-
Notifications
You must be signed in to change notification settings - Fork 161
/
Copy pathtask_sentiment_classification_roformer_v2.py
116 lines (98 loc) · 4.63 KB
/
task_sentiment_classification_roformer_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#! -*- coding:utf-8 -*-
# 情感分类例子,RoPE相对位置编码
# 官方项目:https://github.com/ZhuiyiTechnology/roformer-v2
# pytorch参考项目:https://github.com/JunnYu/RoFormer_pytorch
# valid_acc: 95.78, test_acc: 96.09
from bert4torch.tokenizers import Tokenizer
from bert4torch.models import build_transformer_model, BaseModel
from bert4torch.callbacks import Callback
from bert4torch.snippets import sequence_padding, text_segmentate, ListDataset, seed_everything, get_pool_emb
import torch.nn as nn
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
maxlen = 256
batch_size = 16
config_path = 'E:/data/pretrain_ckpt/roformer/sushen@roformer_v2_char_base/config.json'
checkpoint_path = 'E:/data/pretrain_ckpt/roformer/sushen@roformer_v2_char_base/pytorch_model.bin'
dict_path = 'E:/data/pretrain_ckpt/roformer/sushen@roformer_v2_char_base/vocab.txt'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# 固定seed
seed_everything(42)
# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)
# 加载数据集
class MyDataset(ListDataset):
@staticmethod
def load_data(filenames):
"""加载数据,并尽量划分为不超过maxlen的句子
"""
D = []
seps, strips = u'\n。!?!?;;,, ', u';;,, '
for filename in filenames:
with open(filename, encoding='utf-8') as f:
for l in f:
text, label = l.strip().split('\t')
for t in text_segmentate(text, maxlen - 2, seps, strips):
D.append((t, int(label)))
return D
def collate_fn(batch):
batch_token_ids, batch_segment_ids, batch_labels = [], [], []
for text, label in batch:
token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
batch_token_ids.append(token_ids)
batch_segment_ids.append(segment_ids)
batch_labels.append([label])
batch_token_ids = torch.tensor(sequence_padding(batch_token_ids), dtype=torch.long, device=device)
batch_segment_ids = torch.tensor(sequence_padding(batch_segment_ids), dtype=torch.long, device=device)
batch_labels = torch.tensor(batch_labels, dtype=torch.long, device=device)
return [batch_token_ids, batch_segment_ids], batch_labels.flatten()
# 加载数据集
train_dataloader = DataLoader(MyDataset(['F:/data/corpus/sentence_classification/sentiment/sentiment.train.data']), batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
valid_dataloader = DataLoader(MyDataset(['F:/data/corpus/sentence_classification/sentiment/sentiment.valid.data']), batch_size=batch_size, collate_fn=collate_fn)
test_dataloader = DataLoader(MyDataset(['F:/data/corpus/sentence_classification/sentiment/sentiment.test.data']), batch_size=batch_size, collate_fn=collate_fn)
# 定义bert上的模型结构
class Model(BaseModel):
def __init__(self) -> None:
super().__init__()
# 指定好model和对应的ckpt地址
self.bert = build_transformer_model(config_path=config_path, checkpoint_path=checkpoint_path, model='roformer_v2')
self.dropout = nn.Dropout(0.1)
self.dense = nn.Linear(self.bert.configs['hidden_size'], 2)
def forward(self, token_ids, segment_ids):
last_hidden_state = self.bert([token_ids, segment_ids])
output = self.dropout(last_hidden_state[:, 0, :])
output = self.dense(output)
return output
model = Model().to(device)
# 定义使用的loss和optimizer,这里支持自定义
model.compile(
loss=nn.CrossEntropyLoss(),
optimizer=optim.Adam(model.parameters(), lr=2e-5),
metrics=['accuracy']
)
# 定义评价函数
def evaluate(data):
total, right = 0., 0.
for x_true, y_true in data:
y_pred = model.predict(x_true).argmax(axis=1)
total += len(y_true)
right += (y_true == y_pred).sum().item()
return right / total
class Evaluator(Callback):
"""评估与保存
"""
def __init__(self):
self.best_val_acc = 0.
def on_epoch_end(self, global_step, epoch, logs=None):
val_acc = evaluate(valid_dataloader)
test_acc = evaluate(test_dataloader)
if val_acc > self.best_val_acc:
self.best_val_acc = val_acc
# model.save_weights('best_model.pt')
print(f'val_acc: {val_acc:.5f}, test_acc: {test_acc:.5f}, best_val_acc: {self.best_val_acc:.5f}\n')
if __name__ == '__main__':
evaluator = Evaluator()
model.fit(train_dataloader, epochs=10, steps_per_epoch=None, callbacks=[evaluator])
else:
model.load_weights('best_model.pt')