-
Notifications
You must be signed in to change notification settings - Fork 162
/
Copy pathbasic_language_model_nezha.py
32 lines (26 loc) · 1.24 KB
/
basic_language_model_nezha.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#! -*- coding: utf-8 -*-
# 基础测试:mlm预测
from bert4torch.models import build_transformer_model
from bert4torch.tokenizers import Tokenizer
import torch
root_model_path = "E:/data/pretrain_ckpt/nezha/huawei_noah@nezha-cn-base"
vocab_path = root_model_path + "/vocab.txt"
config_path = root_model_path + "/bert4torch_config.json"
checkpoint_path = root_model_path + '/pytorch_model.bin'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
inputtext = "今天[MASK]情很好"
# ==========================bert4torch调用=========================
# 建立分词器
tokenizer = Tokenizer(vocab_path, do_lower_case=True)
model = build_transformer_model(config_path, checkpoint_path, with_mlm='softmax').to(device) # 建立模型,加载权重
token_ids, segments_ids = tokenizer.encode(inputtext)
maskpos = token_ids.index(103)
tokens_ids_tensor = torch.tensor([token_ids]).to(device)
segment_ids_tensor = torch.tensor([segments_ids]).to(device)
# 需要传入参数with_mlm
model.eval()
with torch.no_grad():
_, probas = model([tokens_ids_tensor, segment_ids_tensor])
result = torch.argmax(probas[0, [maskpos]], dim=-1).cpu().numpy()
print('====bert4torch output====')
print(tokenizer.decode(result))