This repository has been archived by the owner on Apr 4, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 39
/
train__211224-105010.log
2703 lines (2703 loc) · 236 KB
/
train__211224-105010.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
21-12-24 10:50:10.472 - INFO: DataParallel(
(module): Model(
(model): Hinet(
(inv1): INV_block(
(r): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(y): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(f): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
)
(inv2): INV_block(
(r): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(y): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(f): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
)
(inv3): INV_block(
(r): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(y): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(f): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
)
(inv4): INV_block(
(r): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(y): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(f): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
)
(inv5): INV_block(
(r): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(y): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(f): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
)
(inv6): INV_block(
(r): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(y): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(f): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
)
(inv7): INV_block(
(r): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(y): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(f): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
)
(inv8): INV_block(
(r): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(y): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(f): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
)
(inv9): INV_block(
(r): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(y): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(f): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
)
(inv10): INV_block(
(r): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(y): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(f): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
)
(inv11): INV_block(
(r): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(y): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(f): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
)
(inv12): INV_block(
(r): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(y): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(f): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
)
(inv13): INV_block(
(r): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(y): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(f): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
)
(inv14): INV_block(
(r): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(y): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(f): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
)
(inv15): INV_block(
(r): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(y): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(f): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
)
(inv16): INV_block(
(r): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(y): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
(f): ResidualDenseBlock_out(
(conv1): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(44, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(76, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv4): Conv2d(108, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv5): Conv2d(140, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(lrelu): LeakyReLU(negative_slope=0.01, inplace)
)
)
)
)
)
21-12-24 10:51:24.005 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 10:51:24.006 - INFO: Train epoch 1651: Loss: 996.6664 | r_Loss: 87.0803 | g_Loss: 499.5519 | l_Loss: 61.7132 |
21-12-24 10:52:37.878 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 10:52:37.879 - INFO: Train epoch 1652: Loss: 934.8195 | r_Loss: 81.4228 | g_Loss: 465.0092 | l_Loss: 62.6962 |
21-12-24 10:53:51.594 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 10:53:51.595 - INFO: Train epoch 1653: Loss: 909.2602 | r_Loss: 85.9651 | g_Loss: 422.5426 | l_Loss: 56.8919 |
21-12-24 10:55:05.322 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 10:55:05.323 - INFO: Train epoch 1654: Loss: 834.6590 | r_Loss: 79.7185 | g_Loss: 393.1451 | l_Loss: 42.9211 |
21-12-24 10:56:18.955 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 10:56:18.956 - INFO: Train epoch 1655: Loss: 1296.1235 | r_Loss: 151.0322 | g_Loss: 462.2363 | l_Loss: 78.7261 |
21-12-24 10:57:32.335 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 10:57:32.336 - INFO: Train epoch 1656: Loss: 836.4362 | r_Loss: 74.6929 | g_Loss: 416.5005 | l_Loss: 46.4711 |
21-12-24 10:58:45.987 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 10:58:45.988 - INFO: Train epoch 1657: Loss: 770.1497 | r_Loss: 69.8997 | g_Loss: 372.9066 | l_Loss: 47.7447 |
21-12-24 10:59:59.057 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 10:59:59.058 - INFO: Train epoch 1658: Loss: 879.3608 | r_Loss: 84.0686 | g_Loss: 396.0211 | l_Loss: 62.9966 |
21-12-24 11:01:12.716 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:01:12.717 - INFO: Train epoch 1659: Loss: 795.9085 | r_Loss: 77.6426 | g_Loss: 362.8962 | l_Loss: 44.7994 |
21-12-24 11:02:26.173 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:02:26.173 - INFO: Train epoch 1660: Loss: 812.1923 | r_Loss: 80.2613 | g_Loss: 361.0567 | l_Loss: 49.8293 |
21-12-24 11:03:39.323 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:03:39.325 - INFO: Train epoch 1661: Loss: 844.8791 | r_Loss: 85.5502 | g_Loss: 362.2384 | l_Loss: 54.8897 |
21-12-24 11:04:53.042 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:04:53.043 - INFO: Train epoch 1662: Loss: 760.9282 | r_Loss: 75.5782 | g_Loss: 341.6751 | l_Loss: 41.3623 |
21-12-24 11:06:06.290 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:06:06.291 - INFO: Train epoch 1663: Loss: 783.3647 | r_Loss: 78.4957 | g_Loss: 348.9161 | l_Loss: 41.9701 |
21-12-24 11:07:19.850 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:07:19.851 - INFO: Train epoch 1664: Loss: 714.5819 | r_Loss: 70.6148 | g_Loss: 325.3690 | l_Loss: 36.1389 |
21-12-24 11:08:33.661 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:08:33.662 - INFO: Train epoch 1665: Loss: 828.1388 | r_Loss: 86.6758 | g_Loss: 353.0427 | l_Loss: 41.7171 |
21-12-24 11:09:47.023 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:09:47.024 - INFO: Train epoch 1666: Loss: 743.3908 | r_Loss: 73.9117 | g_Loss: 335.4105 | l_Loss: 38.4218 |
21-12-24 11:11:00.957 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:11:00.958 - INFO: Train epoch 1667: Loss: 757.1275 | r_Loss: 77.4477 | g_Loss: 329.1774 | l_Loss: 40.7116 |
21-12-24 11:12:14.564 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:12:14.565 - INFO: Train epoch 1668: Loss: 785.3291 | r_Loss: 77.8449 | g_Loss: 346.5850 | l_Loss: 49.5194 |
21-12-24 11:13:28.145 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:13:28.147 - INFO: Train epoch 1669: Loss: 728.2735 | r_Loss: 72.8905 | g_Loss: 321.7528 | l_Loss: 42.0681 |
21-12-24 11:14:41.429 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:14:41.430 - INFO: Train epoch 1670: Loss: 732.5073 | r_Loss: 74.8059 | g_Loss: 315.3424 | l_Loss: 43.1353 |
21-12-24 11:15:55.292 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:15:55.293 - INFO: Train epoch 1671: Loss: 771.3462 | r_Loss: 80.3056 | g_Loss: 325.4308 | l_Loss: 44.3874 |
21-12-24 11:17:08.662 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:17:08.663 - INFO: Train epoch 1672: Loss: 842.4972 | r_Loss: 92.4568 | g_Loss: 339.2938 | l_Loss: 40.9191 |
21-12-24 11:18:22.081 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:18:22.082 - INFO: Train epoch 1673: Loss: 8610.9523 | r_Loss: 1506.7883 | g_Loss: 958.7069 | l_Loss: 118.3040 |
21-12-24 11:19:34.991 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:19:34.991 - INFO: Train epoch 1674: Loss: 1021.1046 | r_Loss: 94.6165 | g_Loss: 483.1054 | l_Loss: 64.9166 |
21-12-24 11:20:48.303 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:20:48.304 - INFO: Train epoch 1675: Loss: 951.6090 | r_Loss: 84.5241 | g_Loss: 471.4960 | l_Loss: 57.4927 |
21-12-24 11:22:01.863 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:22:01.864 - INFO: Train epoch 1676: Loss: 890.1895 | r_Loss: 77.6636 | g_Loss: 442.2973 | l_Loss: 59.5743 |
21-12-24 11:23:14.835 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:23:14.836 - INFO: Train epoch 1677: Loss: 885.7175 | r_Loss: 78.1532 | g_Loss: 446.9193 | l_Loss: 48.0322 |
21-12-24 11:24:28.151 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:24:28.152 - INFO: Train epoch 1678: Loss: 824.7316 | r_Loss: 71.6695 | g_Loss: 419.0889 | l_Loss: 47.2951 |
21-12-24 11:25:41.614 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:25:41.616 - INFO: Train epoch 1679: Loss: 869.4428 | r_Loss: 77.9959 | g_Loss: 419.5999 | l_Loss: 59.8634 |
21-12-24 11:27:31.224 - INFO: TEST: PSNR_S: 44.2622 | PSNR_C: 35.5947 |
21-12-24 11:27:31.225 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:27:31.225 - INFO: Train epoch 1680: Loss: 866.8122 | r_Loss: 76.9340 | g_Loss: 423.7489 | l_Loss: 58.3931 |
21-12-24 11:28:44.604 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:28:44.605 - INFO: Train epoch 1681: Loss: 826.8867 | r_Loss: 71.9132 | g_Loss: 408.8606 | l_Loss: 58.4598 |
21-12-24 11:29:58.321 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:29:58.322 - INFO: Train epoch 1682: Loss: 748.3975 | r_Loss: 65.2267 | g_Loss: 381.7432 | l_Loss: 40.5209 |
21-12-24 11:31:11.977 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:31:11.978 - INFO: Train epoch 1683: Loss: 813.6189 | r_Loss: 71.7737 | g_Loss: 397.9074 | l_Loss: 56.8428 |
21-12-24 11:32:25.389 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:32:25.390 - INFO: Train epoch 1684: Loss: 825.0517 | r_Loss: 73.7446 | g_Loss: 408.7961 | l_Loss: 47.5326 |
21-12-24 11:33:38.962 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:33:38.963 - INFO: Train epoch 1685: Loss: 775.1033 | r_Loss: 69.8173 | g_Loss: 383.5295 | l_Loss: 42.4871 |
21-12-24 11:34:52.218 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:34:52.219 - INFO: Train epoch 1686: Loss: 806.1944 | r_Loss: 71.8815 | g_Loss: 385.0441 | l_Loss: 61.7429 |
21-12-24 11:36:05.957 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:36:05.958 - INFO: Train epoch 1687: Loss: 778.4672 | r_Loss: 71.2008 | g_Loss: 380.8677 | l_Loss: 41.5954 |
21-12-24 11:37:19.420 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:37:19.421 - INFO: Train epoch 1688: Loss: 750.4331 | r_Loss: 66.9524 | g_Loss: 376.2731 | l_Loss: 39.3979 |
21-12-24 11:38:33.515 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:38:33.516 - INFO: Train epoch 1689: Loss: 781.7109 | r_Loss: 72.6099 | g_Loss: 369.7764 | l_Loss: 48.8849 |
21-12-24 11:39:46.912 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:39:46.913 - INFO: Train epoch 1690: Loss: 772.5375 | r_Loss: 70.7663 | g_Loss: 372.8491 | l_Loss: 45.8568 |
21-12-24 11:41:00.649 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:41:00.650 - INFO: Train epoch 1691: Loss: 763.5094 | r_Loss: 70.2843 | g_Loss: 368.8476 | l_Loss: 43.2403 |
21-12-24 11:42:14.152 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:42:14.153 - INFO: Train epoch 1692: Loss: 769.3426 | r_Loss: 70.8585 | g_Loss: 371.8062 | l_Loss: 43.2441 |
21-12-24 11:43:27.780 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:43:27.781 - INFO: Train epoch 1693: Loss: 781.7902 | r_Loss: 74.1837 | g_Loss: 370.6968 | l_Loss: 40.1747 |
21-12-24 11:44:41.724 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:44:41.725 - INFO: Train epoch 1694: Loss: 789.3826 | r_Loss: 75.9377 | g_Loss: 359.0156 | l_Loss: 50.6786 |
21-12-24 11:45:55.547 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:45:55.548 - INFO: Train epoch 1695: Loss: 749.3144 | r_Loss: 69.1799 | g_Loss: 354.0228 | l_Loss: 49.3919 |
21-12-24 11:47:08.998 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:47:08.999 - INFO: Train epoch 1696: Loss: 753.8007 | r_Loss: 71.2242 | g_Loss: 344.8389 | l_Loss: 52.8406 |
21-12-24 11:48:22.610 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:48:22.611 - INFO: Train epoch 1697: Loss: 743.3431 | r_Loss: 70.1488 | g_Loss: 347.5078 | l_Loss: 45.0913 |
21-12-24 11:49:36.235 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:49:36.236 - INFO: Train epoch 1698: Loss: 719.0849 | r_Loss: 66.2507 | g_Loss: 346.8729 | l_Loss: 40.9583 |
21-12-24 11:50:49.769 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:50:49.770 - INFO: Train epoch 1699: Loss: 767.6972 | r_Loss: 74.3354 | g_Loss: 353.6101 | l_Loss: 42.4099 |
21-12-24 11:52:03.341 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:52:03.342 - INFO: Train epoch 1700: Loss: 719.5966 | r_Loss: 68.5536 | g_Loss: 336.9405 | l_Loss: 39.8880 |
21-12-24 11:53:17.154 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:53:17.156 - INFO: Train epoch 1701: Loss: 719.8267 | r_Loss: 68.8395 | g_Loss: 333.4468 | l_Loss: 42.1825 |
21-12-24 11:54:30.797 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:54:30.799 - INFO: Train epoch 1702: Loss: 743.6404 | r_Loss: 72.3179 | g_Loss: 337.3837 | l_Loss: 44.6671 |
21-12-24 11:55:44.226 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:55:44.227 - INFO: Train epoch 1703: Loss: 769.4671 | r_Loss: 76.2474 | g_Loss: 347.0613 | l_Loss: 41.1687 |
21-12-24 11:56:57.361 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:56:57.362 - INFO: Train epoch 1704: Loss: 747.3007 | r_Loss: 73.5217 | g_Loss: 341.2174 | l_Loss: 38.4746 |
21-12-24 11:58:10.751 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:58:10.753 - INFO: Train epoch 1705: Loss: 759.1546 | r_Loss: 74.5607 | g_Loss: 339.2166 | l_Loss: 47.1346 |
21-12-24 11:59:24.179 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 11:59:24.180 - INFO: Train epoch 1706: Loss: 710.6230 | r_Loss: 70.4662 | g_Loss: 319.5313 | l_Loss: 38.7606 |
21-12-24 12:00:37.830 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:00:37.831 - INFO: Train epoch 1707: Loss: 700.4298 | r_Loss: 70.4592 | g_Loss: 308.3489 | l_Loss: 39.7849 |
21-12-24 12:01:51.071 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:01:51.072 - INFO: Train epoch 1708: Loss: 666.6130 | r_Loss: 63.6407 | g_Loss: 311.5169 | l_Loss: 36.8924 |
21-12-24 12:03:04.688 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:03:04.689 - INFO: Train epoch 1709: Loss: 710.7510 | r_Loss: 72.6898 | g_Loss: 312.6813 | l_Loss: 34.6208 |
21-12-24 12:04:54.376 - INFO: TEST: PSNR_S: 44.5309 | PSNR_C: 36.7876 |
21-12-24 12:04:54.378 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:04:54.379 - INFO: Train epoch 1710: Loss: 748.2437 | r_Loss: 73.5660 | g_Loss: 332.4286 | l_Loss: 47.9853 |
21-12-24 12:06:08.112 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:06:08.113 - INFO: Train epoch 1711: Loss: 730.4399 | r_Loss: 73.9148 | g_Loss: 319.4427 | l_Loss: 41.4229 |
21-12-24 12:07:21.838 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:07:21.839 - INFO: Train epoch 1712: Loss: 706.9692 | r_Loss: 70.8856 | g_Loss: 314.8030 | l_Loss: 37.7382 |
21-12-24 12:08:35.159 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:08:35.160 - INFO: Train epoch 1713: Loss: 736.0849 | r_Loss: 75.6680 | g_Loss: 314.9232 | l_Loss: 42.8219 |
21-12-24 12:09:48.651 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:09:48.652 - INFO: Train epoch 1714: Loss: 711.8496 | r_Loss: 71.4041 | g_Loss: 314.3108 | l_Loss: 40.5185 |
21-12-24 12:11:02.199 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:11:02.200 - INFO: Train epoch 1715: Loss: 753.2928 | r_Loss: 77.4933 | g_Loss: 326.8601 | l_Loss: 38.9664 |
21-12-24 12:12:15.538 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:12:15.539 - INFO: Train epoch 1716: Loss: 734.1763 | r_Loss: 75.5589 | g_Loss: 316.3935 | l_Loss: 39.9884 |
21-12-24 12:13:29.243 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:13:29.245 - INFO: Train epoch 1717: Loss: 714.3771 | r_Loss: 73.4440 | g_Loss: 304.0243 | l_Loss: 43.1328 |
21-12-24 12:14:42.505 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:14:42.505 - INFO: Train epoch 1718: Loss: 714.9687 | r_Loss: 72.2714 | g_Loss: 310.6197 | l_Loss: 42.9923 |
21-12-24 12:15:55.500 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:15:55.501 - INFO: Train epoch 1719: Loss: 704.3244 | r_Loss: 71.2147 | g_Loss: 307.3500 | l_Loss: 40.9007 |
21-12-24 12:17:09.363 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:17:09.365 - INFO: Train epoch 1720: Loss: 691.3586 | r_Loss: 71.5271 | g_Loss: 294.6778 | l_Loss: 39.0454 |
21-12-24 12:18:22.588 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:18:22.589 - INFO: Train epoch 1721: Loss: 664.2191 | r_Loss: 67.4086 | g_Loss: 293.2737 | l_Loss: 33.9023 |
21-12-24 12:19:36.656 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:19:36.657 - INFO: Train epoch 1722: Loss: 657.1564 | r_Loss: 65.6682 | g_Loss: 288.2780 | l_Loss: 40.5373 |
21-12-24 12:20:49.840 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:20:49.841 - INFO: Train epoch 1723: Loss: 711.8719 | r_Loss: 75.0266 | g_Loss: 295.2638 | l_Loss: 41.4753 |
21-12-24 12:22:03.414 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:22:03.415 - INFO: Train epoch 1724: Loss: 705.0644 | r_Loss: 70.7484 | g_Loss: 311.1821 | l_Loss: 40.1403 |
21-12-24 12:23:16.876 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:23:16.877 - INFO: Train epoch 1725: Loss: 720.0282 | r_Loss: 74.0241 | g_Loss: 310.4715 | l_Loss: 39.4361 |
21-12-24 12:24:30.434 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:24:30.435 - INFO: Train epoch 1726: Loss: 732.0975 | r_Loss: 77.5719 | g_Loss: 305.1166 | l_Loss: 39.1216 |
21-12-24 12:25:43.854 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:25:43.855 - INFO: Train epoch 1727: Loss: 714.6404 | r_Loss: 74.9158 | g_Loss: 303.4786 | l_Loss: 36.5827 |
21-12-24 12:26:57.341 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:26:57.343 - INFO: Train epoch 1728: Loss: 710.4739 | r_Loss: 75.9522 | g_Loss: 300.6479 | l_Loss: 30.0649 |
21-12-24 12:28:11.148 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:28:11.149 - INFO: Train epoch 1729: Loss: 698.6187 | r_Loss: 71.9532 | g_Loss: 300.3817 | l_Loss: 38.4709 |
21-12-24 12:29:24.938 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:29:24.939 - INFO: Train epoch 1730: Loss: 666.1466 | r_Loss: 68.0425 | g_Loss: 290.4145 | l_Loss: 35.5197 |
21-12-24 12:30:38.439 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:30:38.440 - INFO: Train epoch 1731: Loss: 738.4115 | r_Loss: 79.9069 | g_Loss: 304.8984 | l_Loss: 33.9787 |
21-12-24 12:31:52.032 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:31:52.033 - INFO: Train epoch 1732: Loss: 715.5669 | r_Loss: 75.0963 | g_Loss: 303.7472 | l_Loss: 36.3380 |
21-12-24 12:33:05.460 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:33:05.461 - INFO: Train epoch 1733: Loss: 716.5168 | r_Loss: 74.1250 | g_Loss: 307.2458 | l_Loss: 38.6461 |
21-12-24 12:34:19.710 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:34:19.711 - INFO: Train epoch 1734: Loss: 755.9281 | r_Loss: 80.3550 | g_Loss: 316.5978 | l_Loss: 37.5553 |
21-12-24 12:35:33.259 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:35:33.260 - INFO: Train epoch 1735: Loss: 698.3875 | r_Loss: 76.0861 | g_Loss: 283.9956 | l_Loss: 33.9616 |
21-12-24 12:36:46.572 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:36:46.573 - INFO: Train epoch 1736: Loss: 695.3843 | r_Loss: 73.2075 | g_Loss: 298.3507 | l_Loss: 30.9962 |
21-12-24 12:38:00.649 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:38:00.650 - INFO: Train epoch 1737: Loss: 722.9559 | r_Loss: 76.7901 | g_Loss: 305.3573 | l_Loss: 33.6481 |
21-12-24 12:39:14.767 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:39:14.768 - INFO: Train epoch 1738: Loss: 750.9706 | r_Loss: 78.2312 | g_Loss: 315.2320 | l_Loss: 44.5824 |
21-12-24 12:40:28.346 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:40:28.347 - INFO: Train epoch 1739: Loss: 736.5281 | r_Loss: 78.5347 | g_Loss: 307.1150 | l_Loss: 36.7398 |
21-12-24 12:42:17.876 - INFO: TEST: PSNR_S: 44.5592 | PSNR_C: 37.1728 |
21-12-24 12:42:17.877 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:42:17.878 - INFO: Train epoch 1740: Loss: 688.5199 | r_Loss: 69.7688 | g_Loss: 304.6378 | l_Loss: 35.0379 |
21-12-24 12:43:31.222 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:43:31.223 - INFO: Train epoch 1741: Loss: 665.3084 | r_Loss: 68.0839 | g_Loss: 292.8388 | l_Loss: 32.0500 |
21-12-24 12:44:44.551 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:44:44.552 - INFO: Train epoch 1742: Loss: 735.3801 | r_Loss: 77.4265 | g_Loss: 310.8973 | l_Loss: 37.3504 |
21-12-24 12:45:57.866 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:45:57.867 - INFO: Train epoch 1743: Loss: 695.8742 | r_Loss: 70.2452 | g_Loss: 295.6354 | l_Loss: 49.0126 |
21-12-24 12:47:11.589 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:47:11.591 - INFO: Train epoch 1744: Loss: 691.0718 | r_Loss: 73.7173 | g_Loss: 289.4705 | l_Loss: 33.0146 |
21-12-24 12:48:25.438 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:48:25.439 - INFO: Train epoch 1745: Loss: 733.7554 | r_Loss: 78.5749 | g_Loss: 298.6014 | l_Loss: 42.2794 |
21-12-24 12:49:39.087 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:49:39.088 - INFO: Train epoch 1746: Loss: 683.7668 | r_Loss: 70.8411 | g_Loss: 295.1287 | l_Loss: 34.4324 |
21-12-24 12:50:52.392 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:50:52.394 - INFO: Train epoch 1747: Loss: 659.3999 | r_Loss: 66.7903 | g_Loss: 290.0912 | l_Loss: 35.3573 |
21-12-24 12:52:05.981 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:52:05.982 - INFO: Train epoch 1748: Loss: 681.8155 | r_Loss: 70.6287 | g_Loss: 291.1384 | l_Loss: 37.5336 |
21-12-24 12:53:19.309 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:53:19.310 - INFO: Train epoch 1749: Loss: 682.0511 | r_Loss: 69.2791 | g_Loss: 295.0000 | l_Loss: 40.6557 |
21-12-24 12:54:32.975 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:54:32.976 - INFO: Train epoch 1750: Loss: 694.0233 | r_Loss: 74.4357 | g_Loss: 290.2026 | l_Loss: 31.6420 |
21-12-24 12:55:46.359 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:55:46.360 - INFO: Train epoch 1751: Loss: 679.9877 | r_Loss: 71.4661 | g_Loss: 285.6241 | l_Loss: 37.0331 |
21-12-24 12:57:00.474 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:57:00.475 - INFO: Train epoch 1752: Loss: 658.5425 | r_Loss: 66.5151 | g_Loss: 291.9117 | l_Loss: 34.0555 |
21-12-24 12:58:13.947 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:58:13.948 - INFO: Train epoch 1753: Loss: 667.6711 | r_Loss: 68.3255 | g_Loss: 288.2551 | l_Loss: 37.7888 |
21-12-24 12:59:27.901 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 12:59:27.902 - INFO: Train epoch 1754: Loss: 698.7648 | r_Loss: 73.4291 | g_Loss: 295.5948 | l_Loss: 36.0244 |
21-12-24 13:00:41.804 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:00:41.805 - INFO: Train epoch 1755: Loss: 696.7584 | r_Loss: 73.2533 | g_Loss: 293.8157 | l_Loss: 36.6764 |
21-12-24 13:01:55.604 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:01:55.606 - INFO: Train epoch 1756: Loss: 725.7841 | r_Loss: 77.8175 | g_Loss: 296.2575 | l_Loss: 40.4394 |
21-12-24 13:03:09.485 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:03:09.486 - INFO: Train epoch 1757: Loss: 884.0669 | r_Loss: 104.0200 | g_Loss: 316.1741 | l_Loss: 47.7926 |
21-12-24 13:04:22.981 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:04:22.982 - INFO: Train epoch 1758: Loss: 694.3711 | r_Loss: 70.8976 | g_Loss: 298.5111 | l_Loss: 41.3721 |
21-12-24 13:05:36.913 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:05:36.914 - INFO: Train epoch 1759: Loss: 695.9676 | r_Loss: 69.2147 | g_Loss: 307.5922 | l_Loss: 42.3021 |
21-12-24 13:06:50.393 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:06:50.394 - INFO: Train epoch 1760: Loss: 712.6273 | r_Loss: 73.1807 | g_Loss: 310.1358 | l_Loss: 36.5878 |
21-12-24 13:08:04.164 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:08:04.165 - INFO: Train epoch 1761: Loss: 697.5223 | r_Loss: 73.8286 | g_Loss: 295.4237 | l_Loss: 32.9554 |
21-12-24 13:09:17.993 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:09:17.994 - INFO: Train epoch 1762: Loss: 674.5606 | r_Loss: 70.1752 | g_Loss: 289.6457 | l_Loss: 34.0391 |
21-12-24 13:10:31.925 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:10:31.926 - INFO: Train epoch 1763: Loss: 711.1937 | r_Loss: 76.1995 | g_Loss: 296.9209 | l_Loss: 33.2753 |
21-12-24 13:11:45.527 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:11:45.528 - INFO: Train epoch 1764: Loss: 688.7824 | r_Loss: 72.6844 | g_Loss: 290.7455 | l_Loss: 34.6148 |
21-12-24 13:12:59.072 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:12:59.073 - INFO: Train epoch 1765: Loss: 742.8691 | r_Loss: 78.6104 | g_Loss: 309.5635 | l_Loss: 40.2537 |
21-12-24 13:14:12.598 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:14:12.599 - INFO: Train epoch 1766: Loss: 712.0398 | r_Loss: 76.8489 | g_Loss: 291.0487 | l_Loss: 36.7467 |
21-12-24 13:15:26.393 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:15:26.394 - INFO: Train epoch 1767: Loss: 689.3794 | r_Loss: 69.6028 | g_Loss: 287.1737 | l_Loss: 54.1916 |
21-12-24 13:16:39.835 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:16:39.836 - INFO: Train epoch 1768: Loss: 691.9738 | r_Loss: 72.2257 | g_Loss: 287.1889 | l_Loss: 43.6561 |
21-12-24 13:17:52.922 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:17:52.923 - INFO: Train epoch 1769: Loss: 681.9947 | r_Loss: 73.5295 | g_Loss: 285.3682 | l_Loss: 28.9791 |
21-12-24 13:19:42.987 - INFO: TEST: PSNR_S: 44.6176 | PSNR_C: 37.4177 |
21-12-24 13:19:42.989 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:19:42.990 - INFO: Train epoch 1770: Loss: 730.8154 | r_Loss: 77.5737 | g_Loss: 298.4191 | l_Loss: 44.5278 |
21-12-24 13:20:56.877 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:20:56.878 - INFO: Train epoch 1771: Loss: 692.0084 | r_Loss: 75.0203 | g_Loss: 285.2535 | l_Loss: 31.6536 |
21-12-24 13:22:10.851 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:22:10.852 - INFO: Train epoch 1772: Loss: 725.6709 | r_Loss: 77.1570 | g_Loss: 303.5220 | l_Loss: 36.3639 |
21-12-24 13:23:24.636 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:23:24.637 - INFO: Train epoch 1773: Loss: 764.1123 | r_Loss: 76.6675 | g_Loss: 340.7704 | l_Loss: 40.0043 |
21-12-24 13:24:38.281 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:24:38.282 - INFO: Train epoch 1774: Loss: 659.8171 | r_Loss: 67.0161 | g_Loss: 289.4995 | l_Loss: 35.2372 |
21-12-24 13:25:51.553 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:25:51.554 - INFO: Train epoch 1775: Loss: 676.6983 | r_Loss: 69.6707 | g_Loss: 286.0884 | l_Loss: 42.2561 |
21-12-24 13:27:04.840 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:27:04.841 - INFO: Train epoch 1776: Loss: 658.6153 | r_Loss: 68.2647 | g_Loss: 281.1455 | l_Loss: 36.1463 |
21-12-24 13:28:18.394 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:28:18.395 - INFO: Train epoch 1777: Loss: 617.6532 | r_Loss: 61.3925 | g_Loss: 272.6765 | l_Loss: 38.0141 |
21-12-24 13:29:31.964 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:29:31.965 - INFO: Train epoch 1778: Loss: 699.6648 | r_Loss: 73.1363 | g_Loss: 296.0462 | l_Loss: 37.9370 |
21-12-24 13:30:45.685 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:30:45.686 - INFO: Train epoch 1779: Loss: 645.1173 | r_Loss: 68.0590 | g_Loss: 274.8078 | l_Loss: 30.0147 |
21-12-24 13:31:59.456 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:31:59.457 - INFO: Train epoch 1780: Loss: 736.3907 | r_Loss: 85.5363 | g_Loss: 275.2029 | l_Loss: 33.5065 |
21-12-24 13:33:12.936 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:33:12.937 - INFO: Train epoch 1781: Loss: 27199.5270 | r_Loss: 4951.1001 | g_Loss: 2165.3570 | l_Loss: 278.6699 |
21-12-24 13:34:26.689 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:34:26.690 - INFO: Train epoch 1782: Loss: 1888.3177 | r_Loss: 178.5296 | g_Loss: 882.1664 | l_Loss: 113.5032 |
21-12-24 13:35:40.244 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:35:40.245 - INFO: Train epoch 1783: Loss: 1413.8933 | r_Loss: 129.4908 | g_Loss: 688.0817 | l_Loss: 78.3574 |
21-12-24 13:36:53.641 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:36:53.642 - INFO: Train epoch 1784: Loss: 1389.9506 | r_Loss: 128.6146 | g_Loss: 663.9321 | l_Loss: 82.9453 |
21-12-24 13:38:07.355 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:38:07.357 - INFO: Train epoch 1785: Loss: 1283.1526 | r_Loss: 118.0200 | g_Loss: 616.7083 | l_Loss: 76.3441 |
21-12-24 13:39:21.441 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:39:21.442 - INFO: Train epoch 1786: Loss: 1148.8036 | r_Loss: 102.8540 | g_Loss: 566.2212 | l_Loss: 68.3123 |
21-12-24 13:40:35.080 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:40:35.081 - INFO: Train epoch 1787: Loss: 1195.0455 | r_Loss: 106.0786 | g_Loss: 600.8800 | l_Loss: 63.7727 |
21-12-24 13:41:48.641 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:41:48.642 - INFO: Train epoch 1788: Loss: 1090.6651 | r_Loss: 95.9577 | g_Loss: 544.1177 | l_Loss: 66.7587 |
21-12-24 13:43:01.827 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:43:01.828 - INFO: Train epoch 1789: Loss: 1026.4087 | r_Loss: 94.0206 | g_Loss: 500.7070 | l_Loss: 55.5987 |
21-12-24 13:44:14.952 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:44:14.953 - INFO: Train epoch 1790: Loss: 997.3083 | r_Loss: 90.9614 | g_Loss: 484.6996 | l_Loss: 57.8017 |
21-12-24 13:45:28.664 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:45:28.665 - INFO: Train epoch 1791: Loss: 975.2179 | r_Loss: 86.8784 | g_Loss: 488.3203 | l_Loss: 52.5054 |
21-12-24 13:46:42.290 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:46:42.291 - INFO: Train epoch 1792: Loss: 962.6513 | r_Loss: 84.0564 | g_Loss: 492.5444 | l_Loss: 49.8250 |
21-12-24 13:47:55.914 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:47:55.915 - INFO: Train epoch 1793: Loss: 970.4572 | r_Loss: 88.2591 | g_Loss: 470.4195 | l_Loss: 58.7422 |
21-12-24 13:49:09.677 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:49:09.678 - INFO: Train epoch 1794: Loss: 931.1605 | r_Loss: 83.7026 | g_Loss: 458.2896 | l_Loss: 54.3581 |
21-12-24 13:50:23.000 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:50:23.001 - INFO: Train epoch 1795: Loss: 954.0510 | r_Loss: 86.8411 | g_Loss: 458.6640 | l_Loss: 61.1813 |
21-12-24 13:51:36.615 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:51:36.616 - INFO: Train epoch 1796: Loss: 900.0978 | r_Loss: 81.6517 | g_Loss: 435.6577 | l_Loss: 56.1816 |
21-12-24 13:52:50.309 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:52:50.310 - INFO: Train epoch 1797: Loss: 891.5913 | r_Loss: 81.1589 | g_Loss: 432.3371 | l_Loss: 53.4599 |
21-12-24 13:54:04.073 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:54:04.074 - INFO: Train epoch 1798: Loss: 851.1819 | r_Loss: 74.6060 | g_Loss: 428.3256 | l_Loss: 49.8262 |
21-12-24 13:55:17.724 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:55:17.725 - INFO: Train epoch 1799: Loss: 844.9514 | r_Loss: 75.8346 | g_Loss: 416.5922 | l_Loss: 49.1864 |
21-12-24 13:57:07.039 - INFO: TEST: PSNR_S: 43.9725 | PSNR_C: 35.5244 |
21-12-24 13:57:07.040 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:57:07.040 - INFO: Train epoch 1800: Loss: 836.3367 | r_Loss: 77.4354 | g_Loss: 405.5109 | l_Loss: 43.6486 |
21-12-24 13:58:20.329 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:58:20.331 - INFO: Train epoch 1801: Loss: 805.8711 | r_Loss: 70.8932 | g_Loss: 402.9265 | l_Loss: 48.4787 |
21-12-24 13:59:34.663 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 13:59:34.664 - INFO: Train epoch 1802: Loss: 820.0081 | r_Loss: 72.4727 | g_Loss: 404.8849 | l_Loss: 52.7595 |
21-12-24 14:00:47.701 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:00:47.702 - INFO: Train epoch 1803: Loss: 777.7857 | r_Loss: 69.2405 | g_Loss: 379.6074 | l_Loss: 51.9759 |
21-12-24 14:02:01.086 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:02:01.087 - INFO: Train epoch 1804: Loss: 771.2026 | r_Loss: 67.6609 | g_Loss: 377.1543 | l_Loss: 55.7439 |
21-12-24 14:03:14.531 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:03:14.532 - INFO: Train epoch 1805: Loss: 808.4646 | r_Loss: 74.1017 | g_Loss: 382.9217 | l_Loss: 55.0345 |
21-12-24 14:04:28.040 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:04:28.041 - INFO: Train epoch 1806: Loss: 752.9266 | r_Loss: 66.2621 | g_Loss: 373.4613 | l_Loss: 48.1547 |
21-12-24 14:05:41.439 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:05:41.440 - INFO: Train epoch 1807: Loss: 771.5367 | r_Loss: 70.2679 | g_Loss: 370.3910 | l_Loss: 49.8061 |
21-12-24 14:06:54.644 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:06:54.645 - INFO: Train epoch 1808: Loss: 786.3187 | r_Loss: 71.5571 | g_Loss: 383.4627 | l_Loss: 45.0707 |
21-12-24 14:08:08.253 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:08:08.254 - INFO: Train epoch 1809: Loss: 804.5923 | r_Loss: 73.8412 | g_Loss: 387.4913 | l_Loss: 47.8951 |
21-12-24 14:09:21.810 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:09:21.811 - INFO: Train epoch 1810: Loss: 798.1764 | r_Loss: 75.3360 | g_Loss: 375.2541 | l_Loss: 46.2421 |
21-12-24 14:10:35.363 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:10:35.364 - INFO: Train epoch 1811: Loss: 775.0778 | r_Loss: 69.6894 | g_Loss: 371.9672 | l_Loss: 54.6635 |
21-12-24 14:11:49.217 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:11:49.218 - INFO: Train epoch 1812: Loss: 752.2019 | r_Loss: 70.8881 | g_Loss: 353.6663 | l_Loss: 44.0949 |
21-12-24 14:13:02.676 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:13:02.677 - INFO: Train epoch 1813: Loss: 748.0589 | r_Loss: 67.3545 | g_Loss: 366.3562 | l_Loss: 44.9300 |
21-12-24 14:14:16.495 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:14:16.496 - INFO: Train epoch 1814: Loss: 717.4607 | r_Loss: 63.5924 | g_Loss: 359.1337 | l_Loss: 40.3648 |
21-12-24 14:15:30.137 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:15:30.138 - INFO: Train epoch 1815: Loss: 706.5849 | r_Loss: 63.7316 | g_Loss: 342.7885 | l_Loss: 45.1386 |
21-12-24 14:16:43.558 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:16:43.559 - INFO: Train epoch 1816: Loss: 714.4677 | r_Loss: 63.0740 | g_Loss: 352.6346 | l_Loss: 46.4630 |
21-12-24 14:17:56.758 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:17:56.759 - INFO: Train epoch 1817: Loss: 755.3819 | r_Loss: 70.8035 | g_Loss: 356.0815 | l_Loss: 45.2829 |
21-12-24 14:19:10.791 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:19:10.792 - INFO: Train epoch 1818: Loss: 718.0255 | r_Loss: 65.1656 | g_Loss: 343.7945 | l_Loss: 48.4029 |
21-12-24 14:20:24.294 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:20:24.296 - INFO: Train epoch 1819: Loss: 737.0700 | r_Loss: 68.8999 | g_Loss: 352.0209 | l_Loss: 40.5498 |
21-12-24 14:21:38.014 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:21:38.015 - INFO: Train epoch 1820: Loss: 742.7412 | r_Loss: 70.2665 | g_Loss: 347.9807 | l_Loss: 43.4283 |
21-12-24 14:22:51.623 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:22:51.624 - INFO: Train epoch 1821: Loss: 679.8593 | r_Loss: 60.2650 | g_Loss: 336.2007 | l_Loss: 42.3334 |
21-12-24 14:24:04.937 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:24:04.938 - INFO: Train epoch 1822: Loss: 720.1367 | r_Loss: 68.2421 | g_Loss: 342.1020 | l_Loss: 36.8243 |
21-12-24 14:25:18.388 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:25:18.389 - INFO: Train epoch 1823: Loss: 693.1084 | r_Loss: 63.7521 | g_Loss: 332.6333 | l_Loss: 41.7147 |
21-12-24 14:26:32.182 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:26:32.182 - INFO: Train epoch 1824: Loss: 686.0146 | r_Loss: 64.0352 | g_Loss: 329.2265 | l_Loss: 36.6120 |
21-12-24 14:27:46.192 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:27:46.193 - INFO: Train epoch 1825: Loss: 688.8245 | r_Loss: 62.8375 | g_Loss: 331.6962 | l_Loss: 42.9406 |
21-12-24 14:28:59.633 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:28:59.634 - INFO: Train epoch 1826: Loss: 711.7002 | r_Loss: 70.4528 | g_Loss: 324.2055 | l_Loss: 35.2307 |
21-12-24 14:30:13.167 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:30:13.168 - INFO: Train epoch 1827: Loss: 673.0654 | r_Loss: 60.8528 | g_Loss: 332.2980 | l_Loss: 36.5034 |
21-12-24 14:31:26.771 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:31:26.772 - INFO: Train epoch 1828: Loss: 672.9244 | r_Loss: 64.6316 | g_Loss: 310.8706 | l_Loss: 38.8958 |
21-12-24 14:32:40.221 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:32:40.222 - INFO: Train epoch 1829: Loss: 682.3891 | r_Loss: 64.7451 | g_Loss: 326.1835 | l_Loss: 32.4800 |
21-12-24 14:34:29.696 - INFO: TEST: PSNR_S: 44.7531 | PSNR_C: 36.7158 |
21-12-24 14:34:29.697 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:34:29.698 - INFO: Train epoch 1830: Loss: 713.1444 | r_Loss: 68.6513 | g_Loss: 331.5930 | l_Loss: 38.2950 |
21-12-24 14:35:43.375 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:35:43.376 - INFO: Train epoch 1831: Loss: 674.9687 | r_Loss: 64.8393 | g_Loss: 312.9078 | l_Loss: 37.8644 |
21-12-24 14:36:56.907 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:36:56.908 - INFO: Train epoch 1832: Loss: 729.9047 | r_Loss: 67.8977 | g_Loss: 332.4869 | l_Loss: 57.9293 |
21-12-24 14:38:10.569 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:38:10.570 - INFO: Train epoch 1833: Loss: 673.7224 | r_Loss: 62.5087 | g_Loss: 314.4841 | l_Loss: 46.6946 |
21-12-24 14:39:24.160 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:39:24.161 - INFO: Train epoch 1834: Loss: 702.8203 | r_Loss: 68.0163 | g_Loss: 322.8687 | l_Loss: 39.8700 |
21-12-24 14:40:37.556 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:40:37.557 - INFO: Train epoch 1835: Loss: 681.4264 | r_Loss: 64.5655 | g_Loss: 319.8888 | l_Loss: 38.7100 |
21-12-24 14:41:50.818 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:41:50.819 - INFO: Train epoch 1836: Loss: 704.8515 | r_Loss: 67.5858 | g_Loss: 328.6246 | l_Loss: 38.2980 |
21-12-24 14:43:04.405 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:43:04.406 - INFO: Train epoch 1837: Loss: 688.5916 | r_Loss: 65.6036 | g_Loss: 315.1386 | l_Loss: 45.4349 |
21-12-24 14:44:17.843 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:44:17.844 - INFO: Train epoch 1838: Loss: 666.2931 | r_Loss: 64.6960 | g_Loss: 300.1363 | l_Loss: 42.6768 |
21-12-24 14:45:31.440 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:45:31.441 - INFO: Train epoch 1839: Loss: 684.7102 | r_Loss: 66.1549 | g_Loss: 314.6221 | l_Loss: 39.3138 |
21-12-24 14:46:45.028 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:46:45.029 - INFO: Train epoch 1840: Loss: 682.8615 | r_Loss: 66.8284 | g_Loss: 307.8528 | l_Loss: 40.8665 |
21-12-24 14:47:58.424 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:47:58.425 - INFO: Train epoch 1841: Loss: 674.7829 | r_Loss: 64.2279 | g_Loss: 313.0539 | l_Loss: 40.5897 |
21-12-24 14:49:12.179 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:49:12.180 - INFO: Train epoch 1842: Loss: 705.4461 | r_Loss: 69.1956 | g_Loss: 318.0932 | l_Loss: 41.3752 |
21-12-24 14:50:26.334 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:50:26.335 - INFO: Train epoch 1843: Loss: 658.2322 | r_Loss: 64.3833 | g_Loss: 303.1554 | l_Loss: 33.1605 |
21-12-24 14:51:39.936 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:51:39.937 - INFO: Train epoch 1844: Loss: 709.8064 | r_Loss: 74.3519 | g_Loss: 302.2732 | l_Loss: 35.7735 |
21-12-24 14:52:53.280 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:52:53.282 - INFO: Train epoch 1845: Loss: 664.4267 | r_Loss: 63.9445 | g_Loss: 302.0227 | l_Loss: 42.6813 |
21-12-24 14:54:07.087 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:54:07.088 - INFO: Train epoch 1846: Loss: 682.1295 | r_Loss: 66.1928 | g_Loss: 307.7126 | l_Loss: 43.4530 |
21-12-24 14:55:20.602 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:55:20.603 - INFO: Train epoch 1847: Loss: 679.1990 | r_Loss: 69.0970 | g_Loss: 295.2008 | l_Loss: 38.5129 |
21-12-24 14:56:34.185 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:56:34.186 - INFO: Train epoch 1848: Loss: 670.6749 | r_Loss: 66.4798 | g_Loss: 302.5884 | l_Loss: 35.6876 |
21-12-24 14:57:48.070 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:57:48.072 - INFO: Train epoch 1849: Loss: 698.5283 | r_Loss: 69.9021 | g_Loss: 301.7318 | l_Loss: 47.2860 |
21-12-24 14:59:01.995 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 14:59:01.996 - INFO: Train epoch 1850: Loss: 672.0781 | r_Loss: 66.1542 | g_Loss: 301.5685 | l_Loss: 39.7388 |
21-12-24 15:00:15.202 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:00:15.203 - INFO: Train epoch 1851: Loss: 682.8503 | r_Loss: 68.8609 | g_Loss: 303.9424 | l_Loss: 34.6033 |
21-12-24 15:01:28.748 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:01:28.748 - INFO: Train epoch 1852: Loss: 681.8842 | r_Loss: 68.4287 | g_Loss: 303.4624 | l_Loss: 36.2782 |
21-12-24 15:02:42.278 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:02:42.279 - INFO: Train epoch 1853: Loss: 657.8965 | r_Loss: 66.5098 | g_Loss: 291.5939 | l_Loss: 33.7534 |
21-12-24 15:03:56.072 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:03:56.073 - INFO: Train epoch 1854: Loss: 633.9719 | r_Loss: 60.7079 | g_Loss: 295.9366 | l_Loss: 34.4956 |
21-12-24 15:05:10.000 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:05:10.001 - INFO: Train epoch 1855: Loss: 625.3379 | r_Loss: 61.9797 | g_Loss: 279.1265 | l_Loss: 36.3129 |
21-12-24 15:06:23.193 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:06:23.195 - INFO: Train epoch 1856: Loss: 666.8640 | r_Loss: 70.0536 | g_Loss: 282.9565 | l_Loss: 33.6396 |
21-12-24 15:07:36.858 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:07:36.859 - INFO: Train epoch 1857: Loss: 725.2017 | r_Loss: 75.1786 | g_Loss: 306.9707 | l_Loss: 42.3381 |
21-12-24 15:08:50.631 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:08:50.632 - INFO: Train epoch 1858: Loss: 630.8458 | r_Loss: 63.8043 | g_Loss: 276.4533 | l_Loss: 35.3708 |
21-12-24 15:10:04.172 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:10:04.173 - INFO: Train epoch 1859: Loss: 653.6839 | r_Loss: 66.5865 | g_Loss: 285.3445 | l_Loss: 35.4069 |
21-12-24 15:11:54.014 - INFO: TEST: PSNR_S: 45.0200 | PSNR_C: 37.3160 |
21-12-24 15:11:54.015 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:11:54.015 - INFO: Train epoch 1860: Loss: 675.3478 | r_Loss: 69.4280 | g_Loss: 286.3882 | l_Loss: 41.8196 |
21-12-24 15:13:07.377 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:13:07.378 - INFO: Train epoch 1861: Loss: 735.9340 | r_Loss: 73.5292 | g_Loss: 324.1120 | l_Loss: 44.1758 |
21-12-24 15:14:21.002 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:14:21.003 - INFO: Train epoch 1862: Loss: 644.5409 | r_Loss: 65.6331 | g_Loss: 281.6457 | l_Loss: 34.7298 |
21-12-24 15:15:34.572 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:15:34.573 - INFO: Train epoch 1863: Loss: 678.3646 | r_Loss: 69.0200 | g_Loss: 294.2955 | l_Loss: 38.9690 |
21-12-24 15:16:47.936 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:16:47.937 - INFO: Train epoch 1864: Loss: 643.1459 | r_Loss: 65.5357 | g_Loss: 277.2762 | l_Loss: 38.1911 |
21-12-24 15:18:01.557 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:18:01.558 - INFO: Train epoch 1865: Loss: 666.7288 | r_Loss: 70.3506 | g_Loss: 275.4242 | l_Loss: 39.5514 |
21-12-24 15:19:15.906 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:19:15.907 - INFO: Train epoch 1866: Loss: 705.0768 | r_Loss: 74.8824 | g_Loss: 301.8500 | l_Loss: 28.8151 |
21-12-24 15:20:29.795 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:20:29.796 - INFO: Train epoch 1867: Loss: 605.0372 | r_Loss: 57.4753 | g_Loss: 271.8301 | l_Loss: 45.8307 |
21-12-24 15:21:43.137 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:21:43.138 - INFO: Train epoch 1868: Loss: 670.4567 | r_Loss: 68.6070 | g_Loss: 295.8435 | l_Loss: 31.5782 |
21-12-24 15:22:56.951 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:22:56.952 - INFO: Train epoch 1869: Loss: 667.2033 | r_Loss: 68.8726 | g_Loss: 285.9217 | l_Loss: 36.9188 |
21-12-24 15:24:10.512 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:24:10.513 - INFO: Train epoch 1870: Loss: 607.8520 | r_Loss: 60.5080 | g_Loss: 269.0332 | l_Loss: 36.2788 |
21-12-24 15:25:24.101 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:25:24.103 - INFO: Train epoch 1871: Loss: 646.1062 | r_Loss: 67.4696 | g_Loss: 270.2080 | l_Loss: 38.5501 |
21-12-24 15:26:37.607 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:26:37.608 - INFO: Train epoch 1872: Loss: 632.7603 | r_Loss: 65.2664 | g_Loss: 268.3516 | l_Loss: 38.0768 |
21-12-24 15:27:50.678 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:27:50.680 - INFO: Train epoch 1873: Loss: 635.1568 | r_Loss: 64.3990 | g_Loss: 275.7519 | l_Loss: 37.4102 |
21-12-24 15:29:04.465 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:29:04.466 - INFO: Train epoch 1874: Loss: 691.5381 | r_Loss: 76.1473 | g_Loss: 278.2882 | l_Loss: 32.5134 |
21-12-24 15:30:18.315 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:30:18.316 - INFO: Train epoch 1875: Loss: 645.2537 | r_Loss: 64.4660 | g_Loss: 281.3924 | l_Loss: 41.5316 |
21-12-24 15:31:31.939 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:31:31.940 - INFO: Train epoch 1876: Loss: 682.9236 | r_Loss: 73.2017 | g_Loss: 286.0000 | l_Loss: 30.9152 |
21-12-24 15:32:45.637 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:32:45.638 - INFO: Train epoch 1877: Loss: 697.0865 | r_Loss: 74.1529 | g_Loss: 290.5709 | l_Loss: 35.7511 |
21-12-24 15:33:59.194 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:33:59.195 - INFO: Train epoch 1878: Loss: 643.6496 | r_Loss: 65.3598 | g_Loss: 281.4079 | l_Loss: 35.4425 |
21-12-24 15:35:12.681 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:35:12.682 - INFO: Train epoch 1879: Loss: 627.7748 | r_Loss: 63.3863 | g_Loss: 273.2666 | l_Loss: 37.5768 |
21-12-24 15:36:26.642 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:36:26.644 - INFO: Train epoch 1880: Loss: 676.9040 | r_Loss: 71.7531 | g_Loss: 282.0461 | l_Loss: 36.0926 |
21-12-24 15:37:40.369 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:37:40.370 - INFO: Train epoch 1881: Loss: 697.5580 | r_Loss: 74.1386 | g_Loss: 288.5074 | l_Loss: 38.3574 |
21-12-24 15:38:54.024 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:38:54.025 - INFO: Train epoch 1882: Loss: 678.3468 | r_Loss: 76.7319 | g_Loss: 260.3516 | l_Loss: 34.3355 |
21-12-24 15:40:07.595 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:40:07.596 - INFO: Train epoch 1883: Loss: 598.1925 | r_Loss: 59.2218 | g_Loss: 266.1003 | l_Loss: 35.9834 |
21-12-24 15:41:20.961 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:41:20.962 - INFO: Train epoch 1884: Loss: 638.1156 | r_Loss: 67.0024 | g_Loss: 272.1458 | l_Loss: 30.9578 |
21-12-24 15:42:34.515 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:42:34.516 - INFO: Train epoch 1885: Loss: 586.9661 | r_Loss: 59.0618 | g_Loss: 260.7465 | l_Loss: 30.9108 |
21-12-24 15:43:48.069 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:43:48.070 - INFO: Train epoch 1886: Loss: 621.7998 | r_Loss: 63.6335 | g_Loss: 269.0621 | l_Loss: 34.5701 |
21-12-24 15:45:01.901 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:45:01.902 - INFO: Train epoch 1887: Loss: 632.1954 | r_Loss: 63.2525 | g_Loss: 279.8214 | l_Loss: 36.1113 |
21-12-24 15:46:15.501 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:46:15.502 - INFO: Train epoch 1888: Loss: 658.1341 | r_Loss: 65.4487 | g_Loss: 285.3926 | l_Loss: 45.4980 |
21-12-24 15:47:29.234 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:47:29.234 - INFO: Train epoch 1889: Loss: 909.0179 | r_Loss: 115.5207 | g_Loss: 290.2729 | l_Loss: 41.1415 |
21-12-24 15:49:19.279 - INFO: TEST: PSNR_S: 40.8152 | PSNR_C: 34.4156 |
21-12-24 15:49:19.281 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:49:19.281 - INFO: Train epoch 1890: Loss: 11961.4131 | r_Loss: 2206.1668 | g_Loss: 837.1147 | l_Loss: 93.4647 |
21-12-24 15:50:32.795 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:50:32.796 - INFO: Train epoch 1891: Loss: 1056.5178 | r_Loss: 105.6675 | g_Loss: 472.8878 | l_Loss: 55.2924 |
21-12-24 15:51:45.912 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:51:45.913 - INFO: Train epoch 1892: Loss: 937.6495 | r_Loss: 86.5954 | g_Loss: 453.7878 | l_Loss: 50.8846 |
21-12-24 15:52:59.979 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:52:59.980 - INFO: Train epoch 1893: Loss: 892.4382 | r_Loss: 80.5243 | g_Loss: 431.7219 | l_Loss: 58.0949 |
21-12-24 15:54:13.609 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:54:13.610 - INFO: Train epoch 1894: Loss: 820.0113 | r_Loss: 73.0635 | g_Loss: 401.6995 | l_Loss: 52.9941 |
21-12-24 15:55:27.435 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:55:27.435 - INFO: Train epoch 1895: Loss: 856.1665 | r_Loss: 76.1337 | g_Loss: 424.6960 | l_Loss: 50.8020 |
21-12-24 15:56:41.103 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:56:41.104 - INFO: Train epoch 1896: Loss: 794.8029 | r_Loss: 68.6865 | g_Loss: 400.6130 | l_Loss: 50.7576 |
21-12-24 15:57:54.452 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:57:54.453 - INFO: Train epoch 1897: Loss: 754.6464 | r_Loss: 66.9735 | g_Loss: 380.2996 | l_Loss: 39.4793 |
21-12-24 15:59:08.282 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 15:59:08.284 - INFO: Train epoch 1898: Loss: 777.1012 | r_Loss: 68.3311 | g_Loss: 395.6892 | l_Loss: 39.7566 |
21-12-24 16:00:22.361 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:00:22.361 - INFO: Train epoch 1899: Loss: 713.2783 | r_Loss: 59.8727 | g_Loss: 366.4051 | l_Loss: 47.5099 |
21-12-24 16:01:35.782 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:01:35.783 - INFO: Train epoch 1900: Loss: 761.8036 | r_Loss: 69.1024 | g_Loss: 374.0197 | l_Loss: 42.2716 |
21-12-24 16:02:49.407 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:02:49.408 - INFO: Train epoch 1901: Loss: 722.4671 | r_Loss: 64.3758 | g_Loss: 356.5424 | l_Loss: 44.0456 |
21-12-24 16:04:02.702 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:04:02.703 - INFO: Train epoch 1902: Loss: 709.2062 | r_Loss: 61.4920 | g_Loss: 361.7559 | l_Loss: 39.9904 |
21-12-24 16:05:15.947 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:05:15.948 - INFO: Train epoch 1903: Loss: 702.7438 | r_Loss: 63.0182 | g_Loss: 349.6163 | l_Loss: 38.0367 |
21-12-24 16:06:29.683 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:06:29.684 - INFO: Train epoch 1904: Loss: 720.2896 | r_Loss: 64.3664 | g_Loss: 350.9877 | l_Loss: 47.4701 |
21-12-24 16:07:43.428 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:07:43.429 - INFO: Train epoch 1905: Loss: 738.7760 | r_Loss: 66.3340 | g_Loss: 359.4850 | l_Loss: 47.6209 |
21-12-24 16:08:56.876 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:08:56.877 - INFO: Train epoch 1906: Loss: 724.6545 | r_Loss: 66.7975 | g_Loss: 346.2669 | l_Loss: 44.4001 |
21-12-24 16:10:10.565 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:10:10.566 - INFO: Train epoch 1907: Loss: 662.3915 | r_Loss: 59.9612 | g_Loss: 324.4650 | l_Loss: 38.1203 |
21-12-24 16:11:24.295 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:11:24.296 - INFO: Train epoch 1908: Loss: 711.5876 | r_Loss: 64.3935 | g_Loss: 346.6104 | l_Loss: 43.0099 |
21-12-24 16:12:37.761 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:12:37.763 - INFO: Train epoch 1909: Loss: 671.8348 | r_Loss: 60.9112 | g_Loss: 325.7905 | l_Loss: 41.4885 |
21-12-24 16:13:51.279 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:13:51.280 - INFO: Train epoch 1910: Loss: 679.2678 | r_Loss: 61.1218 | g_Loss: 329.8926 | l_Loss: 43.7663 |
21-12-24 16:15:04.835 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:15:04.836 - INFO: Train epoch 1911: Loss: 703.2545 | r_Loss: 63.8917 | g_Loss: 341.1247 | l_Loss: 42.6712 |
21-12-24 16:16:18.379 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:16:18.380 - INFO: Train epoch 1912: Loss: 685.0896 | r_Loss: 63.7026 | g_Loss: 321.7318 | l_Loss: 44.8450 |
21-12-24 16:17:32.177 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:17:32.179 - INFO: Train epoch 1913: Loss: 688.0055 | r_Loss: 62.2110 | g_Loss: 337.6132 | l_Loss: 39.3373 |
21-12-24 16:18:46.178 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:18:46.180 - INFO: Train epoch 1914: Loss: 658.8671 | r_Loss: 60.6661 | g_Loss: 313.2766 | l_Loss: 42.2601 |
21-12-24 16:19:59.918 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:19:59.919 - INFO: Train epoch 1915: Loss: 632.3056 | r_Loss: 56.3226 | g_Loss: 310.9987 | l_Loss: 39.6941 |
21-12-24 16:21:13.566 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:21:13.568 - INFO: Train epoch 1916: Loss: 637.0151 | r_Loss: 60.5904 | g_Loss: 296.2315 | l_Loss: 37.8315 |
21-12-24 16:22:27.256 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:22:27.257 - INFO: Train epoch 1917: Loss: 625.8112 | r_Loss: 59.2367 | g_Loss: 293.0478 | l_Loss: 36.5800 |
21-12-24 16:23:40.931 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:23:40.932 - INFO: Train epoch 1918: Loss: 624.0560 | r_Loss: 58.8510 | g_Loss: 288.7823 | l_Loss: 41.0186 |
21-12-24 16:24:55.134 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:24:55.135 - INFO: Train epoch 1919: Loss: 679.4857 | r_Loss: 66.6878 | g_Loss: 305.2384 | l_Loss: 40.8083 |
21-12-24 16:26:45.192 - INFO: TEST: PSNR_S: 45.3411 | PSNR_C: 37.1076 |
21-12-24 16:26:45.193 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:26:45.194 - INFO: Train epoch 1920: Loss: 636.0305 | r_Loss: 58.8598 | g_Loss: 299.1346 | l_Loss: 42.5970 |
21-12-24 16:27:58.768 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:27:58.769 - INFO: Train epoch 1921: Loss: 650.4100 | r_Loss: 60.3835 | g_Loss: 307.8647 | l_Loss: 40.6280 |
21-12-24 16:29:12.412 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:29:12.414 - INFO: Train epoch 1922: Loss: 658.5720 | r_Loss: 62.3796 | g_Loss: 305.2417 | l_Loss: 41.4323 |
21-12-24 16:30:26.234 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:30:26.235 - INFO: Train epoch 1923: Loss: 646.2142 | r_Loss: 62.8893 | g_Loss: 296.9604 | l_Loss: 34.8074 |
21-12-24 16:31:39.850 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:31:39.851 - INFO: Train epoch 1924: Loss: 677.0013 | r_Loss: 64.8470 | g_Loss: 310.8356 | l_Loss: 41.9306 |
21-12-24 16:32:53.311 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:32:53.312 - INFO: Train epoch 1925: Loss: 635.3908 | r_Loss: 60.9040 | g_Loss: 297.3460 | l_Loss: 33.5247 |
21-12-24 16:34:07.179 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:34:07.180 - INFO: Train epoch 1926: Loss: 616.5689 | r_Loss: 58.4606 | g_Loss: 274.0732 | l_Loss: 50.1926 |
21-12-24 16:35:20.906 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:35:20.908 - INFO: Train epoch 1927: Loss: 632.1898 | r_Loss: 64.2374 | g_Loss: 283.7478 | l_Loss: 27.2549 |
21-12-24 16:36:35.009 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:36:35.010 - INFO: Train epoch 1928: Loss: 598.7088 | r_Loss: 57.3555 | g_Loss: 274.9868 | l_Loss: 36.9442 |
21-12-24 16:37:48.498 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:37:48.499 - INFO: Train epoch 1929: Loss: 634.3287 | r_Loss: 62.2063 | g_Loss: 290.7204 | l_Loss: 32.5767 |
21-12-24 16:39:02.076 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:39:02.077 - INFO: Train epoch 1930: Loss: 623.9433 | r_Loss: 59.8283 | g_Loss: 287.3509 | l_Loss: 37.4509 |
21-12-24 16:40:15.622 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:40:15.623 - INFO: Train epoch 1931: Loss: 600.1869 | r_Loss: 57.8146 | g_Loss: 275.4819 | l_Loss: 35.6321 |
21-12-24 16:41:29.239 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:41:29.240 - INFO: Train epoch 1932: Loss: 643.4028 | r_Loss: 63.5580 | g_Loss: 286.0055 | l_Loss: 39.6074 |
21-12-24 16:42:42.872 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:42:42.873 - INFO: Train epoch 1933: Loss: 648.3691 | r_Loss: 64.9372 | g_Loss: 280.2251 | l_Loss: 43.4581 |
21-12-24 16:43:56.672 - INFO: Learning rate: 6.30957344480193e-06
21-12-24 16:43:56.673 - INFO: Train epoch 1934: Loss: 637.2269 | r_Loss: 59.8688 | g_Loss: 293.7668 | l_Loss: 44.1164 |
21-12-24 16:45:10.102 - INFO: Learning rate: 6.30957344480193e-06