
1

ASCI Blockchain 2024

Blockchain consensus

Jérémie Decouchant

j.decouchant@tudelft.nl

2023-2024

Consensus in blockchains

2

…

Summary

3

Liveness

4

Block 20 Block 21 Block 22 Block 23

All transactions are eventually processed.

Safety: Case 1

5

Block 20 Block 21 Block 22

-1337 mBTC

to Alice

-1337

mBTC

Block 23

to

Alice

-1337 mBTC

to Bob

A correct user never executes conflicting transactions.

Safety: Case 2

6

Block 20 Block 21 Block 22

-1337 mBTC

to Alice

-1337

mBTC
Block 21 Block 22 Block 23

to

Alice

-1337 mBTC

to Bob

Two correct users never executes conflicting transactions.

7

From consensus to

agreement

7

Network

▪ A distributed system runs on top of a graph:

▪ A vertex hosts a process that can do local computations

▪ An edge is a communication channel where processes can send and receive messages

(generally bidirectional)

▪ Synchrony model: synchronous, partially-synchronous, or asynchronous (more on that later)

▪ The network is often assumed to be connected sufficiently often

▪ Any two processes can eventually communicate

▪ Messages can be lost, delayed or tampered with

N.B.: we generally use node, process and host indistinctively

𝑝0 𝑝1

𝑝2

𝑝3

Nodes
▪ The system consists of honest nodes and of a limited proportion of faulty nodes.

▪ Correct nodes always follow a specified protocol

▪ Byzantine nodes can deviate arbitrarily from a protocol

▪ due to hardware or software faults

▪ or because of a malicious adversary

▪ Consensus algorithms sometimes assume that nodes might crash

▪ In consensus algorithms, we often focus on:

▪ Omission faults: not sending a message

▪ Equivocation: sending conflicting messages to different nodes

9

Elementary fault classes

10

Basic Concepts and Taxonomy of Dependable and Secure Computing.

Avizienis, Laprie, Randell and Landwehr, IEEE TDSC, 2004

Tree representation of fault classes

11

Basic Concepts and Taxonomy of Dependable and Secure Computing.

Avizienis, Laprie, Randell and Landwehr, IEEE TDSC, 2004

Malicious faults

12

Basic Concepts and Taxonomy of Dependable and Secure Computing.

Avizienis, Laprie, Randell and Landwehr, IEEE TDSC, 2004

Cryptographic assumptions

• Consensus algorithms have first been designed assuming authenticated links

• i.e., a message received on a link has been sent by its announced sender

• does not make assumption on the computational power of an adversary

• Hardest settings: more complicated and less efficient solutions

• We consider that processes have access to:

• An asymmetric encryption scheme

• A signature scheme

• A hash function

13

From permissioned to permissionless, and back

Permissioned

▪ Closed membership

▪ Deterministic finality

▪ Requires attacking 33%

▪ High performance, but low scalability

14

Permissionless

▪ Open membership

▪ High transparency

▪ Requires attacking 51%

▪ Probabilistic finality

▪ Low performance, but high scalability

The first consensus algorithms were permissioned: a fix group of nodes run a protocol.

Hyperledger

▪ Lead by IBM, supported by > 300 organizations

▪ Five major projects

▪ Fabric – PBFT

▪ Burrow

▪ Sawtooth

▪ Indy

▪ Iroha - BChain

Formal definition of consensus

▪ A distributed computing abstraction with two functions: propose(v) and decide()

▪ Each process has an initial value that it proposes from some set V.

▪ All correct processes must decide a single value.

▪ Termination: every correct process eventually decides some value

▪ Validity: If a process decides v, then v was proposed by some process.

▪ Integrity: No process decides twice.

▪ Agreement: No two correct processes decide differently.

16

Termination and Agreement are the

difficult ones

The FLP Impossibility

▪ Fischer, Michael J., Nancy A. Lynch, and Michael S. Paterson.
"Impossibility of distributed consensus with one faulty process." Journal
of the ACM (JACM) 32.2 (1985): 374-382.

▪ Fundamental result: there is no deterministic algorithm for solving
consensus in asynchronous networks with at least one process that might
crash.

▪ Algorithms have to circumvent this impossibility. How?

1. Assume that the network will be synchronous at some point

2. Use randomized algorithms

Understanding FLP

▪ Solving consensus becomes difficult when the network has periods of
asynchrony, or when processes are Byzantine A

▪ Blockchains have to deal with both!

18

Seminal consensus algorithms
▪ Synchronous network and crash faults:

▪ Trivial solution

▪ Synchronous network and Byzantine faults:

▪ Lamport’s OM and SM protocols: N > f, 𝑂(𝑁𝑓+1) messages, f+1 latency

▪ Asynchronous network and Byzantine faults:

▪ Ben-Or’s randomized protocol: N > 3f+1, 𝑂(𝑛2. 2𝑁) messages, 𝑂(2𝑁) latency

▪ Those protocols are very heavy. In practice, permissioned blockchains assume a
partially synchronous model:

▪ Maintain safety during asynchrony: N > 3f+1

▪ Ensure liveness during synchrony

22

23

C

L1 L2

v1

…

…

OM(f)

OM(f-1)

…

…

here Li decides on its own v’1

as a lieutenant of L1

vi

Li

v2
vn-1

Li receives vi immediately
from the commander

Ln-1

Ln-1LiL2

Global message pattern
in the system

degree in this tree is reduced by 1
in every next level

OM: Byz. Agreement in the Unauthenticated and Sync. Model

24

Randomized Byzantine agreement
r=1; decided:=false
do forever

broadcast(N,r,v)
await (n-f) messages of the form (N,r,*)
if (>(n+f)/2 messages (N,r,w), w=0,1) then /* enough support for a */

broadcast(P,r,w) /* specific proposal 0 or 1 */
else broadcast(P,r,?) /* otherwise no proposal (don’t know) */
if decided then STOP
else await (n-f) messages of the form (P,r,*)
if (>f messages (P,r,w), w=0,1) then

v:=w
if (>3f messages (P,r,w)) then

decide(w)
decided:=true

else v:=random(0,1)
r:=r+1

notification phase

proposal
phase

decision
phase

notification
phase

25

Number of replicas in the asynchronous model

Not all replies might arrive in a bounded amount of time

– Worst case: (N-f) values

Among those replies, f might be incorrect (Byzantine)

– Worst case: (N-f) – f equal answers

To be convinced that those answers are the right ones, we need

(N-f)-f > f.

f Byzantine

N replicas

ByzantineCorrect Missing replies

N

𝑁 ≥ 3𝑓 + 1

N-f

N-2f f

26

Q: Byzantine Quorum size

Decide that an object can only have value V
upon receiving Q equal answers.

What value is possible for Q?

There must be at least Q correct replicas
(liveness):

𝑄 ≤ 𝑁 − 𝑓

Any two sets of Q+ replicas must intersect in at
least 1 correct replica (safety):

2𝑄 − (𝑓 + 1) ≥ 𝑁

QQ
f

𝑄 ≥
𝑁 + 𝑓 + 1

2

f Q

Agreement

▪ One node starts with a binary value. Each of the remaining nodes decide a binary value.

▪ Termination: every correct process eventually decides a value

▪ Validity: If the source is correct, then all correct processes agree on the value it proposed.

▪ Agreement: All correct processes agree on the same value

▪ Integrity: No correct process decides twice.

N.B.:

▪ If the source is faulty, the correct processes can agree on any value.

▪ It is irrelevant on what value a faulty process decides.

▪ This problem is also called Terminating Reliable Broadcast.
27

The consensus abstraction assumes that all processes propose a value.

In practice, blockchains implement agreement, a variant of consensus.

Equivalence between consensus and agreement
▪ Assume that we can solve agreement.

▪ For consensus, each node proposes a value

▪ We run an agreement protocol for each node to agree on the value it proposed

▪ We can chose the majority outcome to all agree on a value (consensus)

▪ Assume that we can solve consensus:

▪ For agreement, one node N broadcasts a value.

▪ Nodes can wait a limited amount of time, and propose the value they have received from N
to each other (or a default value otherwise)

▪ Using consensus, we can all agree on the same final value (agreement).

28

29

From agreement to State

Machine Replication

2

9

From agreement to State Machine Replication

▪ With agreement, nodes can agree on a single (binary) value

▪ We need more to build a distributed ledger:

▪ Interaction with clients

▪ Need to agree on a sequence of values and on their order

▪ State Machine Replication is the abstraction that provides this functionality

30

31

State Machine Replication (1/2)

• Fault-free centralized operation

o a single server maintains a state machine

(e.g., a data store)

o clients issue requests to the server

(e.g., reading and writing)

o the server serializes and executes the requests

• In the face of faults or poor performance

o replicate the server: State Machine Replication (SMR)

o have the replicas execute the same client requests in the same order

o so servers have to achieve consensus on the log of client requests

32

State Machine Replication (2/2)
• Potential types of failures:

– stopping / pausing processors

– malicious (due to explicit attacks or hardware/software errors)

• Models are usually assumed to be asynchronous

– sometimes weaker timing assumptions

– may lead to livelock

• Four seminal algorithms:

– Paxos (crash-recover faults)

– Raft (crash-recover faults)

– PBFT (Byzantine faults)

– Zyzzyva (Byzantine faults)

33

From Consistent to Reliable Broadcast

Validity: If a correct process p

broadcasts m then all correct processes

eventually deliver m.

No duplication: Every correct process

delivers a message at most once.

Integrity: If a correct process delivers m

with sender p, then m was broadcast by

p.

Consistency: If a correct process

delivers m and another correct process

delivers m’ then m=m’.

Totality: If m is delivered by a correct
process, then all correct processes
eventually deliver m.

Consistent

Reliable

𝑝0

𝑝1

𝑝2

𝑝3

Send Echo

(2f+1) Readys

✓

✓

✓

✓

Ready

Q Echos ou (f+1) Readys

With consistent broadcast, a
Byzantine sender might
cause only a subset of

correct processes to deliver.

34

Reliable broadcast (𝑁 ≥ 3𝑓 + 1) 𝑝0

𝑝1

𝑝2

𝑝3

Send Echo

(2f+1) Readys

✓

✓

✓

✓

Ready

Q Echos ou (f+1) Readys

Ready
amplication

35

Proof of totality

• If a correct party has r-delivered m, it has received a

READY message with m from 2t+1 distinct parties.

• Therefore, at least t + 1 correct parties have sent a

READY message with m, which will be received by all

correct parties and cause them to send a READY

message as well.

• Because n − t ≥ 2t + 1, all correct parties eventually

receive enough READY messages to terminate.

36

Total order broadcast: reliable broadcast + total order

Validity: If a correct process p broadcasts m then all correct processes
eventually deliver m.

No duplication: Every correct process delivers a message at most
once.

Integrity: If a correct process delivers m with sender p, then m was
broadcast by p.

Agreement: If a message m is delivered by some correct process, then
m is eventually delivered by all correct process.

Total order: Suppose that p and q are two correct processes that
deliver m1 and m2. If p delivers m1 before m2, then q delivers m1
before m2.

37

TOB Broadcast is equivalent to Consensus

• Total-order Byzantine broadcast is also equivalent to Byzantine

consensus.

38

PBFT (1/5): assumptions

• Handle Byzantine node failures of replicas

• Adversary cannot break collision-resistant hashes, encryption, signatures

• Clients may also be faulty

• Use message digests and signatures

• Provide safety: linearizability (does not depend on synchrony)

• Provide liveness: assume weak synchrony:

- message delays grow at most linearly with time

- system is synchronous for periods of time

39

PBFT (2/5): views and data

• At every moment, there is a view

– one replica is the primary

– the other replicas are backups

– view number v has primary p = v mod n (predetermined)

– when the primary supposedly fails, change view

• Replica data structures
– state machine

– view number

– message log

– checkpoints

40

PBFT (3/5): similarities

• Algorithm structure

– agreement protocol

– checkpoint protocol

– view-change protocol

• Checkpoints

– maintain history

– stable checkpoints: truncate history

41

PBFT (4/5): differences
• PBFT:

– achieves consensus on request order with a 3-phase protocol among

replicas

– “a correct server only emits replies that are stable”

• Speculative protocols (Zyzzyva, and others):

– faster speculative execution with larger burden on the clients

– “a correct client only acts on replies that are stable”

42

PBFT (1/8): outline

1. Client sends request to the primary (with logical time stamp)

2. Primary assigns sequence number and broadcasts request to backups

3. Replicas execute the request and reply to the client

4. Client waits for f+1 replies with the same result

…

Primary (of view v)client

backups

request

(request,v,n)replies

43

PBFT (2/8): normal operation
• Normal operation = primary does not fail

• Three-phase protocol (three types of messages):

– pre-prepare + prepare phases: totally order requests in the same view

– prepare + commit phases: totally order requests across views

• All three types of messages contain a view number and a request number

sender(s): client primary backups replicas replicas

44

PBFT (3/8): accepting a pre-prepare
• A backup accepts a pre-prepare message if:

– it is in the same view

– it has not accepted a pre-prepare with the same view and sequence number

• It then enters the prepare phase and broadcasts a prepare message

• The predicate prepared(m,v,n,i) is true if replica i has entered into its
message log:

– the request

– the corresponding pre-prepare message

– 2f corresponding prepare message from other backups (Byz quorum)

• Assertion: if prepared(m,v,n,i) is true for a correct replica i, then
prepared(m’,v,n,j) is false for any m≠m’ and any correct j

unique request in same view with same sequence number across replicas

45

PBFT (4/8): commit
• When prepared(m,v,n,i) is true, replica i broadcasts a commit message

• Predicate committed(m,v,n) is true if prepared(m,v,n,i) is true in
at least f+1 correct replicas

• Predicate committed-local(m,v,n,i) is true if prepared(m,v,n,i) is true and
replica i has accepted 2f+1 commit messages (then it executes the request)

• Assertion: if committed-local(m,v,n,i) is true in some correct replica i,
then committed(m,v,n) is true

• Consequences:

– correct replicas agree on the sequence numbers of requests even if they
commit locally in different views

– a request that commits locally at a correct replica, does so in at least
f+1 correct replicas (any Byz. quorum intersects with this set)

46

PBFT (5/8): checkpoints
• Checkpoint:

– state after the execution of a fixed multiple of K requests

• Stable checkpoint:

– a checkpoint with a “proof”

• Replicas broadcast checkpoint messages with the sequence number of the
last request represented in the checkpoint plus the digest of the state

• Proof of correctness of a checkpoint:

– 2f+1 matching checkpoint messages

• Upon a checkpoint becoming stable, discard history:

– discard previous checkpoints and checkpoint messages

– discard all messages related to earlier requests

47

PBFT (6/8): overview of view change

• If a client does not receive f+1 identical replies soon enough,

it broadcasts its request to all replicas

• A replica then

– re-sends its reply to the client, if it has already processed the request

– otherwise it sends the request to the primary

• If the primary then does not broadcast the request to the backups,

it is suspected of failure by the replicas

• The backups then initiate a view change

• The new view is announced by the new primary

48

PBFT (7/8): view change
• When in view v the timer of a backup expires, it broadcasts a

view-change message with parameters:

– the new view number v+1

– the sequence number n of the last stable checkpoint s it knows

– a set of 2f+1 checkpoint messages proving the correctness of s

– for every request prepared at the backup with request number higher than
n, the corresponding pre-prepare message and 2f prepare messages
(“the message log after the last stable checkpoint”)

s (n)

stable checkpoints potentially unstable checkpoints

49

PBFT (8/8): new view
• When the primary of view v+1 receives 2f view-change messages,

it broadcasts a new-view message with parameters:

– the new view number v+1

– the set of view-change messages it has received

– a set of pre-prepare messages derived from the view-change messages
received to cause requests that may be missing at some replicas to be
executed

• The primary then enters view v+1

• When a backup receives a new-view message, it catches up:

– it derives from the pre-prepare messages in it and from its own
message log on which of these messages it still has to act

– it may have to retrieve requests or checkpoints from other replicas

Optimizing PBFT

▪ Use MAC instead of signatures

▪ Batch requests

▪ Use weighted voting (PoS?)

▪ Etc.

▪ But the message pattern is what is really limiting performance.

Wheat [Sousa and Bessani, SRDS 2015]

▪ 𝑁 = 3𝑓 + 1 + ∆ : number of nodes

▪ 𝑁𝑣 = σ𝑉𝑖 = 3𝐹𝑣 + 1 : sum of all the votes, 𝐹𝑣 votes can be discarded

▪ 𝑄𝑣 = 2𝐹𝑣 + 1: quorum weight

▪ Binary weight distribution: either 𝑉𝑚𝑎𝑥 (for 𝑢 fast nodes) or 𝑉𝑚𝑖𝑛

▪ 𝑁𝑣 = uVmax + N − u Vmin

▪ 𝐹𝑣 = (∆ + 𝑓)𝑉𝑚𝑖𝑛 = 𝑓𝑉𝑚𝑎𝑥

▪ 𝑉𝑚𝑎𝑥 =
∆+𝑓

𝑓
𝑉𝑚𝑖𝑛

▪ With 𝑉𝑚𝑖𝑛 = 1, 𝐹𝑣 = ∆ + 𝑓 , 𝑉𝑚𝑎𝑥 =
∆+𝑓

𝑓
=

∆

𝑓
+ 1, and 𝑢 = 2𝑓

▪ A minimal quorum needs 2𝑓 + 1 votes and more than 𝑄𝑣 weight.

51

Some nodes have a better network than others: let them

accelerate the decision process.

Performance of PBFT

▪ 𝑁 ≥ 3𝑓 + 1

▪ 3 network latencies to commit a message

▪ 𝑂 𝑁2 message complexity

▪ View-change is expensive: 𝑂 𝑁2 messages

▪ Limited scalability with the number of nodes

▪ Large number of messages = limited throughput

HotStuff: Pipelining

▪ Linear communication pattern

▪ Rotating leader: no view change required

▪ Network latency: from 3 to 8

▪ Higher throughput

▪ Pipelining

53

Mir-BFT: Multi-leader

▪ Requests are affected to buckets

54

HoneyBadgerBFT
[Miller et al., CCS 2016]

• Implements total order using Asynchronous Common Subset (ACS)
[Ben-Or et al., PODC 1994; Cachin et al., CRYPTO 2001]

• Implements ACS, in turn,
using Reliable broadcast
(RBC) and asynchronous
binary Byzantine
agreement (ABA)

Asynchronous Common Subset (ACS)

• The goal
• Every node proposes some transactions

• Agree on the superset of all the proposed transactions

Asynchronous Common Subset (ACS)

• RBC: Reliable broadcast
• Every node proposes some transactions

• Randomly from the transaction pool

• ABA
• Agreement on the proposed transactions by each node

• N parallel ABAs

Other scalability techniques

• Hierarchical consensus
• Steward, by Amir, Yair, et al. "Scaling byzantine fault-tolerant replication

towide area networks." DSN. IEEE, 2006.

• My Infocom 2024 paper

• Partitions/Sharding
• Eyrie/Volery

• Bezerra, Carlos Eduardo, Fernando Pedone, and Robbert Van Renesse.
"Scalable state-machine replication." DSN. IEEE, 2014.

• Trusted components
• Require 2f+1 instead of 3f+1 replicas, and less communication phases

• Damysus, Eurosys 2022.

Why hybrid blockchains?

• Permissionless
• Open network (anyone can join)
• Server scalability (large number of servers)
• Bad performance (poor client scalability, long latency)

• Permissioned
• Relatively closed network (need to know the identities of all the nodes)
• Good performance (large number of concurrent clients, low latency)
• Poor server scalability

• Hybrid blockchains
• Combine both and enjoy the benefits of both
• But it is challenging!

Hierarchy vs partition-based SMR

• Number of nodes that are involved
• Hierarchy: all the nodes still need to learn the results

• Partition: only those nodes that are involved in the relevant partitions

• Total order of requests
• Hierarchy: yes and straightforward

• Partition: only order those requests that might create conflicts…

• Bottleneck
• Hierarchy: group communication

• Partition: operations that involve multiple partitions

An overview

Phase 1: Membership Management Phase 2: Group Consensus Phase 3: Global Order/Validation Phase 4: Global Stabilization

Client
Requests

View change in
permissioned
blockchains

PoW in
permissionless

blockchains

1

2

4

3

1

3
5

6

[Validate?]

Collect
votes from
validators

validators

Broadcast the final order

v0
v1

	Slide 1: ASCI Blockchain 2024
	Slide 2: Consensus in blockchains
	Slide 3: Summary
	Slide 4: Liveness
	Slide 5: Safety: Case 1
	Slide 6: Safety: Case 2
	Slide 7: From consensus to agreement
	Slide 8: Network
	Slide 9: Nodes
	Slide 10: Elementary fault classes
	Slide 11: Tree representation of fault classes
	Slide 12: Malicious faults
	Slide 13: Cryptographic assumptions
	Slide 14: From permissioned to permissionless, and back
	Slide 15: Hyperledger
	Slide 16: Formal definition of consensus
	Slide 17: The FLP Impossibility
	Slide 18: Understanding FLP
	Slide 22: Seminal consensus algorithms
	Slide 23: OM: Byz. Agreement in the Unauthenticated and Sync. Model
	Slide 24: Randomized Byzantine agreement
	Slide 25: Number of replicas in the asynchronous model
	Slide 26: Q: Byzantine Quorum size
	Slide 27: Agreement
	Slide 28: Equivalence between consensus and agreement
	Slide 29: From agreement to State Machine Replication
	Slide 30: From agreement to State Machine Replication
	Slide 31: State Machine Replication (1/2)
	Slide 32: State Machine Replication (2/2)
	Slide 33: From Consistent to Reliable Broadcast
	Slide 34: Reliable broadcast (cap N greater than or equal to 3 f plus 1)
	Slide 35: Proof of totality
	Slide 36: Total order broadcast: reliable broadcast + total order
	Slide 37: TOB Broadcast is equivalent to Consensus
	Slide 38: PBFT (1/5): assumptions
	Slide 39: PBFT (2/5): views and data
	Slide 40: PBFT (3/5): similarities
	Slide 41: PBFT (4/5): differences
	Slide 42: PBFT (1/8): outline
	Slide 43: PBFT (2/8): normal operation
	Slide 44: PBFT (3/8): accepting a pre-prepare
	Slide 45: PBFT (4/8): commit
	Slide 46: PBFT (5/8): checkpoints
	Slide 47: PBFT (6/8): overview of view change
	Slide 48: PBFT (7/8): view change
	Slide 49: PBFT (8/8): new view
	Slide 50: Optimizing PBFT
	Slide 51: Wheat [Sousa and Bessani, SRDS 2015]
	Slide 52: Performance of PBFT
	Slide 53: HotStuff: Pipelining
	Slide 54: Mir-BFT: Multi-leader
	Slide 55: HoneyBadgerBFT [Miller et al., CCS 2016]
	Slide 56: Asynchronous Common Subset (ACS)
	Slide 57: Asynchronous Common Subset (ACS)
	Slide 58: Other scalability techniques
	Slide 59: Why hybrid blockchains?
	Slide 60: Hierarchy vs partition-based SMR
	Slide 61: An overview

