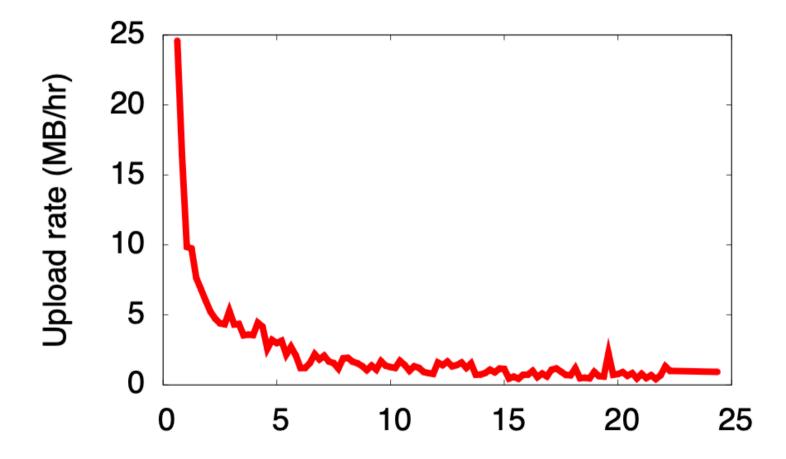
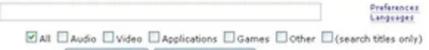
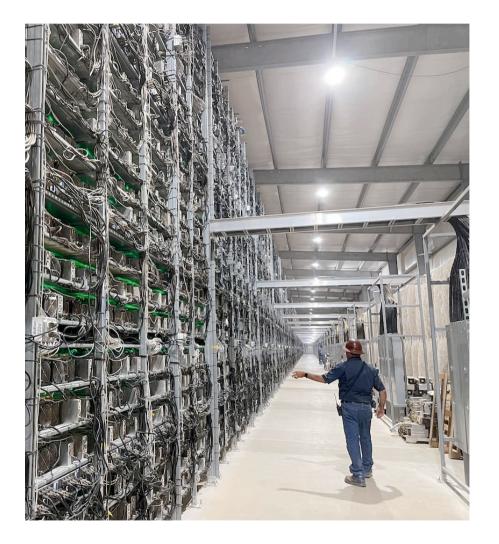

Web3, Tokenomics, and Incentives


Generic model of a distributed system

Blockchain model

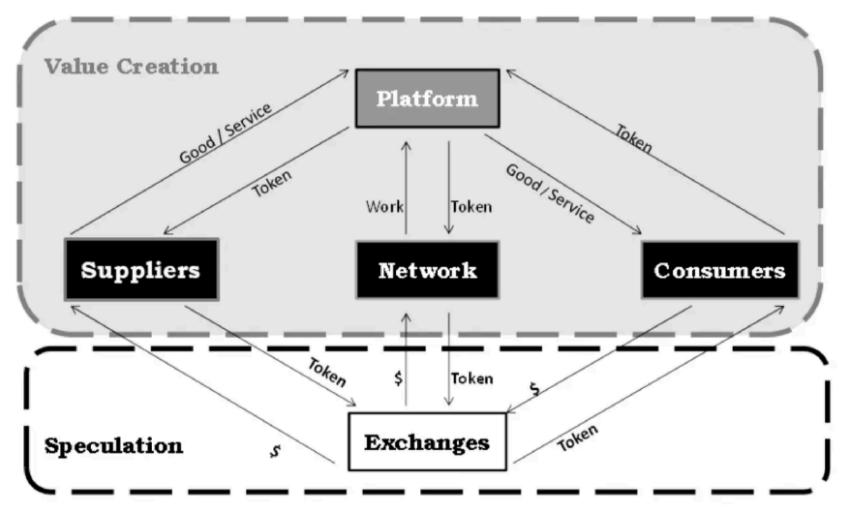
First generation of incentives in P2P Torrents

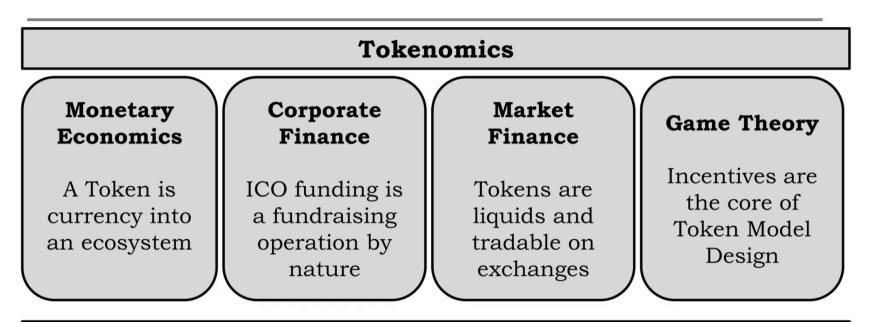



Why incentives mechanisms in torrents fail

- Supposedly: tit-for-tat
- In fact: managed economy by torrent trackers

Search Torrents | Browse Torrents | Recent Torrents | TV shows | Music | Top 100




Blockchains

- Scalable incentives
- Incentives engineering
- Decentralised economy

Tokenomics

Definition - study of incentiveization in blockchains

Token possible features:

- > Medium of exchange (for goods & services)
- Unit of account (economic metrics inside the Token Ecosystem)
- Store of value (saving & investment)

- Game theoretical analysis describes some aspects of Bitcoin mechanisms (To a degree)
- Behaviour of human participants in blockchain system is constrained by the rules of the protocol

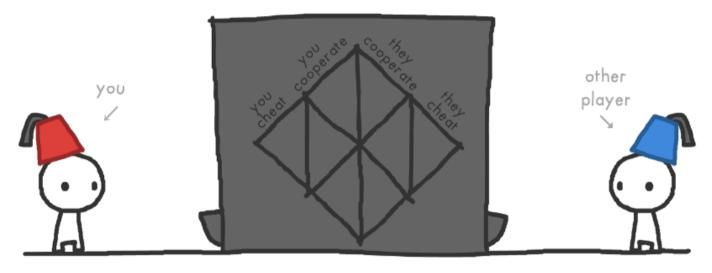
"The incentive may help encourage nodes to stay honest. If a greedy attacker is able to assemble more CPU power than all the honest nodes, he would have to choose between using it to defraud people by stealing back his payments, or using it to generate new coins. He ought to find it more profitable to play by the rules, such rules that favour him with more new coins than everyone else combined, than to undermine the system and the validity of his own wealth."

S. Nakamoto

Bitcoin desirable properties

Eventual consistency. At any time, all compliant nodes agree upon a prefix of what will become the eventual "true" blockchain.

Exponential convergence. The probability of a fork of depth n is O(2-n). This gives users high confidence that a simple "k confirmations" rule will ensure their transactions are settled permanently.


Liveness. New blocks will continue to be added and valid transactions with appropriate fees will be included in the blockchain within a reasonable amount of time.

Correctness. All blocks in the chain with the most cumulative proof of work will only include valid transactions.

Fairness. A miner with X% of the network's total computational power will mine approximately X% of blocks.

THE GAME OF TRUST

You have one choice. In front of you is a machine: if you put a coin in the machine, the *other player* gets three coins – and vice versa. You both can either choose to COOPERATE (put in coin), or CHEAT (don't put in coin).

Let's say the other player cheats, and doesn't put in a coin. What should you do?

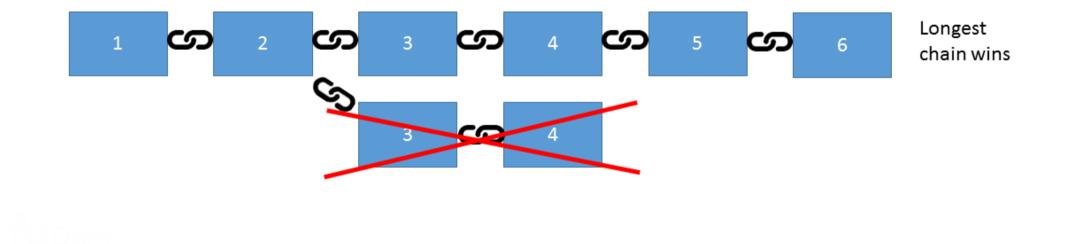
https://ncase.me/trust/

Game theory in Bitcoin

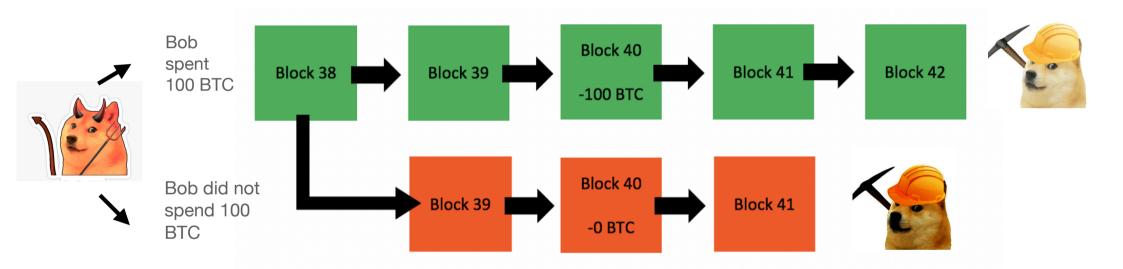
Bitcoin incentives model

To provide a means for trusted coordination, Blockchains need to provide **incentives**:

- (1) for the validators to operate the system (over the alternatives of doing other things, free riding, or misbehaving);
- (2) and for users to choose to use the system (over other alternatives of using other systems).

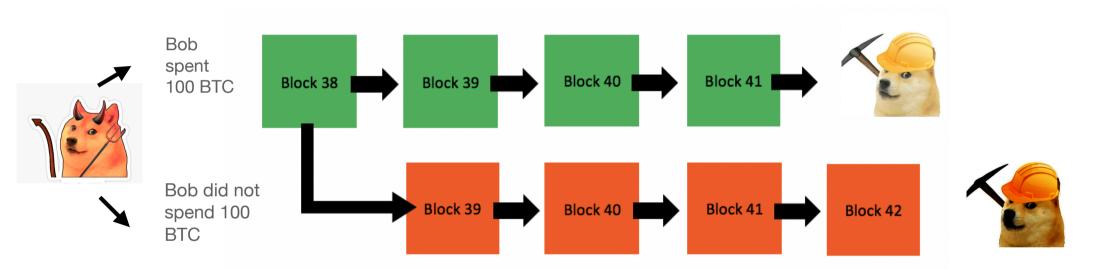

Bitcoin incentives model

Let's consider two types of dishonest behaviour:

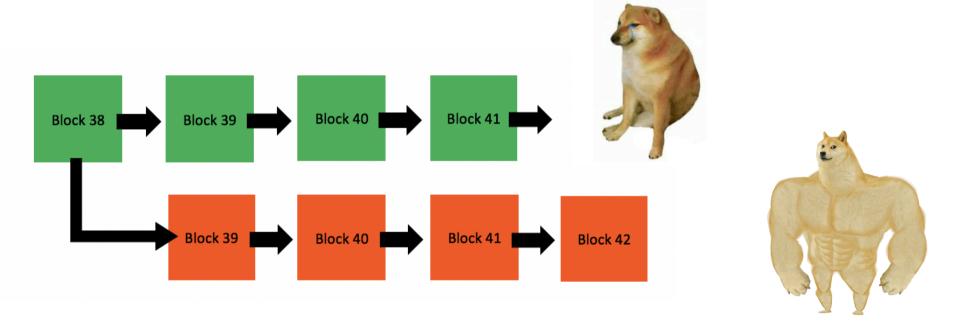

- 1) Double-spend attack (client-miner collusion)
- 2) Selfish mining (miners collusion)

Longest chain rule

- What if two miners find the same block at (roughly) the same time?
- Now, different miners will build upon different blocks
- Selection rule by miners: **longest chains wins**



Double-spending attack


1) The valid chain is being extended by honest nodes as green blocks and fraudulent branch is secretly mined by an attacker

Double-spending attack

2) The attacker succeeds in making the fraudulent chain longer as specified in red blocks

Double-spending attack

> 50 % hash power

3) Attackers branch is published and is considered valid

Double spend 51 % attack prevention

- The security of Bitcoin against the reversal of payments (so-called double spending attacks) relies on having more computational power held by honest nodes than by misbehaving nodes.
- Miners' rewards incentivize more honest participants to invest additional computational resources in mining, and thus support the security of Bitcoin.

Bitcoin security

Theorem 1 (informal). As long as the attacker holds less than 50% of the computational power, and all honest nodes can communicate quickly (compared to the expected time for block creation), the probability of a transaction being reversed decreases exponentially with the number of confirmations it has received.

PoW 51% Attack Cost

This is a collection of coins and the theoretical cost of a 51% attack on each

network.

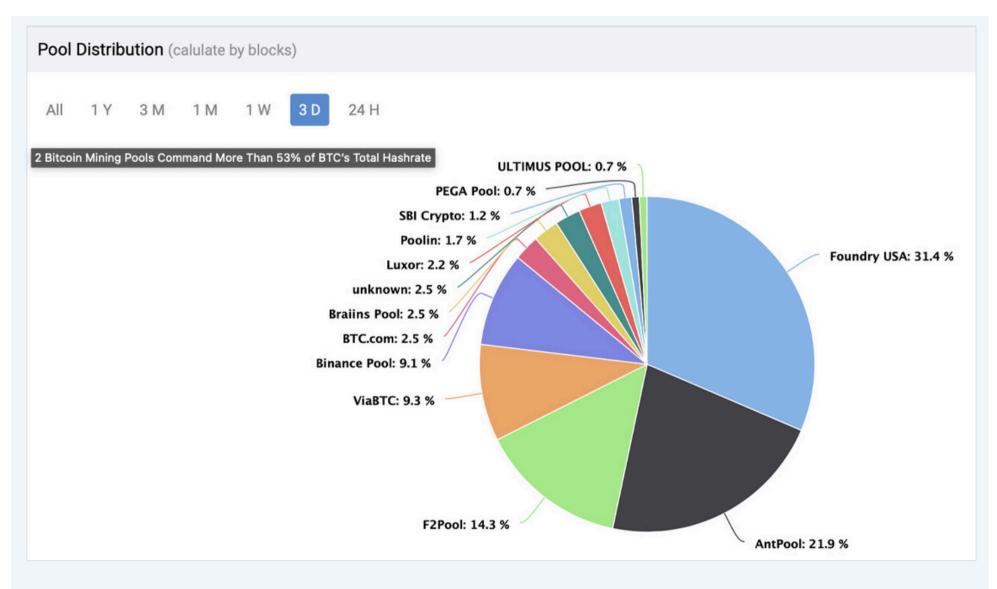
Learn More

Name	Symbol	Market Cap	Algorithm	Hash Rate	1h Attack Cost	NiceHash-able
Bitcoin	BTC	\$452.27 B	SHA-256	362,578 PH/s	\$1,109,637	0%
Litecoin	LTC	\$6.97 B	Scrypt	659 TH/s	\$65,950	8%
EthereumClassic	ETC	\$2.91 B	Etchash	118 TH/s	\$13,236	3%
BitcoinCash	BCH	\$2.56 B	SHA-256	1,772 PH/s	\$5,423	9%
BitcoinSV	BSV	\$815.86 M	SHA-256	551 PH/s	\$1,686	30%
Dash	DASH	\$811.45 M	X11	2 PH/s	\$1,538	7%
Zcash	ZEC	\$711.54 M	Equihash	10 GH/s	\$5,587	11%
Conflux	CFX	\$577.85 M	Octopus	7 TH/s	\$1,554	10%
EthereumPoW	ETHW	\$397.45 M	Ethash	15 TH/s	\$1,949	18%
Ravencoin	RVN	\$358.67 M	KawPow	9 TH/s	\$4,703	19%
BitcoinGold	BTG	\$295.05 M	Zhash	4 MH/s	\$622	20%

https://www.crypto51.app/

Successful attacks

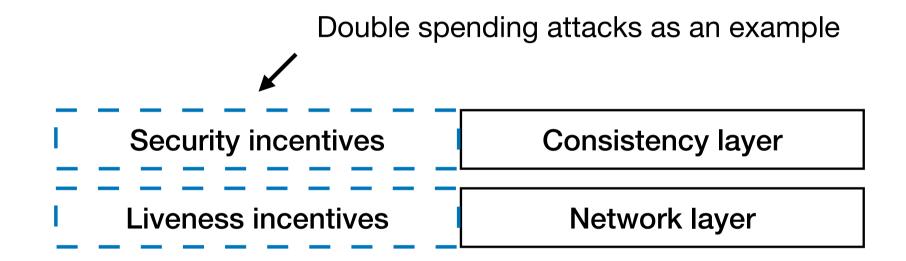
Reorg = malicious hard fork


Since June 2019, over 40 reorgs that were 6 or more blocks deep on coins such as BTG, HANA, VTC, XVG, EXP and LCC. <u>https://dci.mit.edu/51-attacks</u>

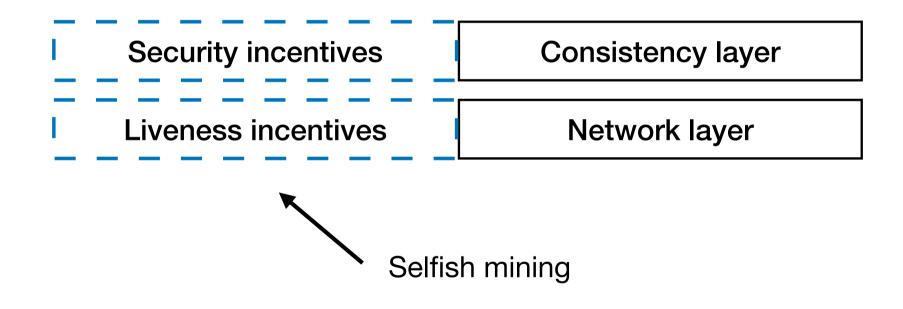
Why is it not practical with Bitcoin?

The 51% hashing power is more than 511,111 of the most powerful ASIC miners, which have a hashrate per unit of 255 TH/s and cost more than \$10 billion in equipment only.

(As of Sep. 22, 2022)

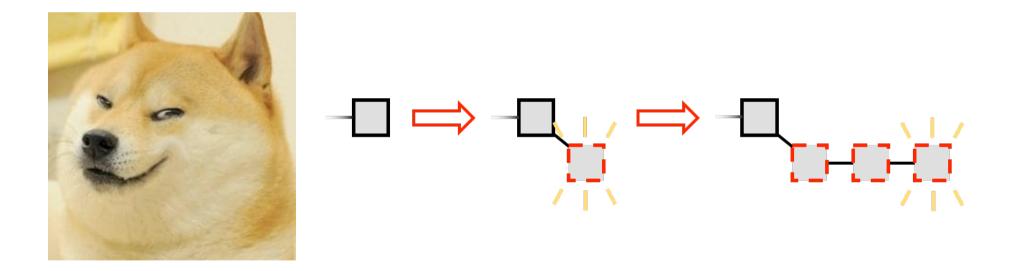

Bitcoin Pool Distribution records on Dec. 29, 2022. (3-day stats)

https://github.com/TheBlueMatt/bips/blob/ master/bip-XXXX.mediawiki The probability of a successful attack on an arbitrary block, given the attacker's hashrate (α) and the number of confirmations the acceptance policy waits for (conf).


$\alpha \setminus conf$	1	2	3	4	5	6	7	8	9	10
2%	0.24%	0.02%	$\approx 0\%$							
6%	2.16%	0.42%	0.09%	0.02%	$\approx 0\%$					
10%	5.98%	1.85%	0.60%	0.20%	0.07%	0.03%	$\approx 0\%$	$\approx 0\%$	$\approx 0\%$	$\approx 0\%$
14%	11.66%	4.88%	2.11%	0.93%	0.42%	0.19%	0.09%	0.04%	0.02%	$\approx 0\%$
18%	19.13%	9.94%	5.32%	2.90%	1.60%	0.89%	0.50%	0.28%	0.16%	0.09%
22%	28.27%	17.33%	10.89%	6.95%	4.48%	2.91%	1.91%	1.25%	0.83%	0.55%
26%	38.90%	27.17%	19.36%	13.97%	10.17%	7.45%	5.49%	4.06%	3.01%	2.23%
30%	50.70%	39.33%	30.98%	24.64%	19.73%	15.88%	12.84%	10.41%	8.46%	6.89%
34%	63.23%	53.37%	45.55%	39.14%	33.81%	29.31%	25.49%	22.21%	19.39%	16.95%
38%	75.80%	68.45%	62.25%	56.85%	52.09%	47.85%	44.03%	40.58%	37.45%	34.56%
42%	87.35%	83.09%	79.31%	75.86%	72.68%	69.72%	66.95%	64.33%	61.83%	59.44%
46%	96.26%	94.88%	93.61%	92.41%	91.27%	90.17%	89.10%	88.05%	86.99%	85.82%
48%	98.98%	98.59%	98.23%	97.88%	97.54%	97.21%	96.88%	96.54%	96.15%	95.60%
50%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

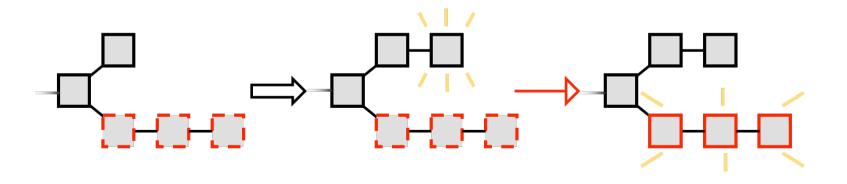
Sompolinsky, Yonatan, and Aviv Zohar. "Bitcoin's security model revisited." arXiv preprint arXiv:1605.09193 (2016).

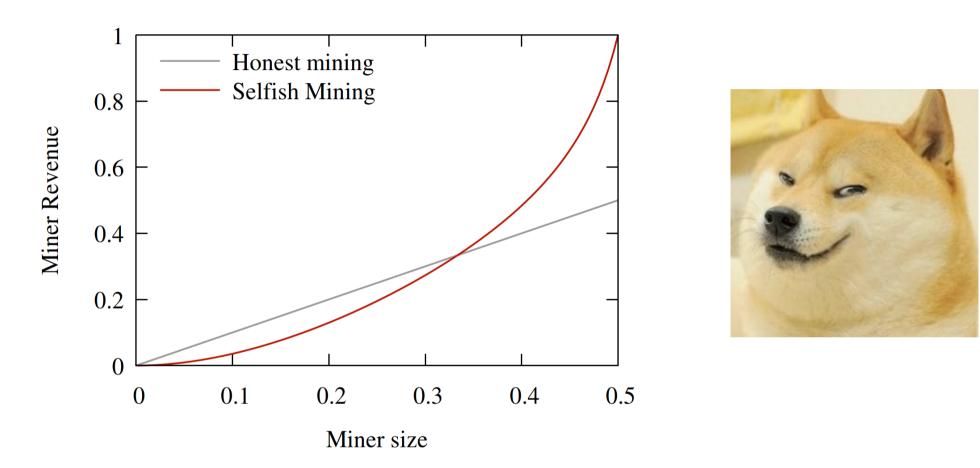
Attacks at different layers



Attacks at different layers

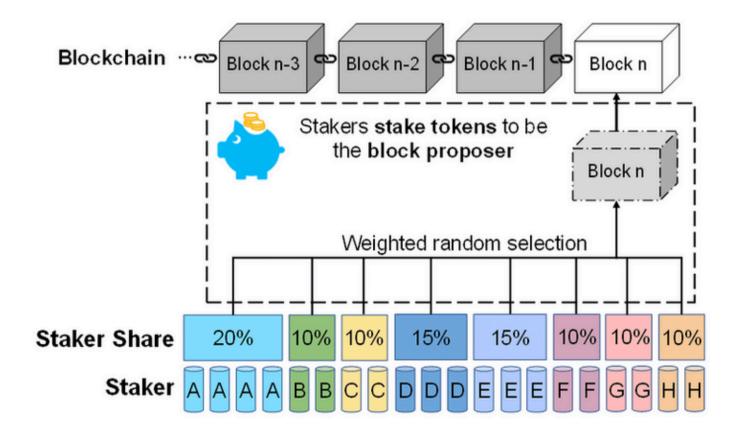
Selfish mining


1) Selfish miner doesn't publish the block generated and keeps it secret from others, and then tries to extend it further, forming a **secret branch**.



Selfish mining

2) The selfish miner keeps extending his chain, which reaches a point where it is longer than the public chain.


3) the attacker creates a deliberate fork, and (sometimes) manages to force the honest network to abandon and discard some of its blocks.

A selfish miner larger than 1/3 of the mining power would increase revenue by deviating from the prescribed protocol

Incentives in Proof of Stake (Pos)

Ethereum PoS

Slashing conditions

- By proposing and signing two different blocks for the same slot
- By attesting to a block that "surrounds" another one (effectively changing history)
- •By "double voting" by attesting to two candidates for the same block

Ethereum 2.0 slashing

BeaconScan A product of Etherscan	BlockChain ~	Validators ~	Charts & Stats 🗸	More ~	Login
➢ Validators that were slashed			Но	ome / Validate	ors that were Slashed

(i) A validator that is caught acting "maliciously" will be slashed, penalized and eventually forced into an "exited" state

Showing 1 to 10 of 228 validators found Search for Validator Index						
EPOCH	∱↓ SLOT	†↓ AGE	SLASHED VALIDATOR	$\uparrow \downarrow$ SLASHED BY	↑↓ REASON	
185102	5923276	3 days 12 hrs ago	260740	은 156815	Attestation rule offense	
183110	5859550	12 days 8 hrs ago	圣 481060	음 378482	Attestation rule offense	
183110	5859550	12 days 8 hrs ago	圣 481064	<u>ළ 378482</u>	Attestation rule offense	
182778	5848899	13 days 20 hrs ago	275274	<u> </u>	Attestation rule offense	

	Date Launched	Downtime Slashing	Penalty	Double Sign Slashing	Penalty	Punishes Delegators
৸	2017	No	512 XTZ	Yes	8,000 XTZ	No
🔶 ethereum	2019	Yes	-	Yes	>3.13%	No
icơn	2016	Yes, if>15%	6%	No	0	Yes
сøѕмоѕ	2016	Yes, after ~16h	0.01%	Yes	5%	Yes
🕂 Harmony	2018	Yes, after ~12h	0.01%	Yes	>2%	Yes
Polkadot.	2017	Yes, if >10%	7%	Yes	1-100%	Yes

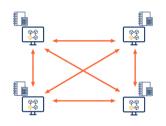
Problems with incentives in PoS

Nothing at stake problem

- •Censorship resistance
- Incentive for re-centralization

Part 2

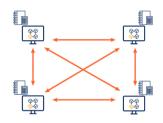
What is Web 3?


Tokens for various types of systems

Application	ZN UNISWAP	
Software	DAppNode	INSTA()APP
Presentation	C ENS	ERC20 🔶
Processing	💭 0x	Contempolygon (MATIC) crypto
Information	C the graph	🗲 Filecoin
Network		API3
Data Link	ΒΙΤΜΛΙΝ	
Physical	Ø helium	🗱 FOAM

Current web

Current web


Peer to Peer

Client-Server architectures

Current web

Peer to Peer

Client-Server architectures


Permissionless

Identity based

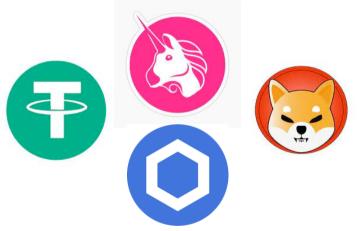
Current web

Peer to Peer

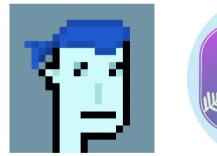
Client-Server architectures

Permissionless

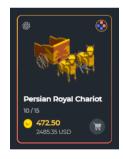
Identity based


Protocol value captured by users

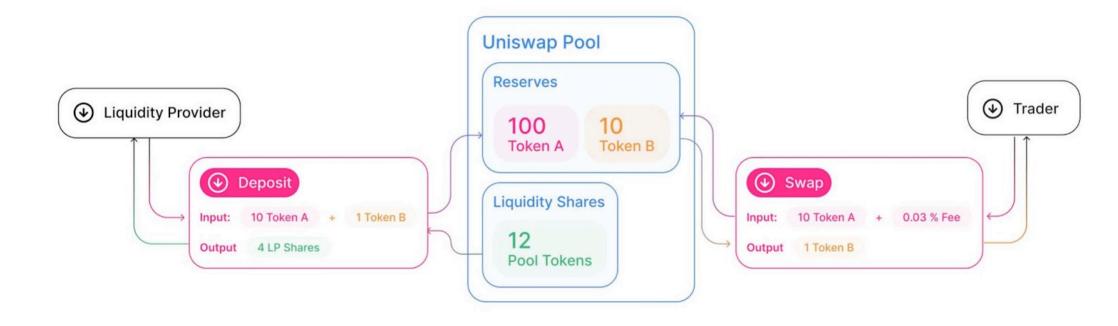
Platforms capture all value

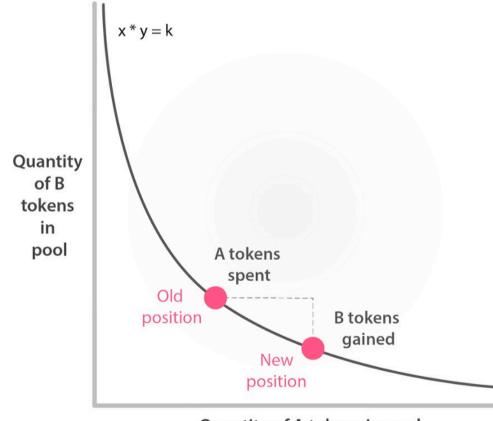

Some examples of tokens on ETH

- ERC20 smart contract standard for *fungible tokens*, that can represent different things:
 - Currency
 - Voting rights
 - Deed of ownership and etc.

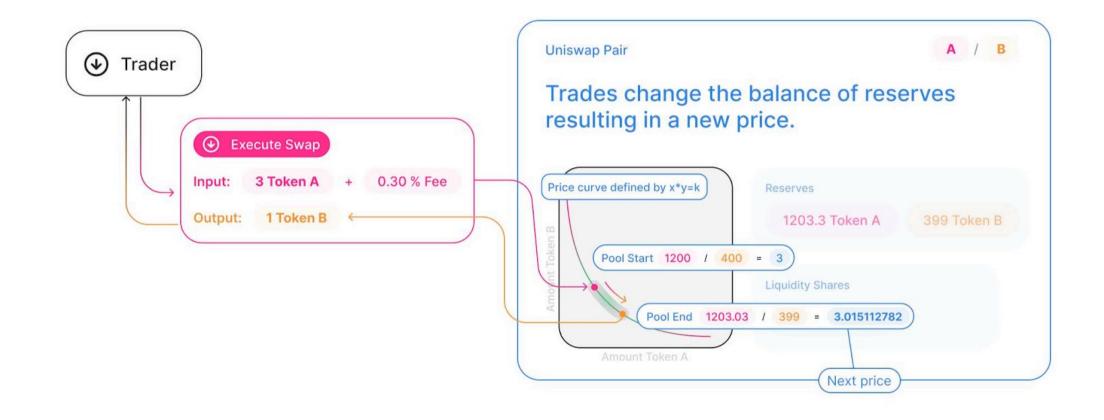


Some examples of tokens on ETH


- ERC721 smart contract standard for *non-fungible tokens*, that can represent:
 - Collectibles
 - Credentials
 - Loans
 - In-game items



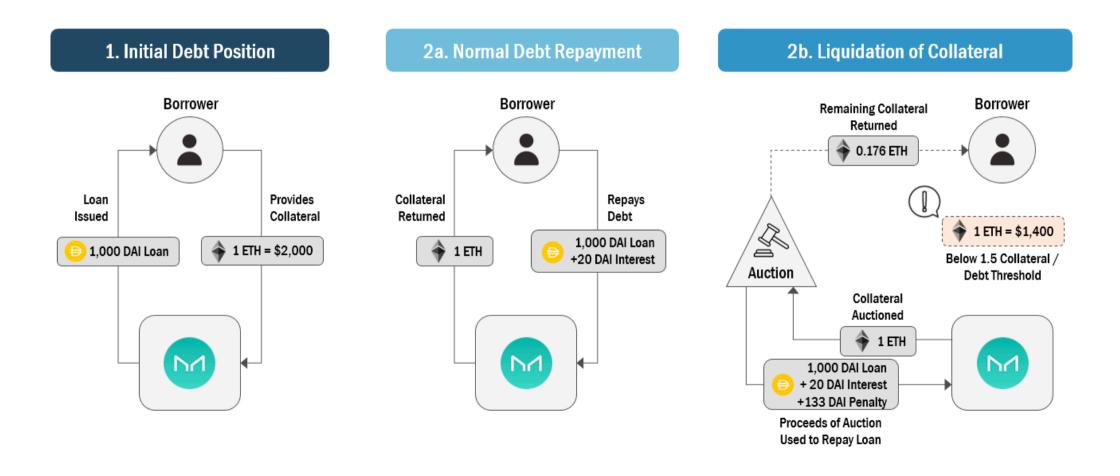
Decentralised Exchange


• Liquidity providers accrue fees from swaps (0.30% fee in uniswap V2)

Automated Market Maker

Quantity of A tokens in pool

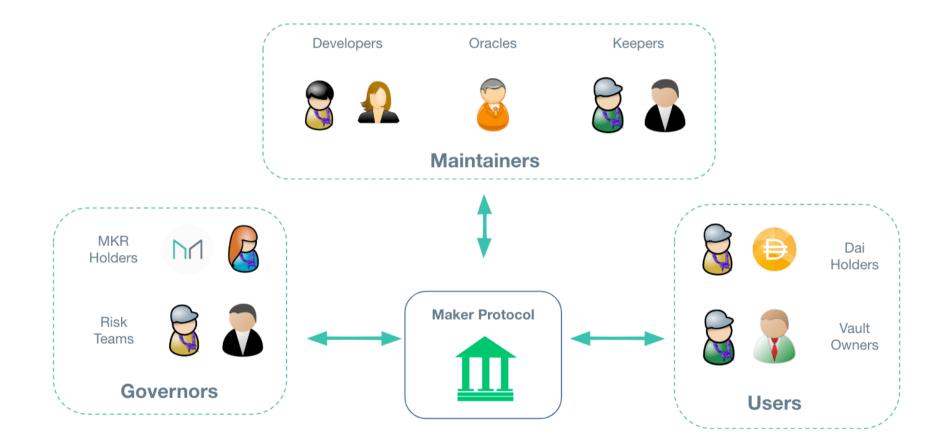
Uniswap flow



Lending protocols

- DAI Stablecoin pegged to USD
- Users generate DAI by locking cryptocurrency in a Maker Vault
- To get crypto collateral back, repay user repay the withdrawn DAI.

Maker protocol flow


Decentralized Autonomous Organisation

DAO - can be understood as an organisation that operates on the basis of the collective input of its stakeholders, according to the rules encoded in its blockchain.

 Functioning without any central point of control (decentralised),

• Not dependent on any external regulatory structures (autonomous).

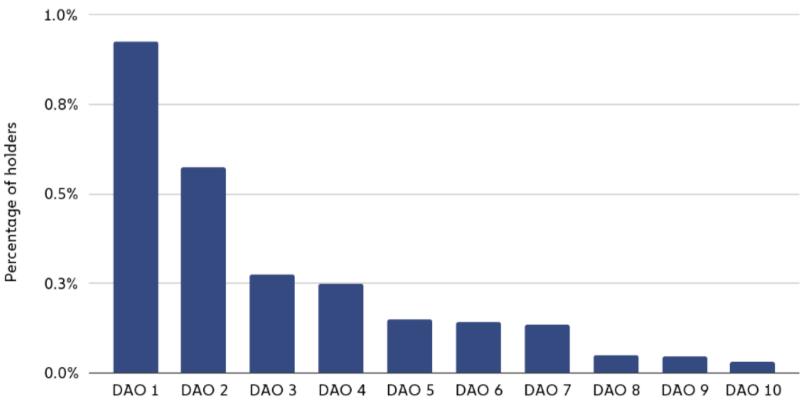
Adding governance tokens we get Maker DAO

rank	organization	treasury \$	å last * 24hrs	top treasury tokens	▲ main treasury ★ chain	token holders	lifetime participants	<pre> proposals </pre>	≑ votes
1	Stargate Finance	\$377.8M	↗ 0.0%	© © © 0 © © ©		🔔 19.3k	🔔 169.1k	39	✓ 1.3M
2	C ENS	\$1.1B	≥ -0.3%	🔇 🗊 🌀 💬 🥙	٢	& 60.5k	87.5 k	60	M 112k
3	GMX	n/a	↗ 0.0%	n/a	n/a	2 0	2 73.7k	16	✓ 188.9k
4	🗑 Arbitrum One	\$3.3M	7 0.1%		٢	& 0	🔔 65.4k	14	✓ 582.2k
5	😬 PancakeSwap	\$19.3k	7 4.6%			2 66.9k	👗 52.9k	4.3k	✓ 704.9k
6	Aave	\$124.2M	7 1.8%	▲ () () ()	٢	🔔 155.5k	🔔 47.9k	248	✓ 509.9k
7	당 Wonderland	\$96.6M	7 0.2%		1	£ 52.3k	38.8 k	86	✓ 86.3k
8	Uniswap	\$2.7B	≥ -0.2%	💐 🐼 可 🗢 🕲	٢	🔔 361.5k	27.2k	122	✓ 198.7k
9	Vesta Finance	\$34.1M	≥ -4.7%	> () () () () () () () () () () () () ()	1	252.7 k	24.5k	8	✓ 35.1k
10	Contract Treasure	\$3.6M	7 6.5%	м 🖬 🖬 🖬	1	2 331.2k	21.3k	35	67.4 k

https://deepdao.io/organizations

Limits of simple tokenomics

Dichotomy of current tokenomics



Bounded rationality

- Token voting is suboptimal
- Incentives are exploited
- Hierarchical modes
 of organization

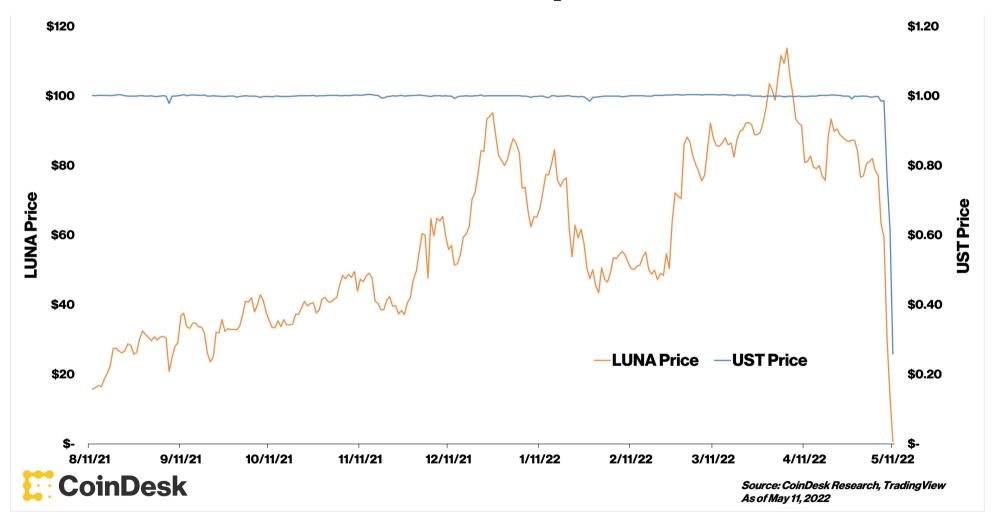
Token voting

Share of users holding 90% of all governance tokens by DAO

© Chainalysis

Governance

Mango markets exploit


- 1. Buy Mango MNGO tokens
- 2. Pump the price of the Mango MNGO token (thanks to low liquidity)
- 3. Borrow \$116 million against these unrealised profits from Mango protocol
- 4. Withdraw all funds from Mango Markets.

Luna alogrthmic stablecoin

Luna collapse

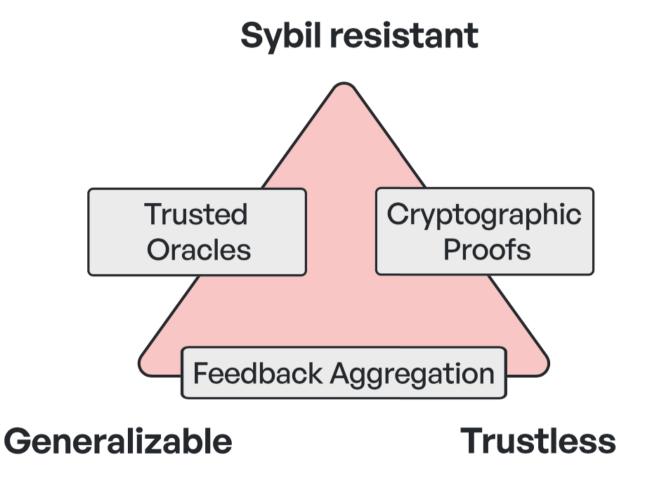
Different types of incentives in P2P

Reciprocity (tit for tat)

Social acknowledgment

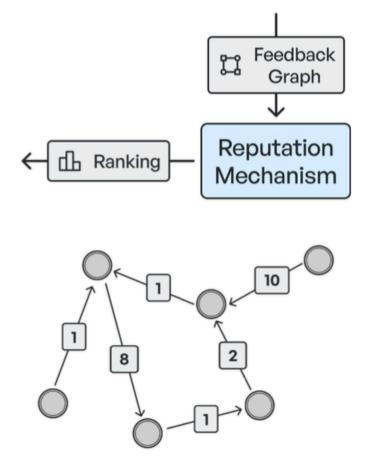
Protocol-level reputation

Reputation is also a highly-effective multitool

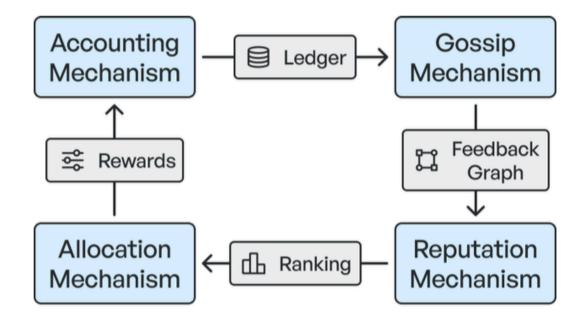


in PoS

in DAO


Reputation-based network overlay

Decentralised reputaiton trilemma



Meritrank feedback graph reputation

- Sybil-tolerant reputation algorithm
- Does not require strong identity (permissionless)
- Allows context-specific reputation

Reputation in Merit-Based Tokenomics Context

