPropagate.
if lOk && rOk && lCol.GetType().Collate == rCol.GetType().Collate && !lCol.GetType().Hybrid() && !rCol.GetType().Hybrid() {
lID := s.getColID(lCol)
rID := s.getColID(rCol)
s.unionSet.Union(lID, rID)
visited[i] = true
}
}
}
condsLen := len(s.conditions)
for i, coli := range s.columns {
for j := i + 1; j < len(s.columns); j++ {
// unionSet doesn't have iterate(), we use a two layer loop to iterate col_i = col_j relation
if s.unionSet.FindRoot(i) != s.unionSet.FindRoot(j) {
continue
}
colj := s.columns[j]
for k := 0; k < condsLen; k++ {
if visited[k] {
// cond_k has been used to retrieve equality relation
continue
}
cond := s.conditions[k]
replaced, _, newExpr := tryToReplaceCond(s.ctx, coli, colj, cond, false)
if replaced {
s.conditions = append(s.conditions, newExpr)
}
replaced, _, newExpr = tryToReplaceCond(s.ctx, colj, coli, cond, false)
if replaced {
s.conditions = append(s.conditions, newExpr)
}
}
}
}
}
func (s *propConstSolver) setConds2ConstFalse() {
s.conditions = []Expression{&Constant{
Value: types.NewDatum(false),
RetType: types.NewFieldType(mysql.TypeTiny),
}}
}
// pickNewEQConds tries to pick new equal conds and puts them to retMapper.
func (s *propConstSolver) pickNewEQConds(visited []bool) (retMapper map[int]*Constant) {
retMapper = make(map[int]*Constant)
for i, cond := range s.conditions {
if visited[i] {
continue
}
col, con := validEqualCond(s.ctx, cond)
// Then we check if this CNF item is a false constant. If so, we will set the whole condition to false.
var ok bool
if col == nil {
con, ok = cond.(*Constant)
if !ok {
continue
}
visited[i] = true
if ContainMutableConst(s.ctx, []Expression{con}) {
continue
}
value, _, err := EvalBool(s.ctx, []Expression{con}, chunk.Row{})
if err != nil {
terror.Log(err)
return nil
}
if !value {
s.setConds2ConstFalse()
return nil
}
continue
}
// TODO: Enable hybrid types in ConstantPropagate.
if col.GetType().Hybrid() {
continue
}
visited[i] = true
updated, foreverFalse := s.tryToUpdateEQList(col, con)
if foreverFalse {
s.setConds2ConstFalse()
return nil
}
if updated {
retMapper[s.getColID(col)] = con
}
}
return
}
func (s *propConstSolver) solve(conditions []Expression) []Expression {
cols := make([]*Column, 0, len(conditions))
for _, cond := range conditions {
s.conditions = append(s.conditions, SplitCNFItems(cond)...)
cols = append(cols, ExtractColumns(cond)...)
}
for _, col := range cols {
s.insertCol(col)
}
if len(s.columns) > MaxPropagateColsCnt {
logutil.BgLogger().Warn("too many columns in a single CNF",
zap.Int("numCols", len(s.columns)),
zap.Int("maxNumCols", MaxPropagateColsCnt),
)
return conditions
}
s.propagateConstantEQ()
s.propagateColumnEQ()
s.conditions = propagateConstantDNF(s.ctx, s.conditions)
return s.conditions
}
// PropagateConstant propagate constant values of deterministic predicates in a condition.
func PropagateConstant(ctx sessionctx.Context, conditions []Expression) []Expression {
return newPropConstSolver().PropagateConstant(ctx, conditions)
}
type propOuterJoinConstSolver struct {
basePropConstSolver
joinConds []Expression
filterConds []Expression
outerSchema *Schema
innerSchema *Schema
// nullSensitive indicates if this outer join is null sensitive, if true, we cannot generate
// additional `col is not null` condition from column equal conditions. Specifically, this value
// is true for LeftOuterSemiJoin and AntiLeftOuterSemiJoin.
nullSensitive bool
}
func (s *propOuterJoinConstSolver) setConds2ConstFalse(filterConds bool) {
s.joinConds = []Expression{&Constant{
Value: types.NewDatum(false),
RetType: types.NewFieldType(mysql.TypeTiny),
}}
if filterConds {
s.filterConds = []Expression{&Constant{
Value: types.NewDatum(false),
RetType: types.NewFieldType(mysql.TypeTiny),
}}
}
}
// pickEQCondsOnOuterCol picks constant equal expression from specified conditions.
func (s *propOuterJoinConstSolver) pickEQCondsOnOuterCol(retMapper map[int]*Constant, visited []bool, filterConds bool) map[int]*Constant {
var conds []Expression
var condsOffset int
if filterConds {
conds = s.filterConds
} else {
conds = s.joinConds
condsOffset = len(s.filterConds)
}
for i, cond := range conds {
if visited[i+condsOffset] {
continue
}
col, con := validEqualCond(s.ctx, cond)
// Then we check if this CNF item is a false constant. If so, we will set the whole condition to false.
var ok bool
if col == nil {
con, ok = cond.(*Constant)
if !ok {
continue
}
visited[i+condsOffset] = true
if ContainMutableConst(s.ctx, []Expression{con}) {
continue
}
value, _, err := EvalBool(s.ctx, []Expression{con}, chunk.Row{})
if err != nil {
terror.Log(err)
return nil
}
if !value {
s.setConds2ConstFalse(filterConds)
return nil
}
continue
}
// Only extract `outerCol = const` expressions.
if !s.outerSchema.Contains(col) {
continue
}
visited[i+condsOffset] = true
updated, foreverFalse := s.tryToUpdateEQList(col, con)
if foreverFalse {
s.setConds2ConstFalse(filterConds)
return nil
}
if updated {
retMapper[s.getColID(col)] = con
}
}
return retMapper
}
// pickNewEQConds picks constant equal expressions from join and filter conditions.
func (s *propOuterJoinConstSolver) pickNewEQConds(visited []bool) map[int]*Constant {
retMapper := make(map[int]*Constant)
retMapper = s.pickEQCondsOnOuterCol(retMapper, visited, true)
if retMapper == nil {
// Filter is constant false or error occurred, enforce early termination.
return nil
}
retMapper = s.pickEQCondsOnOuterCol(retMapper, visited, false)
return retMapper
}
// propagateConstantEQ propagates expressions like `outerCol = const` by substituting `outerCol` in *JOIN* condition
// with `const`, the procedure repeats multiple times.
func (s *propOuterJoinConstSolver) propagateConstantEQ() {
s.eqList = make([]*Constant, len(s.columns))
lenFilters := len(s.filterConds)
visited := make([]bool, lenFilters+len(s.joinConds))
for i := 0; i < MaxPropagateColsCnt; i++ {
mapper := s.pickNewEQConds(visited)
if len(mapper) == 0 {
return
}
cols := make([]*Column, 0, len(mapper))
cons := make([]Expression, 0, len(mapper))
for id, con := range mapper {
cols = append(cols, s.columns[id])
cons = append(cons, con)
}
for i, cond := range s.joinConds {
if !visited[i+lenFilters] {
s.joinConds[i] = ColumnSubstitute(cond, NewSchema(cols...), cons)
}
}
}
}
func (s *propOuterJoinConstSolver) colsFromOuterAndInner(col1, col2 *Column) (*Column, *Column) {
if s.outerSchema.Contains(col1) && s.innerSchema.Contains(col2) {
return col1, col2
}
if s.outerSchema.Contains(col2) && s.innerSchema.Contains(col1) {
return col2, col1
}
return nil, nil
}
// validColEqualCond checks if expression is column equal condition that we can use for constant
// propagation over outer join. We only use expression like `outerCol = innerCol`, for expressions like
// `outerCol1 = outerCol2` or `innerCol1 = innerCol2`, they do not help deriving new inner table conditions
// which can be pushed down to children plan nodes, so we do not pick them.
func (s *propOuterJoinConstSolver) validColEqualCond(cond Expression) (*Column, *Column) {
if fun, ok := cond.(*ScalarFunction); ok && fun.FuncName.L == ast.EQ {
lCol, lOk := fun.GetArgs()[0].(*Column)
rCol, rOk := fun.GetArgs()[1].(*Column)
if lOk && rOk && lCol.GetType().Collate == rCol.GetType().Collate {
return s.colsFromOuterAndInner(lCol, rCol)
}
}
return nil, nil
}
// deriveConds given `outerCol = innerCol`, derive new expression for specified conditions.
func (s *propOuterJoinConstSolver) deriveConds(outerCol, innerCol *Column, schema *Schema, fCondsOffset int, visited []bool, filterConds bool) []bool {
var offset, condsLen int
var conds []Expression
if filterConds {
conds = s.filterConds
offset = fCondsOffset
condsLen = len(s.filterConds)
} else {
conds = s.joinConds
condsLen = fCondsOffset
}
for k := 0; k < condsLen; k++ {
if visited[k+offset] {
// condition has been used to retrieve equality relation or contains column beyond children schema.
continue
}
cond := conds[k]
if !ExprFromSchema(cond, schema) {
visited[k+offset] = true
continue
}
replaced, _, newExpr := tryToReplaceCond(s.ctx, outerCol, innerCol, cond, true)
if replaced {
s.joinConds = append(s.joinConds, newExpr)
}
}
return visited
}
// propagateColumnEQ propagates expressions like 'outerCol = innerCol' by adding extra filters
// 'expression(..., innerCol, ...)' derived from 'expression(..., outerCol, ...)' as long as
// 'expression(..., outerCol, ...)' does not reference columns outside children schemas of join node.
// Derived new expressions must be appended into join condition, not filter condition.
func (s *propOuterJoinConstSolver) propagateColumnEQ() {
visited := make([]bool, 2*len(s.joinConds)+len(s.filterConds))
s.unionSet = disjointset.NewIntSet(len(s.columns))
var outerCol, innerCol *Column
// Only consider column equal condition in joinConds.
// If we have column equal in filter condition, the outer join should have been simplified already.
for i := range s.joinConds {
outerCol, innerCol = s.validColEqualCond(s.joinConds[i])
if outerCol != nil {
outerID := s.getColID(outerCol)
innerID := s.getColID(innerCol)
s.unionSet.Union(outerID, innerID)
visited[i] = true
// Generate `innerCol is not null` from `outerCol = innerCol`. Note that `outerCol is not null`
// does not hold since we are in outer join.
// For AntiLeftOuterSemiJoin, this does not work, for example:
// `select *, t1.a not in (select t2.b from t t2) from t t1` does not imply `t2.b is not null`.
// For LeftOuterSemiJoin, this does not work either, for example:
// `select *, t1.a in (select t2.b from t t2) from t t1`
// rows with t2.b is null would impact whether LeftOuterSemiJoin should output 0 or null if there
// is no row satisfying t2.b = t1.a
if s.nullSensitive {
continue
}
childCol := s.innerSchema.RetrieveColumn(innerCol)
if !mysql.HasNotNullFlag(childCol.RetType.Flag) {
notNullExpr := BuildNotNullExpr(s.ctx, childCol)
s.joinConds = append(s.joinConds, notNullExpr)
}
}
}
lenJoinConds := len(s.joinConds)
mergedSchema := MergeSchema(s.outerSchema, s.innerSchema)
for i, coli := range s.columns {
for j := i + 1; j < len(s.columns); j++ {
// unionSet doesn't have iterate(), we use a two layer loop to iterate col_i = col_j relation.
if s.unionSet.FindRoot(i) != s.unionSet.FindRoot(j) {
continue
}
colj := s.columns[j]
outerCol, innerCol = s.colsFromOuterAndInner(coli, colj)
if outerCol == nil {
continue
}
visited = s.deriveConds(outerCol, innerCol, mergedSchema, lenJoinConds, visited, false)
visited = s.deriveConds(outerCol, innerCol, mergedSchema, lenJoinConds, visited, true)
}
}
}
func (s *propOuterJoinConstSolver) solve(joinConds, filterConds []Expression) ([]Expression, []Expression) {
cols := make([]*Column, 0, len(joinConds)+len(filterConds))
for _, cond := range joinConds {
s.joinConds = append(s.joinConds, SplitCNFItems(cond)...)
cols = append(cols, ExtractColumns(cond)...)
}
for _, cond := range filterConds {
s.filterConds = append(s.filterConds, SplitCNFItems(cond)...)
cols = append(cols, ExtractColumns(cond)...)
}
for _, col := range cols {
s.insertCol(col)
}
if len(s.columns) > MaxPropagateColsCnt {
logutil.BgLogger().Warn("too many columns",
zap.Int("numCols", len(s.columns)),
zap.Int("maxNumCols", MaxPropagateColsCnt),
)
return joinConds, filterConds
}
s.propagateConstantEQ()
s.propagateColumnEQ()
s.joinConds = propagateConstantDNF(s.ctx, s.joinConds)
s.filterConds = propagateConstantDNF(s.ctx, s.filterConds)
return s.joinConds, s.filterConds
}
// propagateConstantDNF find DNF item from CNF, and propagate constant inside DNF.
func propagateConstantDNF(ctx sessionctx.Context, conds []Expression) []Expression {
for i, cond := range conds {
if dnf, ok := cond.(*ScalarFunction); ok && dnf.FuncName.L == ast.LogicOr {
dnfItems := SplitDNFItems(cond)
for j, item := range dnfItems {
dnfItems[j] = ComposeCNFCondition(ctx, PropagateConstant(ctx, []Expression{item})...)
}
conds[i] = ComposeDNFCondition(ctx, dnfItems...)
}
}
return conds
}
// PropConstOverOuterJoin propagate constant equal and column equal conditions over outer join.
// First step is to extract `outerCol = const` from join conditions and filter conditions,
// and substitute `outerCol` in join conditions with `const`;
// Second step is to extract `outerCol = innerCol` from join conditions, and derive new join
// conditions based on this column equal condition and `outerCol` related
// expressions in join conditions and filter conditions;
func PropConstOverOuterJoin(ctx sessionctx.Context, joinConds, filterConds []Expression,
outerSchema, innerSchema *Schema, nullSensitive bool) ([]Expression, []Expression) {
solver := &propOuterJoinConstSolver{
outerSchema: outerSchema,
innerSchema: innerSchema,
nullSensitive: nullSensitive,
}
solver.colMapper = make(map[int64]int)
solver.ctx = ctx
return solver.solve(joinConds, filterConds)
}
// PropagateConstantSolver is a constant propagate solver.
type PropagateConstantSolver interface {
PropagateConstant(ctx sessionctx.Context, conditions []Expression) []Expression
}
// newPropConstSolver returns a PropagateConstantSolver.
func newPropConstSolver() PropagateConstantSolver {
solver := &propConstSolver{}
solver.colMapper = make(map[int64]int)
return solver
}
// PropagateConstant propagate constant values of deterministic predicates in a condition.
func (s *propConstSolver) PropagateConstant(ctx sessionctx.Context, conditions []Expression) []Expression {
s.ctx = ctx
return s.solve(conditions)
}