forked from pingcap/tidb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.go
1032 lines (963 loc) · 29.6 KB
/
util.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2016 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package expression
import (
"math"
"strconv"
"strings"
"time"
"unicode"
"github.com/pingcap/errors"
"github.com/pingcap/parser/ast"
"github.com/pingcap/parser/mysql"
"github.com/pingcap/parser/opcode"
"github.com/pingcap/parser/terror"
"github.com/pingcap/tidb/sessionctx"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/types/parser_driver"
"github.com/pingcap/tidb/util/chunk"
"github.com/pingcap/tidb/util/collate"
"github.com/pingcap/tidb/util/logutil"
"go.uber.org/zap"
"golang.org/x/tools/container/intsets"
)
// cowExprRef is a copy-on-write slice ref util using in `ColumnSubstitute`
// to reduce unnecessary allocation for Expression arguments array
type cowExprRef struct {
ref []Expression
new []Expression
}
// Set will allocate new array if changed flag true
func (c *cowExprRef) Set(i int, changed bool, val Expression) {
if c.new != nil {
c.new[i] = val
return
}
if !changed {
return
}
c.new = make([]Expression, len(c.ref))
copy(c.new, c.ref[:i])
c.new[i] = val
}
// Result return the final reference
func (c *cowExprRef) Result() []Expression {
if c.new != nil {
return c.new
}
return c.ref
}
// Filter the input expressions, append the results to result.
func Filter(result []Expression, input []Expression, filter func(Expression) bool) []Expression {
for _, e := range input {
if filter(e) {
result = append(result, e)
}
}
return result
}
// FilterOutInPlace do the filtering out in place.
// The remained are the ones who doesn't match the filter, storing in the original slice.
// The filteredOut are the ones match the filter, storing in a new slice.
func FilterOutInPlace(input []Expression, filter func(Expression) bool) (remained, filteredOut []Expression) {
for i := len(input) - 1; i >= 0; i-- {
if filter(input[i]) {
filteredOut = append(filteredOut, input[i])
input = append(input[:i], input[i+1:]...)
}
}
return input, filteredOut
}
// ExtractDependentColumns extracts all dependent columns from a virtual column.
func ExtractDependentColumns(expr Expression) []*Column {
// Pre-allocate a slice to reduce allocation, 8 doesn't have special meaning.
result := make([]*Column, 0, 8)
return extractDependentColumns(result, expr)
}
func extractDependentColumns(result []*Column, expr Expression) []*Column {
switch v := expr.(type) {
case *Column:
result = append(result, v)
if v.VirtualExpr != nil {
result = extractDependentColumns(result, v.VirtualExpr)
}
case *ScalarFunction:
for _, arg := range v.GetArgs() {
result = extractDependentColumns(result, arg)
}
}
return result
}
// ExtractColumns extracts all columns from an expression.
func ExtractColumns(expr Expression) []*Column {
// Pre-allocate a slice to reduce allocation, 8 doesn't have special meaning.
result := make([]*Column, 0, 8)
return extractColumns(result, expr, nil)
}
// ExtractCorColumns extracts correlated column from given expression.
func ExtractCorColumns(expr Expression) (cols []*CorrelatedColumn) {
switch v := expr.(type) {
case *CorrelatedColumn:
return []*CorrelatedColumn{v}
case *ScalarFunction:
for _, arg := range v.GetArgs() {
cols = append(cols, ExtractCorColumns(arg)...)
}
}
return
}
// ExtractColumnsFromExpressions is a more efficient version of ExtractColumns for batch operation.
// filter can be nil, or a function to filter the result column.
// It's often observed that the pattern of the caller like this:
//
// cols := ExtractColumns(...)
// for _, col := range cols {
// if xxx(col) {...}
// }
//
// Provide an additional filter argument, this can be done in one step.
// To avoid allocation for cols that not need.
func ExtractColumnsFromExpressions(result []*Column, exprs []Expression, filter func(*Column) bool) []*Column {
for _, expr := range exprs {
result = extractColumns(result, expr, filter)
}
return result
}
func extractColumns(result []*Column, expr Expression, filter func(*Column) bool) []*Column {
switch v := expr.(type) {
case *Column:
if filter == nil || filter(v) {
result = append(result, v)
}
case *ScalarFunction:
for _, arg := range v.GetArgs() {
result = extractColumns(result, arg, filter)
}
}
return result
}
// ExtractColumnSet extracts the different values of `UniqueId` for columns in expressions.
func ExtractColumnSet(exprs []Expression) *intsets.Sparse {
set := &intsets.Sparse{}
for _, expr := range exprs {
extractColumnSet(expr, set)
}
return set
}
func extractColumnSet(expr Expression, set *intsets.Sparse) {
switch v := expr.(type) {
case *Column:
set.Insert(int(v.UniqueID))
case *ScalarFunction:
for _, arg := range v.GetArgs() {
extractColumnSet(arg, set)
}
}
}
func setExprColumnInOperand(expr Expression) Expression {
switch v := expr.(type) {
case *Column:
col := v.Clone().(*Column)
col.InOperand = true
return col
case *ScalarFunction:
args := v.GetArgs()
for i, arg := range args {
args[i] = setExprColumnInOperand(arg)
}
}
return expr
}
// ColumnSubstitute substitutes the columns in filter to expressions in select fields.
// e.g. select * from (select b as a from t) k where a < 10 => select * from (select b as a from t where b < 10) k.
func ColumnSubstitute(expr Expression, schema *Schema, newExprs []Expression) Expression {
_, resExpr := ColumnSubstituteImpl(expr, schema, newExprs)
return resExpr
}
// ColumnSubstituteImpl tries to substitute column expr using newExprs,
// the newFunctionInternal is only called if its child is substituted
func ColumnSubstituteImpl(expr Expression, schema *Schema, newExprs []Expression) (bool, Expression) {
switch v := expr.(type) {
case *Column:
id := schema.ColumnIndex(v)
if id == -1 {
return false, v
}
newExpr := newExprs[id]
if v.InOperand {
newExpr = setExprColumnInOperand(newExpr)
}
newExpr.SetCoercibility(v.Coercibility())
return true, newExpr
case *ScalarFunction:
if v.FuncName.L == ast.Cast {
newFunc := v.Clone().(*ScalarFunction)
_, newFunc.GetArgs()[0] = ColumnSubstituteImpl(newFunc.GetArgs()[0], schema, newExprs)
return true, newFunc
}
// cowExprRef is a copy-on-write util, args array allocation happens only
// when expr in args is changed
refExprArr := cowExprRef{v.GetArgs(), nil}
substituted := false
_, coll := DeriveCollationFromExprs(v.GetCtx(), v.GetArgs()...)
for idx, arg := range v.GetArgs() {
changed, newFuncExpr := ColumnSubstituteImpl(arg, schema, newExprs)
if collate.NewCollationEnabled() {
// Make sure the collation used by the ScalarFunction isn't changed and its result collation is not weaker than the collation used by the ScalarFunction.
if changed {
changed = false
tmpArgs := make([]Expression, 0, len(v.GetArgs()))
_ = append(append(append(tmpArgs, refExprArr.Result()[0:idx]...), refExprArr.Result()[idx+1:]...), newFuncExpr)
_, newColl := DeriveCollationFromExprs(v.GetCtx(), append(v.GetArgs(), newFuncExpr)...)
if coll == newColl {
changed = checkCollationStrictness(coll, newFuncExpr.GetType().Collate)
}
}
}
refExprArr.Set(idx, changed, newFuncExpr)
if changed {
substituted = true
}
}
if substituted {
return true, NewFunctionInternal(v.GetCtx(), v.FuncName.L, v.RetType, refExprArr.Result()...)
}
}
return false, expr
}
// checkCollationStrictness check collation strictness-ship between `coll` and `newFuncColl`
// return true iff `newFuncColl` is not weaker than `coll`
func checkCollationStrictness(coll, newFuncColl string) bool {
collGroupID, ok1 := CollationStrictnessGroup[coll]
newFuncCollGroupID, ok2 := CollationStrictnessGroup[newFuncColl]
if ok1 && ok2 {
if collGroupID == newFuncCollGroupID {
return true
}
for _, id := range CollationStrictness[collGroupID] {
if newFuncCollGroupID == id {
return true
}
}
}
return false
}
// getValidPrefix gets a prefix of string which can parsed to a number with base. the minimum base is 2 and the maximum is 36.
func getValidPrefix(s string, base int64) string {
var (
validLen int
upper rune
)
switch {
case base >= 2 && base <= 9:
upper = rune('0' + base)
case base <= 36:
upper = rune('A' + base - 10)
default:
return ""
}
Loop:
for i := 0; i < len(s); i++ {
c := rune(s[i])
switch {
case unicode.IsDigit(c) || unicode.IsLower(c) || unicode.IsUpper(c):
c = unicode.ToUpper(c)
if c < upper {
validLen = i + 1
} else {
break Loop
}
case c == '+' || c == '-':
if i != 0 {
break Loop
}
default:
break Loop
}
}
if validLen > 1 && s[0] == '+' {
return s[1:validLen]
}
return s[:validLen]
}
// SubstituteCorCol2Constant will substitute correlated column to constant value which it contains.
// If the args of one scalar function are all constant, we will substitute it to constant.
func SubstituteCorCol2Constant(expr Expression) (Expression, error) {
switch x := expr.(type) {
case *ScalarFunction:
allConstant := true
newArgs := make([]Expression, 0, len(x.GetArgs()))
for _, arg := range x.GetArgs() {
newArg, err := SubstituteCorCol2Constant(arg)
if err != nil {
return nil, err
}
_, ok := newArg.(*Constant)
newArgs = append(newArgs, newArg)
allConstant = allConstant && ok
}
if allConstant {
val, err := x.Eval(chunk.Row{})
if err != nil {
return nil, err
}
return &Constant{Value: val, RetType: x.GetType()}, nil
}
var newSf Expression
if x.FuncName.L == ast.Cast {
newSf = BuildCastFunction(x.GetCtx(), newArgs[0], x.RetType)
} else {
newSf = NewFunctionInternal(x.GetCtx(), x.FuncName.L, x.GetType(), newArgs...)
}
return newSf, nil
case *CorrelatedColumn:
return &Constant{Value: *x.Data, RetType: x.GetType()}, nil
case *Constant:
if x.DeferredExpr != nil {
newExpr := FoldConstant(x)
return &Constant{Value: newExpr.(*Constant).Value, RetType: x.GetType()}, nil
}
}
return expr, nil
}
// timeZone2Duration converts timezone whose format should satisfy the regular condition
// `(^(+|-)(0?[0-9]|1[0-2]):[0-5]?\d$)|(^+13:00$)` to time.Duration.
func timeZone2Duration(tz string) time.Duration {
sign := 1
if strings.HasPrefix(tz, "-") {
sign = -1
}
i := strings.Index(tz, ":")
h, err := strconv.Atoi(tz[1:i])
terror.Log(err)
m, err := strconv.Atoi(tz[i+1:])
terror.Log(err)
return time.Duration(sign) * (time.Duration(h)*time.Hour + time.Duration(m)*time.Minute)
}
var logicalOps = map[string]struct{}{
ast.LT: {},
ast.GE: {},
ast.GT: {},
ast.LE: {},
ast.EQ: {},
ast.NE: {},
ast.UnaryNot: {},
ast.LogicAnd: {},
ast.LogicOr: {},
ast.LogicXor: {},
ast.In: {},
ast.IsNull: {},
ast.IsTruthWithoutNull: {},
ast.IsFalsity: {},
ast.Like: {},
}
var oppositeOp = map[string]string{
ast.LT: ast.GE,
ast.GE: ast.LT,
ast.GT: ast.LE,
ast.LE: ast.GT,
ast.EQ: ast.NE,
ast.NE: ast.EQ,
ast.LogicOr: ast.LogicAnd,
ast.LogicAnd: ast.LogicOr,
}
// a op b is equal to b symmetricOp a
var symmetricOp = map[opcode.Op]opcode.Op{
opcode.LT: opcode.GT,
opcode.GE: opcode.LE,
opcode.GT: opcode.LT,
opcode.LE: opcode.GE,
opcode.EQ: opcode.EQ,
opcode.NE: opcode.NE,
opcode.NullEQ: opcode.NullEQ,
}
func pushNotAcrossArgs(ctx sessionctx.Context, exprs []Expression, not bool) ([]Expression, bool) {
newExprs := make([]Expression, 0, len(exprs))
flag := false
for _, expr := range exprs {
newExpr, changed := pushNotAcrossExpr(ctx, expr, not)
flag = changed || flag
newExprs = append(newExprs, newExpr)
}
return newExprs, flag
}
// pushNotAcrossExpr try to eliminate the NOT expr in expression tree.
// Input `not` indicates whether there's a `NOT` be pushed down.
// Output `changed` indicates whether the output expression differs from the
// input `expr` because of the pushed-down-not.
func pushNotAcrossExpr(ctx sessionctx.Context, expr Expression, not bool) (_ Expression, changed bool) {
if f, ok := expr.(*ScalarFunction); ok {
switch f.FuncName.L {
case ast.UnaryNot:
child, err := wrapWithIsTrue(ctx, true, f.GetArgs()[0], true)
if err != nil {
return expr, false
}
var childExpr Expression
childExpr, changed = pushNotAcrossExpr(f.GetCtx(), child, !not)
if !changed && !not {
return expr, false
}
return childExpr, true
case ast.LT, ast.GE, ast.GT, ast.LE, ast.EQ, ast.NE:
if not {
return NewFunctionInternal(f.GetCtx(), oppositeOp[f.FuncName.L], f.GetType(), f.GetArgs()...), true
}
newArgs, changed := pushNotAcrossArgs(f.GetCtx(), f.GetArgs(), false)
if !changed {
return f, false
}
return NewFunctionInternal(f.GetCtx(), f.FuncName.L, f.GetType(), newArgs...), true
case ast.LogicAnd, ast.LogicOr:
var (
newArgs []Expression
changed bool
)
funcName := f.FuncName.L
if not {
newArgs, _ = pushNotAcrossArgs(f.GetCtx(), f.GetArgs(), true)
funcName = oppositeOp[f.FuncName.L]
changed = true
} else {
newArgs, changed = pushNotAcrossArgs(f.GetCtx(), f.GetArgs(), false)
}
if !changed {
return f, false
}
return NewFunctionInternal(f.GetCtx(), funcName, f.GetType(), newArgs...), true
}
}
if not {
expr = NewFunctionInternal(ctx, ast.UnaryNot, types.NewFieldType(mysql.TypeTiny), expr)
}
return expr, not
}
// PushDownNot pushes the `not` function down to the expression's arguments.
func PushDownNot(ctx sessionctx.Context, expr Expression) Expression {
newExpr, _ := pushNotAcrossExpr(ctx, expr, false)
return newExpr
}
// Contains tests if `exprs` contains `e`.
func Contains(exprs []Expression, e Expression) bool {
for _, expr := range exprs {
if e == expr {
return true
}
}
return false
}
// ExtractFiltersFromDNFs checks whether the cond is DNF. If so, it will get the extracted part and the remained part.
// The original DNF will be replaced by the remained part or just be deleted if remained part is nil.
// And the extracted part will be appended to the end of the orignal slice.
func ExtractFiltersFromDNFs(ctx sessionctx.Context, conditions []Expression) []Expression {
var allExtracted []Expression
for i := len(conditions) - 1; i >= 0; i-- {
if sf, ok := conditions[i].(*ScalarFunction); ok && sf.FuncName.L == ast.LogicOr {
extracted, remained := extractFiltersFromDNF(ctx, sf)
allExtracted = append(allExtracted, extracted...)
if remained == nil {
conditions = append(conditions[:i], conditions[i+1:]...)
} else {
conditions[i] = remained
}
}
}
return append(conditions, allExtracted...)
}
// extractFiltersFromDNF extracts the same condition that occurs in every DNF item and remove them from dnf leaves.
func extractFiltersFromDNF(ctx sessionctx.Context, dnfFunc *ScalarFunction) ([]Expression, Expression) {
dnfItems := FlattenDNFConditions(dnfFunc)
sc := ctx.GetSessionVars().StmtCtx
codeMap := make(map[string]int)
hashcode2Expr := make(map[string]Expression)
for i, dnfItem := range dnfItems {
innerMap := make(map[string]struct{})
cnfItems := SplitCNFItems(dnfItem)
for _, cnfItem := range cnfItems {
code := cnfItem.HashCode(sc)
if i == 0 {
codeMap[string(code)] = 1
hashcode2Expr[string(code)] = cnfItem
} else if _, ok := codeMap[string(code)]; ok {
// We need this check because there may be the case like `select * from t, t1 where (t.a=t1.a and t.a=t1.a) or (something).
// We should make sure that the two `t.a=t1.a` contributes only once.
// TODO: do this out of this function.
if _, ok = innerMap[string(code)]; !ok {
codeMap[string(code)]++
innerMap[string(code)] = struct{}{}
}
}
}
}
// We should make sure that this item occurs in every DNF item.
for hashcode, cnt := range codeMap {
if cnt < len(dnfItems) {
delete(hashcode2Expr, hashcode)
}
}
if len(hashcode2Expr) == 0 {
return nil, dnfFunc
}
newDNFItems := make([]Expression, 0, len(dnfItems))
onlyNeedExtracted := false
for _, dnfItem := range dnfItems {
cnfItems := SplitCNFItems(dnfItem)
newCNFItems := make([]Expression, 0, len(cnfItems))
for _, cnfItem := range cnfItems {
code := cnfItem.HashCode(sc)
_, ok := hashcode2Expr[string(code)]
if !ok {
newCNFItems = append(newCNFItems, cnfItem)
}
}
// If the extracted part is just one leaf of the DNF expression. Then the value of the total DNF expression is
// always the same with the value of the extracted part.
if len(newCNFItems) == 0 {
onlyNeedExtracted = true
break
}
newDNFItems = append(newDNFItems, ComposeCNFCondition(ctx, newCNFItems...))
}
extractedExpr := make([]Expression, 0, len(hashcode2Expr))
for _, expr := range hashcode2Expr {
extractedExpr = append(extractedExpr, expr)
}
if onlyNeedExtracted {
return extractedExpr, nil
}
return extractedExpr, ComposeDNFCondition(ctx, newDNFItems...)
}
// DeriveRelaxedFiltersFromDNF given a DNF expression, derive a relaxed DNF expression which only contains columns
// in specified schema; the derived expression is a superset of original expression, i.e, any tuple satisfying
// the original expression must satisfy the derived expression. Return nil when the derived expression is universal set.
// A running example is: for schema of t1, `(t1.a=1 and t2.a=1) or (t1.a=2 and t2.a=2)` would be derived as
// `t1.a=1 or t1.a=2`, while `t1.a=1 or t2.a=1` would get nil.
func DeriveRelaxedFiltersFromDNF(expr Expression, schema *Schema) Expression {
sf, ok := expr.(*ScalarFunction)
if !ok || sf.FuncName.L != ast.LogicOr {
return nil
}
ctx := sf.GetCtx()
dnfItems := FlattenDNFConditions(sf)
newDNFItems := make([]Expression, 0, len(dnfItems))
for _, dnfItem := range dnfItems {
cnfItems := SplitCNFItems(dnfItem)
newCNFItems := make([]Expression, 0, len(cnfItems))
for _, cnfItem := range cnfItems {
if itemSF, ok := cnfItem.(*ScalarFunction); ok && itemSF.FuncName.L == ast.LogicOr {
relaxedCNFItem := DeriveRelaxedFiltersFromDNF(cnfItem, schema)
if relaxedCNFItem != nil {
newCNFItems = append(newCNFItems, relaxedCNFItem)
}
// If relaxed expression for embedded DNF is universal set, just drop this CNF item
continue
}
// This cnfItem must be simple expression now
// If it cannot be fully covered by schema, just drop this CNF item
if ExprFromSchema(cnfItem, schema) {
newCNFItems = append(newCNFItems, cnfItem)
}
}
// If this DNF item involves no column of specified schema, the relaxed expression must be universal set
if len(newCNFItems) == 0 {
return nil
}
newDNFItems = append(newDNFItems, ComposeCNFCondition(ctx, newCNFItems...))
}
return ComposeDNFCondition(ctx, newDNFItems...)
}
// GetRowLen gets the length if the func is row, returns 1 if not row.
func GetRowLen(e Expression) int {
if f, ok := e.(*ScalarFunction); ok && f.FuncName.L == ast.RowFunc {
return len(f.GetArgs())
}
return 1
}
// CheckArgsNotMultiColumnRow checks the args are not multi-column row.
func CheckArgsNotMultiColumnRow(args ...Expression) error {
for _, arg := range args {
if GetRowLen(arg) != 1 {
return ErrOperandColumns.GenWithStackByArgs(1)
}
}
return nil
}
// GetFuncArg gets the argument of the function at idx.
func GetFuncArg(e Expression, idx int) Expression {
if f, ok := e.(*ScalarFunction); ok {
return f.GetArgs()[idx]
}
return nil
}
// PopRowFirstArg pops the first element and returns the rest of row.
// e.g. After this function (1, 2, 3) becomes (2, 3).
func PopRowFirstArg(ctx sessionctx.Context, e Expression) (ret Expression, err error) {
if f, ok := e.(*ScalarFunction); ok && f.FuncName.L == ast.RowFunc {
args := f.GetArgs()
if len(args) == 2 {
return args[1], nil
}
ret, err = NewFunction(ctx, ast.RowFunc, f.GetType(), args[1:]...)
return ret, err
}
return
}
// exprStack is a stack of expressions.
type exprStack struct {
stack []Expression
}
// pop pops an expression from the stack.
func (s *exprStack) pop() Expression {
if s.len() == 0 {
return nil
}
lastIdx := s.len() - 1
expr := s.stack[lastIdx]
s.stack = s.stack[:lastIdx]
return expr
}
// popN pops n expressions from the stack.
// If n greater than stack length or n is negative, it pops all the expressions.
func (s *exprStack) popN(n int) []Expression {
if n > s.len() || n < 0 {
n = s.len()
}
idx := s.len() - n
exprs := s.stack[idx:]
s.stack = s.stack[:idx]
return exprs
}
// push pushes one expression to the stack.
func (s *exprStack) push(expr Expression) {
s.stack = append(s.stack, expr)
}
// len returns the length of th stack.
func (s *exprStack) len() int {
return len(s.stack)
}
// DatumToConstant generates a Constant expression from a Datum.
func DatumToConstant(d types.Datum, tp byte) *Constant {
return &Constant{Value: d, RetType: types.NewFieldType(tp)}
}
// ParamMarkerExpression generate a getparam function expression.
func ParamMarkerExpression(ctx sessionctx.Context, v *driver.ParamMarkerExpr) (Expression, error) {
useCache := ctx.GetSessionVars().StmtCtx.UseCache
isPointExec := ctx.GetSessionVars().StmtCtx.PointExec
tp := types.NewFieldType(mysql.TypeUnspecified)
types.DefaultParamTypeForValue(v.GetValue(), tp)
value := &Constant{Value: v.Datum, RetType: tp}
if useCache || isPointExec {
value.ParamMarker = &ParamMarker{
order: v.Order,
ctx: ctx,
}
}
return value, nil
}
// DisableParseJSONFlag4Expr disables ParseToJSONFlag for `expr` except Column.
// We should not *PARSE* a string as JSON under some scenarios. ParseToJSONFlag
// is 0 for JSON column yet(as well as JSON correlated column), so we can skip
// it. Moreover, Column.RetType refers to the infoschema, if we modify it, data
// race may happen if another goroutine read from the infoschema at the same
// time.
func DisableParseJSONFlag4Expr(expr Expression) {
if _, isColumn := expr.(*Column); isColumn {
return
}
if _, isCorCol := expr.(*CorrelatedColumn); isCorCol {
return
}
expr.GetType().Flag &= ^mysql.ParseToJSONFlag
}
// ConstructPositionExpr constructs PositionExpr with the given ParamMarkerExpr.
func ConstructPositionExpr(p *driver.ParamMarkerExpr) *ast.PositionExpr {
return &ast.PositionExpr{P: p}
}
// PosFromPositionExpr generates a position value from PositionExpr.
func PosFromPositionExpr(ctx sessionctx.Context, v *ast.PositionExpr) (int, bool, error) {
if v.P == nil {
return v.N, false, nil
}
value, err := ParamMarkerExpression(ctx, v.P.(*driver.ParamMarkerExpr))
if err != nil {
return 0, true, err
}
pos, isNull, err := GetIntFromConstant(ctx, value)
if err != nil || isNull {
return 0, true, err
}
return pos, false, nil
}
// GetStringFromConstant gets a string value from the Constant expression.
func GetStringFromConstant(ctx sessionctx.Context, value Expression) (string, bool, error) {
con, ok := value.(*Constant)
if !ok {
err := errors.Errorf("Not a Constant expression %+v", value)
return "", true, err
}
str, isNull, err := con.EvalString(ctx, chunk.Row{})
if err != nil || isNull {
return "", true, err
}
return str, false, nil
}
// GetIntFromConstant gets an interger value from the Constant expression.
func GetIntFromConstant(ctx sessionctx.Context, value Expression) (int, bool, error) {
str, isNull, err := GetStringFromConstant(ctx, value)
if err != nil || isNull {
return 0, true, err
}
intNum, err := strconv.Atoi(str)
if err != nil {
return 0, true, nil
}
return intNum, false, nil
}
// BuildNotNullExpr wraps up `not(isnull())` for given expression.
func BuildNotNullExpr(ctx sessionctx.Context, expr Expression) Expression {
isNull := NewFunctionInternal(ctx, ast.IsNull, types.NewFieldType(mysql.TypeTiny), expr)
notNull := NewFunctionInternal(ctx, ast.UnaryNot, types.NewFieldType(mysql.TypeTiny), isNull)
return notNull
}
// IsRuntimeConstExpr checks if a expr can be treated as a constant in **executor**.
func IsRuntimeConstExpr(expr Expression) bool {
switch x := expr.(type) {
case *ScalarFunction:
if _, ok := unFoldableFunctions[x.FuncName.L]; ok {
return false
}
for _, arg := range x.GetArgs() {
if !IsRuntimeConstExpr(arg) {
return false
}
}
return true
case *Column:
return false
case *Constant, *CorrelatedColumn:
return true
}
return false
}
// IsMutableEffectsExpr checks if expr contains function which is mutable or has side effects.
func IsMutableEffectsExpr(expr Expression) bool {
switch x := expr.(type) {
case *ScalarFunction:
if _, ok := mutableEffectsFunctions[x.FuncName.L]; ok {
return true
}
for _, arg := range x.GetArgs() {
if IsMutableEffectsExpr(arg) {
return true
}
}
case *Column:
case *Constant:
if x.DeferredExpr != nil {
return IsMutableEffectsExpr(x.DeferredExpr)
}
}
return false
}
// RemoveDupExprs removes identical exprs. Not that if expr contains functions which
// are mutable or have side effects, we cannot remove it even if it has duplicates;
// if the plan is going to be cached, we cannot remove expressions containing `?` neither.
func RemoveDupExprs(ctx sessionctx.Context, exprs []Expression) []Expression {
res := make([]Expression, 0, len(exprs))
exists := make(map[string]struct{}, len(exprs))
sc := ctx.GetSessionVars().StmtCtx
for _, expr := range exprs {
if ContainMutableConst(ctx, []Expression{expr}) {
res = append(res, expr)
continue
}
key := string(expr.HashCode(sc))
if _, ok := exists[key]; !ok || IsMutableEffectsExpr(expr) {
res = append(res, expr)
exists[key] = struct{}{}
}
}
return res
}
// GetUint64FromConstant gets a uint64 from constant expression.
func GetUint64FromConstant(expr Expression) (uint64, bool, bool) {
con, ok := expr.(*Constant)
if !ok {
logutil.BgLogger().Warn("not a constant expression", zap.String("expression", expr.ExplainInfo()))
return 0, false, false
}
dt := con.Value
if con.ParamMarker != nil {
dt = con.ParamMarker.GetUserVar()
} else if con.DeferredExpr != nil {
var err error
dt, err = con.DeferredExpr.Eval(chunk.Row{})
if err != nil {
logutil.BgLogger().Warn("eval deferred expr failed", zap.Error(err))
return 0, false, false
}
}
switch dt.Kind() {
case types.KindNull:
return 0, true, true
case types.KindInt64:
val := dt.GetInt64()
if val < 0 {
return 0, false, false
}
return uint64(val), false, true
case types.KindUint64:
return dt.GetUint64(), false, true
}
return 0, false, false
}
// ContainVirtualColumn checks if the expressions contain a virtual column
func ContainVirtualColumn(exprs []Expression) bool {
for _, expr := range exprs {
switch v := expr.(type) {
case *Column:
if v.VirtualExpr != nil {
return true
}
case *ScalarFunction:
if ContainVirtualColumn(v.GetArgs()) {
return true
}
}
}
return false
}
// ContainCorrelatedColumn checks if the expressions contain a correlated column
func ContainCorrelatedColumn(exprs []Expression) bool {
for _, expr := range exprs {
switch v := expr.(type) {
case *CorrelatedColumn:
return true
case *ScalarFunction:
if ContainCorrelatedColumn(v.GetArgs()) {
return true
}
}
}
return false
}
// ContainMutableConst checks if the expressions contain a lazy constant.
func ContainMutableConst(ctx sessionctx.Context, exprs []Expression) bool {
// Treat all constants immutable if plan cache is not enabled for this query.
if !ctx.GetSessionVars().StmtCtx.UseCache {
return false
}
for _, expr := range exprs {
switch v := expr.(type) {
case *Constant:
if v.ParamMarker != nil || v.DeferredExpr != nil {
return true
}
case *ScalarFunction:
if ContainMutableConst(ctx, v.GetArgs()) {
return true
}
}
}
return false
}
const (
_ = iota
kib = 1 << (10 * iota)
mib = 1 << (10 * iota)
gib = 1 << (10 * iota)
tib = 1 << (10 * iota)
pib = 1 << (10 * iota)
eib = 1 << (10 * iota)
)
const (
nano = 1
micro = 1000 * nano
milli = 1000 * micro
sec = 1000 * milli
min = 60 * sec
hour = 60 * min
dayTime = 24 * hour
)
// GetFormatBytes convert byte count to value with units.
func GetFormatBytes(bytes float64) string {
var divisor float64
var unit string
bytesAbs := math.Abs(bytes)
if bytesAbs >= eib {
divisor = eib
unit = "EiB"
} else if bytesAbs >= pib {
divisor = pib
unit = "PiB"
} else if bytesAbs >= tib {
divisor = tib
unit = "TiB"
} else if bytesAbs >= gib {
divisor = gib
unit = "GiB"
} else if bytesAbs >= mib {
divisor = mib
unit = "MiB"
} else if bytesAbs >= kib {
divisor = kib
unit = "KiB"
} else {
divisor = 1
unit = "bytes"
}
if divisor == 1 {
return strconv.FormatFloat(bytes, 'f', 0, 64) + " " + unit
}
value := float64(bytes) / divisor
if math.Abs(value) >= 100000.0 {
return strconv.FormatFloat(value, 'e', 2, 64) + " " + unit
}
return strconv.FormatFloat(value, 'f', 2, 64) + " " + unit
}
// GetFormatNanoTime convert time in nanoseconds to value with units.
func GetFormatNanoTime(time float64) string {
var divisor float64
var unit string
timeAbs := math.Abs(time)