This repository has been archived by the owner on May 15, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Interpolate.cs
692 lines (632 loc) · 27.9 KB
/
Interpolate.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
/**
* Interpolation utility functions: easing, bezier, and catmull-rom.
* Consider using Unity's Animation curve editor and AnimationCurve class
* before scripting the desired behaviour using this utility.
*
* Interpolation functionality available at different levels of abstraction.
* Low level access via individual easing functions (ex. EaseInOutCirc),
* Bezier(), and CatmullRom(). High level access using sequence generators,
* NewEase(), NewBezier(), and NewCatmullRom().
*
* Sequence generators are typically used as follows:
*
* IEnumerable<Vector3> sequence = Interpolate.New[Ease|Bezier|CatmulRom](configuration);
* foreach (Vector3 newPoint in sequence) {
* transform.position = newPoint;
* yield return WaitForSeconds(1.0f);
* }
*
* Or:
*
* IEnumerator<Vector3> sequence = Interpolate.New[Ease|Bezier|CatmulRom](configuration).GetEnumerator();
* function Update() {
* if (sequence.MoveNext()) {
* transform.position = sequence.Current;
* }
* }
*
* The low level functions work similarly to Unity's built in Lerp and it is
* up to you to track and pass in elapsedTime and duration on every call. The
* functions take this form (or the logical equivalent for Bezier() and CatmullRom()).
*
* transform.position = ease(start, distance, elapsedTime, duration);
*
* For convenience in configuration you can use the Ease(EaseType) function to
* look up a concrete easing function:
*
* [SerializeField]
* Interpolate.EaseType easeType; // set using Unity's property inspector
* Interpolate.Function ease; // easing of a particular EaseType
* function Awake() {
* ease = Interpolate.Ease(easeType);
* }
*
* @author Fernando Zapata (fernando@cpudreams.com)
* @Traduzione Andrea85cs (andrea85cs@dynematica.it)
*/
public class Interpolate
{
/**
* Different methods of easing interpolation.
*/
public enum EaseType
{
Linear,
EaseInQuad,
EaseOutQuad,
EaseInOutQuad,
EaseInCubic,
EaseOutCubic,
EaseInOutCubic,
EaseInQuart,
EaseOutQuart,
EaseInOutQuart,
EaseInQuint,
EaseOutQuint,
EaseInOutQuint,
EaseInSine,
EaseOutSine,
EaseInOutSine,
EaseInExpo,
EaseOutExpo,
EaseInOutExpo,
EaseInCirc,
EaseOutCirc,
EaseInOutCirc
}
/**
* Sequence of eleapsedTimes until elapsedTime is >= duration.
*
* Note: elapsedTimes are calculated using the value of Time.deltatTime each
* time a value is requested.
*/
static Vector3 Identity(Vector3 v)
{
return v;
}
static Vector3 TransformDotPosition(Transform t)
{
return t.position;
}
static IEnumerable<float> NewTimer(float duration)
{
float elapsedTime = 0.0f;
while (elapsedTime < duration)
{
yield return elapsedTime;
elapsedTime += Time.deltaTime;
// make sure last value is never skipped
if (elapsedTime >= duration)
{
yield return elapsedTime;
}
}
}
public delegate Vector3 ToVector3<T>(T v);
public delegate float Function(float a, float b, float c, float d);
/**
* Generates sequence of integers from start to end (inclusive) one step
* at a time.
*/
static IEnumerable<float> NewCounter(int start, int end, int step)
{
for (int i = start; i <= end; i += step)
{
yield return i;
}
}
/**
* Returns sequence generator from start to end over duration using the
* given easing function. The sequence is generated as it is accessed
* using the Time.deltaTime to calculate the portion of duration that has
* elapsed.
*/
public static IEnumerator NewEase(Function ease, Vector3 start, Vector3 end, float duration)
{
IEnumerable<float> timer = Interpolate.NewTimer(duration);
return NewEase(ease, start, end, duration, timer);
}
/**
* Instead of easing based on time, generate n interpolated points (slices)
* between the start and end positions.
*/
public static IEnumerator NewEase(Function ease, Vector3 start, Vector3 end, int slices)
{
IEnumerable<float> counter = Interpolate.NewCounter(0, slices + 1, 1);
return NewEase(ease, start, end, slices + 1, counter);
}
/**
* Generic easing sequence generator used to implement the time and
* slice variants. Normally you would not use this function directly.
*/
static IEnumerator NewEase(Function ease, Vector3 start, Vector3 end, float total, IEnumerable<float> driver)
{
Vector3 distance = end - start;
foreach (float i in driver)
{
yield return Ease(ease, start, distance, i, total);
}
}
/**
* Vector3 interpolation using given easing method. Easing is done independently
* on all three vector axis.
*/
static Vector3 Ease(Function ease, Vector3 start, Vector3 distance, float elapsedTime, float duration)
{
start.x = ease(start.x, distance.x, elapsedTime, duration);
start.y = ease(start.y, distance.y, elapsedTime, duration);
start.z = ease(start.z, distance.z, elapsedTime, duration);
return start;
}
/**
* Returns the static method that implements the given easing type for scalars.
* Use this method to easily switch between easing interpolation types.
*
* All easing methods clamp elapsedTime so that it is always <= duration.
*
* var ease = Interpolate.Ease(EaseType.EaseInQuad);
* i = ease(start, distance, elapsedTime, duration);
*/
public static Function Ease(EaseType type)
{
// Source Flash easing functions:
// http://gizma.com/easing/
// http://www.robertpenner.com/easing/easing_demo.html
//
// Changed to use more friendly variable names, that follow my Lerp
// conventions:
// start = b (start value)
// distance = c (change in value)
// elapsedTime = t (current time)
// duration = d (time duration)
Function f = null;
switch (type)
{
case EaseType.Linear: f = Interpolate.Linear; break;
case EaseType.EaseInQuad: f = Interpolate.EaseInQuad; break;
case EaseType.EaseOutQuad: f = Interpolate.EaseOutQuad; break;
case EaseType.EaseInOutQuad: f = Interpolate.EaseInOutQuad; break;
case EaseType.EaseInCubic: f = Interpolate.EaseInCubic; break;
case EaseType.EaseOutCubic: f = Interpolate.EaseOutCubic; break;
case EaseType.EaseInOutCubic: f = Interpolate.EaseInOutCubic; break;
case EaseType.EaseInQuart: f = Interpolate.EaseInQuart; break;
case EaseType.EaseOutQuart: f = Interpolate.EaseOutQuart; break;
case EaseType.EaseInOutQuart: f = Interpolate.EaseInOutQuart; break;
case EaseType.EaseInQuint: f = Interpolate.EaseInQuint; break;
case EaseType.EaseOutQuint: f = Interpolate.EaseOutQuint; break;
case EaseType.EaseInOutQuint: f = Interpolate.EaseInOutQuint; break;
case EaseType.EaseInSine: f = Interpolate.EaseInSine; break;
case EaseType.EaseOutSine: f = Interpolate.EaseOutSine; break;
case EaseType.EaseInOutSine: f = Interpolate.EaseInOutSine; break;
case EaseType.EaseInExpo: f = Interpolate.EaseInExpo; break;
case EaseType.EaseOutExpo: f = Interpolate.EaseOutExpo; break;
case EaseType.EaseInOutExpo: f = Interpolate.EaseInOutExpo; break;
case EaseType.EaseInCirc: f = Interpolate.EaseInCirc; break;
case EaseType.EaseOutCirc: f = Interpolate.EaseOutCirc; break;
case EaseType.EaseInOutCirc: f = Interpolate.EaseInOutCirc; break;
}
return f;
}
/**
* Returns sequence generator from the first node to the last node over
* duration time using the points in-between the first and last node
* as control points of a bezier curve used to generate the interpolated points
* in the sequence. If there are no control points (ie. only two nodes, first
* and last) then this behaves exactly the same as NewEase(). In other words
* a zero-degree bezier spline curve is just the easing method. The sequence
* is generated as it is accessed using the Time.deltaTime to calculate the
* portion of duration that has elapsed.
*/
public static IEnumerable<Vector3> NewBezier(Function ease, Transform[] nodes, float duration)
{
IEnumerable<float> timer = Interpolate.NewTimer(duration);
return NewBezier<Transform>(ease, nodes, TransformDotPosition, duration, timer);
}
/**
* Instead of interpolating based on time, generate n interpolated points
* (slices) between the first and last node.
*/
public static IEnumerable<Vector3> NewBezier(Function ease, Transform[] nodes, int slices)
{
IEnumerable<float> counter = NewCounter(0, slices + 1, 1);
return NewBezier<Transform>(ease, nodes, TransformDotPosition, slices + 1, counter);
}
/**
* A Vector3[] variation of the Transform[] NewBezier() function.
* Same functionality but using Vector3s to define bezier curve.
*/
public static IEnumerable<Vector3> NewBezier(Function ease, Vector3[] points, float duration)
{
IEnumerable<float> timer = NewTimer(duration);
return NewBezier<Vector3>(ease, points, Identity, duration, timer);
}
/**
* A Vector3[] variation of the Transform[] NewBezier() function.
* Same functionality but using Vector3s to define bezier curve.
*/
public static IEnumerable<Vector3> NewBezier(Function ease, Vector3[] points, int slices)
{
IEnumerable<float> counter = NewCounter(0, slices + 1, 1);
return NewBezier<Vector3>(ease, points, Identity, slices + 1, counter);
}
/**
* Generic bezier spline sequence generator used to implement the time and
* slice variants. Normally you would not use this function directly.
*/
static IEnumerable<Vector3> NewBezier<T>(Function ease, IList nodes, ToVector3<T> toVector3, float maxStep, IEnumerable<float> steps)
{
// need at least two nodes to spline between
if (nodes.Count >= 2)
{
// copy nodes array since Bezier is destructive
Vector3[] points = new Vector3[nodes.Count];
foreach (float step in steps)
{
// re-initialize copy before each destructive call to Bezier
for (int i = 0; i < nodes.Count; i++)
{
points[i] = toVector3((T)nodes[i]);
}
yield return Bezier(ease, points, step, maxStep);
// make sure last value is always generated
}
}
}
/**
* A Vector3 n-degree bezier spline.
*
* WARNING: The points array is modified by Bezier. See NewBezier() for a
* safe and user friendly alternative.
*
* You can pass zero control points, just the start and end points, for just
* plain easing. In other words a zero-degree bezier spline curve is just the
* easing method.
*
* @param points start point, n control points, end point
*/
static Vector3 Bezier(Function ease, Vector3[] points, float elapsedTime, float duration)
{
// Reference: http://ibiblio.org/e-notes/Splines/Bezier.htm
// Interpolate the n starting points to generate the next j = (n - 1) points,
// then interpolate those n - 1 points to generate the next n - 2 points,
// continue this until we have generated the last point (n - (n - 1)), j = 1.
// We store the next set of output points in the same array as the
// input points used to generate them. This works because we store the
// result in the slot of the input point that is no longer used for this
// iteration.
for (int j = points.Length - 1; j > 0; j--)
{
for (int i = 0; i < j; i++)
{
points[i].x = ease(points[i].x, points[i + 1].x - points[i].x, elapsedTime, duration);
points[i].y = ease(points[i].y, points[i + 1].y - points[i].y, elapsedTime, duration);
points[i].z = ease(points[i].z, points[i + 1].z - points[i].z, elapsedTime, duration);
}
}
return points[0];
}
/**
* Returns sequence generator from the first node, through each control point,
* and to the last node. N points are generated between each node (slices)
* using Catmull-Rom.
*/
public static IEnumerable<Vector3> NewCatmullRom(Transform[] nodes, int slices, bool loop)
{
return NewCatmullRom<Transform>(nodes, TransformDotPosition, slices, loop);
}
/**
* A Vector3[] variation of the Transform[] NewCatmullRom() function.
* Same functionality but using Vector3s to define curve.
*/
public static IEnumerable<Vector3> NewCatmullRom(Vector3[] points, int slices, bool loop)
{
return NewCatmullRom<Vector3>(points, Identity, slices, loop);
}
/**
* A List<Vector3> variation of the Transform[] NewCatmullRom() function.
* Same functionality but using Vector3s to define curve.
*/
public static IEnumerable<Vector3> NewCatmullRom(List<Vector3> points, int slices, bool loop)
{
return NewCatmullRom<Vector3>(points, Identity, slices, loop);
}
/**
* Generic catmull-rom spline sequence generator used to implement the
* Vector3[] and Transform[] variants. Normally you would not use this
* function directly.
*/
static IEnumerable<Vector3> NewCatmullRom<T>(IList nodes, ToVector3<T> toVector3, int slices, bool loop)
{
// need at least two nodes to spline between
if (nodes.Count >= 2)
{
// yield the first point explicitly, if looping the first point
// will be generated again in the step for loop when interpolating
// from last point back to the first point
yield return toVector3((T)nodes[0]);
int last = nodes.Count - 1;
for (int current = 0; loop || current < last; current++)
{
// wrap around when looping
if (loop && current > last)
{
current = 0;
}
// handle edge cases for looping and non-looping scenarios
// when looping we wrap around, when not looping use start for previous
// and end for next when you at the ends of the nodes array
int previous = (current == 0) ? ((loop) ? last : current) : current - 1;
int start = current;
int end = (current == last) ? ((loop) ? 0 : current) : current + 1;
int next = (end == last) ? ((loop) ? 0 : end) : end + 1;
// adding one guarantees yielding at least the end point
int stepCount = slices + 1;
for (int step = 1; step <= stepCount; step++)
{
yield return CatmullRom(toVector3((T)nodes[previous]),
toVector3((T)nodes[start]),
toVector3((T)nodes[end]),
toVector3((T)nodes[next]),
step, stepCount);
}
}
}
}
/**
* A Vector3 Catmull-Rom spline. Catmull-Rom splines are similar to bezier
* splines but have the useful property that the generated curve will go
* through each of the control points.
*
* NOTE: The NewCatmullRom() functions are an easier to use alternative to this
* raw Catmull-Rom implementation.
*
* @param previous the point just before the start point or the start point
* itself if no previous point is available
* @param start generated when elapsedTime == 0
* @param end generated when elapsedTime >= duration
* @param next the point just after the end point or the end point itself if no
* next point is available
*/
static Vector3 CatmullRom(Vector3 previous, Vector3 start, Vector3 end, Vector3 next,
float elapsedTime, float duration)
{
// References used:
// p.266 GemsV1
//
// tension is often set to 0.5 but you can use any reasonable value:
// http://www.cs.cmu.edu/~462/projects/assn2/assn2/catmullRom.pdf
//
// bias and tension controls:
// http://local.wasp.uwa.edu.au/~pbourke/miscellaneous/interpolation/
float percentComplete = elapsedTime / duration;
float percentCompleteSquared = percentComplete * percentComplete;
float percentCompleteCubed = percentCompleteSquared * percentComplete;
return previous * (-0.5f * percentCompleteCubed +
percentCompleteSquared -
0.5f * percentComplete) +
start * (1.5f * percentCompleteCubed +
-2.5f * percentCompleteSquared + 1.0f) +
end * (-1.5f * percentCompleteCubed +
2.0f * percentCompleteSquared +
0.5f * percentComplete) +
next * (0.5f * percentCompleteCubed -
0.5f * percentCompleteSquared);
}
/**
* Linear interpolation (same as Mathf.Lerp)
*/
static float Linear(float start, float distance, float elapsedTime, float duration)
{
// clamp elapsedTime to be <= duration
if (elapsedTime > duration) { elapsedTime = duration; }
return distance * (elapsedTime / duration) + start;
}
/**
* quadratic easing in - accelerating from zero velocity
*/
static float EaseInQuad(float start, float distance, float elapsedTime, float duration)
{
// clamp elapsedTime so that it cannot be greater than duration
elapsedTime = (elapsedTime > duration) ? 1.0f : elapsedTime / duration;
return distance * elapsedTime * elapsedTime + start;
}
/**
* quadratic easing out - decelerating to zero velocity
*/
static float EaseOutQuad(float start, float distance, float elapsedTime, float duration)
{
// clamp elapsedTime so that it cannot be greater than duration
elapsedTime = (elapsedTime > duration) ? 1.0f : elapsedTime / duration;
return -distance * elapsedTime * (elapsedTime - 2) + start;
}
/**
* quadratic easing in/out - acceleration until halfway, then deceleration
*/
static float EaseInOutQuad(float start, float distance, float elapsedTime, float duration)
{
// clamp elapsedTime so that it cannot be greater than duration
elapsedTime = (elapsedTime > duration) ? 2.0f : elapsedTime / (duration / 2);
if (elapsedTime < 1) return distance / 2 * elapsedTime * elapsedTime + start;
elapsedTime--;
return -distance / 2 * (elapsedTime * (elapsedTime - 2) - 1) + start;
}
/**
* cubic easing in - accelerating from zero velocity
*/
static float EaseInCubic(float start, float distance, float elapsedTime, float duration)
{
// clamp elapsedTime so that it cannot be greater than duration
elapsedTime = (elapsedTime > duration) ? 1.0f : elapsedTime / duration;
return distance * elapsedTime * elapsedTime * elapsedTime + start;
}
/**
* cubic easing out - decelerating to zero velocity
*/
static float EaseOutCubic(float start, float distance, float elapsedTime, float duration)
{
// clamp elapsedTime so that it cannot be greater than duration
elapsedTime = (elapsedTime > duration) ? 1.0f : elapsedTime / duration;
elapsedTime--;
return distance * (elapsedTime * elapsedTime * elapsedTime + 1) + start;
}
/**
* cubic easing in/out - acceleration until halfway, then deceleration
*/
static float EaseInOutCubic(float start, float distance, float elapsedTime, float duration)
{
// clamp elapsedTime so that it cannot be greater than duration
elapsedTime = (elapsedTime > duration) ? 2.0f : elapsedTime / (duration / 2);
if (elapsedTime < 1) return distance / 2 * elapsedTime * elapsedTime * elapsedTime + start;
elapsedTime -= 2;
return distance / 2 * (elapsedTime * elapsedTime * elapsedTime + 2) + start;
}
/**
* quartic easing in - accelerating from zero velocity
*/
static float EaseInQuart(float start, float distance, float elapsedTime, float duration)
{
// clamp elapsedTime so that it cannot be greater than duration
elapsedTime = (elapsedTime > duration) ? 1.0f : elapsedTime / duration;
return distance * elapsedTime * elapsedTime * elapsedTime * elapsedTime + start;
}
/**
* quartic easing out - decelerating to zero velocity
*/
static float EaseOutQuart(float start, float distance, float elapsedTime, float duration)
{
// clamp elapsedTime so that it cannot be greater than duration
elapsedTime = (elapsedTime > duration) ? 1.0f : elapsedTime / duration;
elapsedTime--;
return -distance * (elapsedTime * elapsedTime * elapsedTime * elapsedTime - 1) + start;
}
/**
* quartic easing in/out - acceleration until halfway, then deceleration
*/
static float EaseInOutQuart(float start, float distance, float elapsedTime, float duration)
{
// clamp elapsedTime so that it cannot be greater than duration
elapsedTime = (elapsedTime > duration) ? 2.0f : elapsedTime / (duration / 2);
if (elapsedTime < 1) return distance / 2 * elapsedTime * elapsedTime * elapsedTime * elapsedTime + start;
elapsedTime -= 2;
return -distance / 2 * (elapsedTime * elapsedTime * elapsedTime * elapsedTime - 2) + start;
}
/**
* quintic easing in - accelerating from zero velocity
*/
static float EaseInQuint(float start, float distance, float elapsedTime, float duration)
{
// clamp elapsedTime so that it cannot be greater than duration
elapsedTime = (elapsedTime > duration) ? 1.0f : elapsedTime / duration;
return distance * elapsedTime * elapsedTime * elapsedTime * elapsedTime * elapsedTime + start;
}
/**
* quintic easing out - decelerating to zero velocity
*/
static float EaseOutQuint(float start, float distance, float elapsedTime, float duration)
{
// clamp elapsedTime so that it cannot be greater than duration
elapsedTime = (elapsedTime > duration) ? 1.0f : elapsedTime / duration;
elapsedTime--;
return distance * (elapsedTime * elapsedTime * elapsedTime * elapsedTime * elapsedTime + 1) + start;
}
/**
* quintic easing in/out - acceleration until halfway, then deceleration
*/
static float EaseInOutQuint(float start, float distance, float elapsedTime, float duration)
{
// clamp elapsedTime so that it cannot be greater than duration
elapsedTime = (elapsedTime > duration) ? 2.0f : elapsedTime / (duration / 2f);
if (elapsedTime < 1) return distance / 2 * elapsedTime * elapsedTime * elapsedTime * elapsedTime * elapsedTime + start;
elapsedTime -= 2;
return distance / 2 * (elapsedTime * elapsedTime * elapsedTime * elapsedTime * elapsedTime + 2) + start;
}
/**
* sinusoidal easing in - accelerating from zero velocity
*/
static float EaseInSine(float start, float distance, float elapsedTime, float duration)
{
// clamp elapsedTime to be <= duration
if (elapsedTime > duration) { elapsedTime = duration; }
return -distance * Mathf.Cos(elapsedTime / duration * (Mathf.PI / 2)) + distance + start;
}
/**
* sinusoidal easing out - decelerating to zero velocity
*/
static float EaseOutSine(float start, float distance, float elapsedTime, float duration)
{
if (elapsedTime > duration) { elapsedTime = duration; }
return distance * Mathf.Sin(elapsedTime / duration * (Mathf.PI / 2)) + start;
}
/**
* sinusoidal easing in/out - accelerating until halfway, then decelerating
*/
static float EaseInOutSine(float start, float distance, float elapsedTime, float duration)
{
// clamp elapsedTime to be <= duration
if (elapsedTime > duration) { elapsedTime = duration; }
return -distance / 2 * (Mathf.Cos(Mathf.PI * elapsedTime / duration) - 1) + start;
}
/**
* exponential easing in - accelerating from zero velocity
*/
static float EaseInExpo(float start, float distance, float elapsedTime, float duration)
{
// clamp elapsedTime to be <= duration
if (elapsedTime > duration) { elapsedTime = duration; }
return distance * Mathf.Pow(2, 10 * (elapsedTime / duration - 1)) + start;
}
/**
* exponential easing out - decelerating to zero velocity
*/
static float EaseOutExpo(float start, float distance, float elapsedTime, float duration)
{
// clamp elapsedTime to be <= duration
if (elapsedTime > duration) { elapsedTime = duration; }
return distance * (-Mathf.Pow(2, -10 * elapsedTime / duration) + 1) + start;
}
/**
* exponential easing in/out - accelerating until halfway, then decelerating
*/
static float EaseInOutExpo(float start, float distance, float elapsedTime, float duration)
{
// clamp elapsedTime so that it cannot be greater than duration
elapsedTime = (elapsedTime > duration) ? 2.0f : elapsedTime / (duration / 2);
if (elapsedTime < 1) return distance / 2 * Mathf.Pow(2, 10 * (elapsedTime - 1)) + start;
elapsedTime--;
return distance / 2 * (-Mathf.Pow(2, -10 * elapsedTime) + 2) + start;
}
/**
* circular easing in - accelerating from zero velocity
*/
static float EaseInCirc(float start, float distance, float elapsedTime, float duration)
{
// clamp elapsedTime so that it cannot be greater than duration
elapsedTime = (elapsedTime > duration) ? 1.0f : elapsedTime / duration;
return -distance * (Mathf.Sqrt(1 - elapsedTime * elapsedTime) - 1) + start;
}
/**
* circular easing out - decelerating to zero velocity
*/
static float EaseOutCirc(float start, float distance, float elapsedTime, float duration)
{
// clamp elapsedTime so that it cannot be greater than duration
elapsedTime = (elapsedTime > duration) ? 1.0f : elapsedTime / duration;
elapsedTime--;
return distance * Mathf.Sqrt(1 - elapsedTime * elapsedTime) + start;
}
/**
* circular easing in/out - acceleration until halfway, then deceleration
*/
static float EaseInOutCirc(float start, float distance, float
elapsedTime, float duration)
{
// clamp elapsedTime so that it cannot be greater than duration
elapsedTime = (elapsedTime > duration) ? 2.0f : elapsedTime / (duration / 2);
if (elapsedTime < 1) return -distance / 2 * (Mathf.Sqrt(1 - elapsedTime * elapsedTime) - 1) + start;
elapsedTime -= 2;
return distance / 2 * (Mathf.Sqrt(1 - elapsedTime * elapsedTime) + 1) + start;
}
}