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Abstract—The internet was created without a standardised
identity layer, resulting in the management of a plethora of
digital identities which hold no legal value. Moreover, often
requiring cumbersome identity card checks, e.g., through digital
photocopies. Initiatives such as User-centring identities have
mostly failed, resulting in asymmetrical control held by Big Tech
in digital identities. Self-Sovereign Identity (SSI) can prove to
overcome these hurdles. SSI aims to put one at the centre of their
digital presence, enabling ownership over one’s digital identity.
Furthermore, opening up the possibility for legally valid digital
identities. Our research addresses the key issue of revocation
of SSI credentials. Revocation is hampering the up-rise of the
SSI concept: existing attempts critically rely on communication
with central authorities and introduce inequalities into the
architecture. We present a fully distributed SSI framework with
the first fully distributed SSI revocation mechanism requiring
no specialised nodes, in which equality and offline usability are
at the core of the architecture. A novel gossip-based revocation
algorithm propagates revocations throughout the network, en-
abling offline verification. Furthermore, the resulting framework
allows for attestation signing, presentation and verification in
Zero-Knowledge. Our result show improvements with respect to
the state of the art. We claim that our architecture is a viable
candidate for the upcoming European-wide identity standard.
Our small-scale trial shows that this is a promising direction to
further explore.

I. INTRODUCTION

SINCE the onset of the Information age, digital trust has been
an issue requiring many workarounds. The core concepts

of the internet are not built with trust in mind: there exists
no standardised identity layer. As a result, the current land-
scape of identification and authentication mechanisms form
a digital ecosystem of “digital one-offs” (Cameron, 2005).
The popularity of identity management solutions by Big Tech
has resulted in an oligopoly in digital identity (Siftery, 2017).
Wherein a regular oligopoly consumers are at a price-wise
disadvantage (Stigler, 1964), in this technical oligopoly the
identity providers have an asymmetrical control of ones digital
presence. Furthermore, increasing needs for digital identities
from governments such as the European Union (Von der
Leyen, 2020), has portrayed to need for and relevancy of the
field. This is further fuelled by the urgency of COVID-19
vaccination passports (European Commission, 2021), requiring
digital validity across borders.

The Self-Sovereign Identity (SSI) concept can prove to fill
this digital and societal gap. SSI aims to generate digital trust
by providing verifiable digital identities, putting the user at the
centre. SSI is a concept requiring cutting-edge concepts such
as decentralised ledger (DL) technology and decentralised
public key infrastructure (DKPI). A key issue in SSI remains

the revocation of issued credentials. As portrayed by Table I,
distributed revocation is to our knowledge yet to be solved in
SSI. Existing SSI solutions such as Sovrin1, Serto2 and Irma3

solve the issue of revocation through specialised verification
nodes. This disallows offline verification and introduce inher-
ent inequalities in the network, possibly leading to censorship
or collusion (Khovratovich & Law, 2017).

This research introduces an academic Self-Sovereign
Identity framework focusing on distributed revocation,
offline verification, and intrinsic equality across the network.
The scheme is based on the previous works by Stokkink
& Pouwelse (2018); Stokkink et al. (2020). The following
contributions are made: (1) the first fully distributed revocation
algorithm for SSI, achieving reliable revocation over unreliable
communication links and (2) offline verification of verifiable
claims (VCs). Furthermore, a reference implementation
of the semantic layer is created using the IPv8 protocol
stack (Halkes & Pouwelse, 2011; Zeilemaker et al., 2013)
as well as a proof-of-concept application portraying the
feasibility of SSI and distributed revocation on handheld
devices. An implementation of the framework has been
validated in a small-scale trial.

II. PROBLEM DESCRIPTION

Revocation is required in the instance that a credential
becomes prematurely voided. Revocations must be made
apparent to the parties for whom it is possible to encounter the
corresponding credential. Verification of revoked credentials
must lead to failure. As any client may be in Authority in an
SSI system and revocations must be reachable by any client,
the propagation of revocations must be performed in such
a fashion that confidentiality, integrity, and availability are
ensured.

Revocation mechanisms are present in traditional Public
Key Infrastructures (PKIs) such as PKIX (IETF, n.d.). Broadly
speaking, a PKI uses a Certificate Authority (CA) to publish a
Certificate Revocation List (CRL), containing revoked certifi-
cates. In this structure, CAs are inherently central authorities,
having relatively absolute power over revocations.

This issue complicates in the SSI domain as any client may
be an Authority. Transforming the PKI structure to SSI would
lead—trivially—to each client contacting all authorities on

1For Sovrin, see: https://sovrin.org/
2For Serto, see: https://www.serto.id/
3For Irma, see: https://irma.app/?lang=en

https://sovrin.org/
https://www.serto.id/
https://irma.app/?lang=en
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TABLE I: Revocation comparison with related works

Domain Type Means Description No network operators Offline
availability

No Authority
interactivity Offline Verification No SPOF No FPs/FNs

HRM (this work) SSI Attestation Hash Gossip-based p2p propagation of revocations. 3 3 3 3 3 3
Xu et al. (2020) SSI Node PK List of accepted nodes stored on blockchain. 7 3 3 7 3 3

Abraham et al. (2020) SSI Attestation Hash Revocations stored on blockchain 31 3 3 3 3 3

Lasla et al. (2018) C-ITS Node Hash Revocations stored blockchain and RSUs. 31 3 3 7 3 3
Popescu et al. (2003) DS Certificate CRL Revocations handled locally by Authority. 3 7 7 3 7 7
Liau et al. (2005) P2P Certificate CRL Uses distribution points and P2P communication. 7 3 7 3 3 3
Haas et al. (2011) VANET Certificate CRL RSUs and v2v propagation. 7 3 3 3 3 7
Laberteaux et al. (2008) VANET Certificate CRL RSUs and v2v propagation. 7 3 3 3 3 3
Eschenauer & Gligor (2002) DSN Node PK Single Authority propagates revocation of nodes. 7 3 7 3 7 3
IRMA SSI Attestation C.A. Revocations stored on permissioned blockchain. 7 7 3 7 3 7
SOVRIN SSI Attestation C.A. Revocations stored on permission blockchain. 7 7 3 7 3 3
uPORT SSI Attestation Hash Revocations stored on public blockchain. 3 7 3 7 3 3

1 As no specification on the type of blockchain was given, we assume the usage of a public permissionless blockchain.

interval to receive revocations. This may introduce single point
of failures in the mechanism or requires much infrastructure
for distribution. Furthermore, the ever increasing size of a
CRL-esque structure leads to much overhead.

Deployed SSI solutions mostly introduce specialised author-
ities, e.g. in Sovrin (n.d.); by Design Foundation (n.d.), or
expensive Proof-of-Work blockchains (uPort, n.d.) for main-
taining the network. Such authorities may introduce privacy
issues, collusion (Khovratovich & Law, 2017), or censorship.
Apart from these issues, most revocation mechanisms are
dependent on cryptographic accumulators (Hardman, 2019,
2018; IRMA, n.d.). Whilst cryptographic accumulators are
privacy-preserving, they disallow offline validation due to
requiring witness updates. As such, both the Subject and
the Verifier must be fully updated during presentation-time.
Furthermore, cryptographic accumulators are computationally
expensive to such an extend that they are discouraged to be
used at each verification (IRMA, n.d.).

In academia, proposed solutions include the usage of
blockchain as a storing structure (Zhou et al., 2019) or require
active checks in the worst case during verification (Stokkink
& Pouwelse, 2018) (see more in section III).

Based on the previous shortcomings, we believe that the lack
of revocation is hampering the up-rise of SSI. This research
proposes the first fully distributed revocation algorithm for
SSI, enabling offline verifiability whilst relaxing requirements
which are critical in prior works, such as central authorities
and reliable Internet. The revocation mechanism is part of an
SSI scheme which requires no specialised nodes, leading to a
first fully distributed SSI scheme with offline verification and
intrinsic equality.

III. RELATED WORK

As the key contribution addresses revocation, we focus on
related work discussing this topic. We note that literature on
revocation in Self-Sovereign Identity systems is not a widely
discussed topic in academia, as such, the selected works
address distributed revocation on a broader scale. We group
related works in the revocations of SSI credentials, certificates,
and nodes.

Revocation of SSI Credentials

Hardman (2018, 2019); IRMA (n.d.) propose the usage
of cryptographic accumulators for revocation in SSI. This

requires cliens to update their witness through Authorities in
order to proof non-revocability of credentials. Xu et al. (2020)
uses a blockchain for storing legitimate clients, indirectly
disallowing access for revoked clients in the SSI system.
Updating the client list is performed by network operators,
which can be deemed Authorities. Abraham et al. (2020)
propose the usage of a blockchain to store revoked signatures,
on which consensus is reached through the nodes of the
network.

Revocation of Certificates

Laberteaux et al. (2008) discuss the revocation of certificates
in Vehicular ad hoc networks (VANETS) through distribution
of CRLs. Distribution is handled through Road Side Units
(RSUs), which are specialised propagation nodes and through
epidemic spread between vehicles. Haas et al. (2011) build
upon this work by showcasing the practicality using differen-
tiating deployment rates and guaranteeing a certain degree of
privacy. Liau et al. (2005) propose the distribution of CRLs
through direct peer updates, reducing the communication
overhead caused by periodic CRL updates, signatures over
CRLs allow nodes to built trust in others. Popescu et al. (2003)
discuss revoking certificates based on the clustering of clients
and probabilistic auditing for honesty.

Revocation of Nodes

Eschenauer & Gligor (2002) discuss the revocation of nodes
in distributed sensor networks. Revocation is handled by a
specialised authority, delegating revocation orders to regular
sensor clients. Lasla et al. (2018) discuss the revocation of
malicious vehicles in Cooperative Intelligent Transportation
Systems (CITS). Their solutions uses a blockchain for stor-
ing revocations through a distributed vehicle admission and
revocation scheme.

Conclusion

Table I portrays that, to our knowledge, no fully distributed
SSI revocation mechanism has been proposed, apart from
those utilising blockchains. We note that existing blockchains
suffer from the reliance on reliable Internet and the download-
ing and verification of blocks, hindering offline verifiability
and introducing overhead. As such, this research proposes the
first fully distributed revocation algorithm for SSI, enabling of-
fline verification of verifiable claims. Furthermore, improving
the state-of-the-art in revocation in SSI systems.
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Fig. 1: Revocation gossip in a network

IV. ARCHITECTURE & ANALYSIS

Specialised verification nodes for managing revocations,
present in e.g. Zhou et al. (2019); Tobin & Reed (2016); by
Design Foundation (n.d.), deteriorate equality in the network
and could even lead to censorship or collusion (Khovratovich
& Law, 2017). As our proposed architecture is designed
without such nodes, the trivial solution for revocation is to
actively query the Authorities in order to verify that they still
attest for a claim (Stokkink & Pouwelse, 2018). This querying
requires interactivity with the Authorities, disallowing offline
verification. Whilst availability often is a key characteristic in
distributed systems, there is no guarantee that specific clients
are available. As our architecture allows for an indefinite
amount of attestations for a single Claim, interactivity with
the Authorities can prove to become rather unmanageable
as it introduces additional verification time due to additional
network traffic and response times of Authorities.

Our novel revocation mechanism (Figure 1) attempts to
overcome the hurdle of interactivity whilst allowing for offline
verification. During verification-time, clients do not require to
be online, they merely require occasional synchronisation of
revoked attestations through communication with other peers.
Next, we discuss the three main components of the design.

A. Trusted Authorities

A criterion on which a client is able to determine the
validity of a revocation is whether the revoking Authority
is trusted by the client. As mirrored by real life, a person
has (relatively speaking) a choice whether to acknowledge a
certain authority. With SSI aiming to be a digital extension
to one’s identity, one should also be able to make such
an acknowledgement in the digital domain. We propose
the usage of a Trusted Authority Storage (TAS). In the
TAS, the public keys of Trusted Authorities (TAs) are
stored. The distinction between acknowledged (trusted) and
Unacknowledged Authorities (UAs) is made. Client roles
are neither static nor mutually exclusive, as a consequence,
potentially every client can be an Authority. However, it is
up to a client to determine whether an authority is a TA or
an UA. In terms of distributed revocation: a client aims to
accept only the revocations of TAs. The results of acceptance
are the storage of the revoked signatures and propagation
towards network.

B. Offline Revocation List

Any valid received revocation should be stored by a client
for later reference in the Offline Revocation List (ORL). Whilst
no specific storage structure is required, we do propose the
usage of Bloom filters for member checking. A Bloom filter
is a memory- and time-efficient probabilistic data structure,
which allow for efficient membership operations (Bloom,
1970). Raya et al. (2007, 2006) discuss the benefits of Bloom
filters in Certificate Revocation Lists (CRLs), which can be
transformed to our concept of ORL, as the ORL can be deemed
a more generic variant of a CRL.

Furthermore, we note that the ORL can be replaced by
a Bloom filter entirely. A client may chose to accept the
probabilistic nature of Bloom filters over the exact membership
check from memory. Such nodes may not be able to aid in
the propagation of the revocations, however, the low memory
requirements may prove to make the protocol suitable for IoT
devices.

C. Propagation

The propagation of revocations requires a protocol that
ensures information is spread across the entire network, whilst
also ensuring that unavailable nodes receive the information at
a later instance. For this, we propose the usage of a gossip pro-
tocol with interval re-transmissions. Gossip protocols are com-
munication protocols which allow for the periodic exchange
of data with (random) peers (Kwiatkowska et al., 2008). They
are originally modelled after epidemic spread (Demers et al.,
1987).

The gossip between clients has been visualised in Figure 1,
portraying the communication of revocations from an initial
authority to a select subset of clients. Clients can built trust in
the revocations through signatures provided by the revoking
authority. After which these clients gossip the revocation to
the remainder of the network. The gossip between clients
is further chronologically ordered in Figure 2, in which it
can be seen that clients may only be partially aware of
revocations at a certain instance and only eventually receiving
the remainder (e.g., see node F ). This is due to the usage
of a multi-step update procedure, in order to decrease the
overhead of gossiping a theoretically unbound number of
signatures.
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Fig. 2: Revocation gossip over time

The message flow between a gossiping and receiving
client, following from the multi-step procedure, is visualised
in Figure 3. The gossip is split-up in two phases: firstly, a
gossiping client gives notice to another client that it possesses
specific revocations. Next, the receiving client can request an
update by sending back the latest versions of the revocations
stored in their TAS. This allows a client to selectively send
updates, as the receiving party makes an under-bound of
the known versions apparent. Finally, the gossiping client
sends the revocations to the updating client. This additional
step loosens network requirements for receiving clients.
Clients may become spontaneously online or go sporadically
offline, resulting in missing revocations (as is also modelled
in Figure 1 and 2). As such, this mechanism allows partial
updates. Furthermore, overhead is further reduces as clients are
not interested in revocations belonging to non acknowledged
authorities or a client may already be aware of all revocations.

We note that this procedure may be fine-tuned through the
usage of revocation dates. Revocation dates may allow clients
to opt out of old revocation versions, optimising storage
usage as old revocations may no longer be relevant in the
system due to the validity terms of the attestations having
passed. Furthermore as opposed to selecting an under-bound
on revocation versions, a client may request specific versions
in order to reduce network usage. Furthermore, we note that
this procedure can be fine-tuned by only propagating the
Bloom filter contents as proposed by (Haas et al., 2011)

D. Theoretical Analysis

We consider a network of distributed agents denoted by
a complete graph G = (V,E,w). Where V is the set of
agents, E the set of edges between agents, and w representing
the delays between nodes. An edge (i, j) ∈ E represents a
throughput link of information from node i to j. Agents do not
necessarily have full knowledge of G, but do have knowledge
on a subset of G, representative as neighbours.

The propagation of the revocations is dependent on both
delays imposed by the protocol and by the network. For
protocol delays, the propagation time is dependent on the
parameters imposed on the protocol, being:

• Gossip-interval (tg): the time interval on which peers are
gossiped to.

• Gossip amount (ng): the number of peers which are
gossiped to on a time interval.

• Peer selection (Fg(x)): the function used to determine
which peers are gossiped to.

Definition 4.1: (Protocol delays). Let np be the size of
G and let g = tg ·

np
ng

be the minimal number of interval

iterations required to gossip to all peers. The peer selection
function Fg(X) may result in overlapping subsets. I.e., let
fi = Fg(P ) be the subset of peers generated at iteration i and
let fi+j = Fg(P ) be the subset generated at iteration i + j,
then it does not necessarily hold that fi∩fi+j = ∅. Hence, let
Pf = p0, ..., pn−1 be the multiset of peers of size mp >= np
selected throughout each iteration until convergence. I.e., the
peer selection function Fg(X) selected at least mp >= np
peers, leading to at least tg ·

mp

ng
iterations. The additional

iterations can be modelled by: h = tg ·
mp − np
ng

, where h ≥ g.

This leads to the propagation time for the protocol delays for
a single client i attempting to gossip a single update to the
entire visible network with size n as to be as summarised

Fig. 3: Multi-step Update Procedure
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in Equation 1.

Tpi = h+ g

= tg ·
np
ng

+ tg ·
mp − np
ng

= tg ·
(
np
ng

+
mp − np
ng

)
= tg ·

mp

ng

(1)

This can be generalised for the entirety of the network as
visible in Equation 1. As clients are not aware of their position
in the network (relatively to others) or of the peers already
contacted by other clients, there can only be set an upper
bound on the expected runtime of the algorithm, as each peer
attempts to gossip all information to all other peers. Hence, the
propagation delay can be summarised to the formula presented
in Equation 2, where tgi ,mpi , ngi are the gossip-interval, the
maximum number of gossiped peers, and gossip amount per
iteration for client i, respectively.

Tp ≤
n−1∑
i=0

Tp,i

≤
n−1∑
i=0

(
tgi ·

mpi

ngi

) (2)

Definition 4.2: (Network delays). Next, we generalise the
delays imposed by the network. Let δi,j be the propagation
delay from node i to node j and let function ∆(pj) compute
the smallest propagation delay for node pj to be gossiped
to. I.e., ∀(pi, pk) ∈ {p0, ..., pn−1} it holds that δi,j < δk,j .
Finally, let C = {c0, . . . , cn−1} be the the set of delays
imposed by processing times on the clients on invocation
∆(pj). This leads to the network delay for a single client
i updating the entirety of the to him visible network with size
n as summarised in Equation 3

Tni
=

n−1∑
j=0

(δi,j + cj) (3)

Then, the total network delays in a system with a set of P =
{p0, . . . , pn−1} nodes of size n can be modelled as visible
in Equation 4.

Tn =

n−1∑
i=0

(∆(pi) + ci) (4)

Definition 4.3: (Propagation time). Definition 4.1 and Defi-
nition 4.2 lead to a total propagation time as visible in Equa-
tion 5. Again, due to the distributed nature and possible

randomness of peer selection, only an upper-bound can be
assigned.

T = Tp + Tn

≤

(
n−1∑
i=0

(
tgi ·

mpi

ngi

))
+

(
n−1∑
i=0

∆(pi) + ci

)

≤
n−1∑
i=0

(
tgi ·

mpi

ngi
+ ∆(pi) + ci

) (5)

Equation 5 leads to a runtime of O(n), as in the worst case a
single client updates all other clients. However, it is expected
to be logarithmic with respect to the number of nodes, as
each gossiped to node can gossip to yet uninformed nodes.
More specifically, a node ni can gossip to node nj whilst
node nk gossips to node nl. As such, the more nodes become
informed, the faster the remaining nodes are gossiped to.

Theorem 4.1: Each client will eventually receive all revoca-
tions. Clients may be sporadically online and still receive all
revocations, albeit possibly in non-consecutive order, without
affecting availability of reachable clients.
We defined the minimum number of iterations (tg ·

mp

ng
) to be

dependent on the used client selection algorithm (see Defini-
tion 4.1). Clients are unreliable as they may be sporadically
online due to unreliable connections. As revocations are gos-
siped on an interval to clients, regardless of whether they have
been reached prior, it is infeasible that overlapping subsets
of selection by Fg(x) are not created by a random number
generator (RNG) (as the chances of each peer being selected
grow to 100%). As a consequence any failed gossip attempt
or temporary offline clients will be gossiped to by any other
client at a later instance. Especially since each (honest) client
attempts to reach each other client. Furthermore, as revocations
are split into different sets a sporadically online client may
receive version i+j prior to version i, however, as it has been
shown that a client will be reached again, i will be received at
a later instance. This leads to each client eventually receiving
all revocations, regardless of reliability of connections.

Theorem 4.2: Revocations in any network with at least 1
honest node will propagate to each client in O(n) in at most∑n−1

i=0

(
tgi ·

mpi

ngi
+ ∆(pi) + ci

)
seconds.

Consider a network with n nodes, of which m nodes are
not aware of the latest revocations. Of the n − m nodes,
which are aware of the latest revocations, all but one node
ci is malicious. We assume that dishonest nodes cannot affect
network traffic. Deteriorating the condition that the network
is comprised of a complete graph, we assume that the honest
node eventually has connectivity with at least a single node
cj belonging to the m ungossiped nodes. Using Theorem 4.1
we conclude that ci is able to eventually gossip revocations
to cj . Subsequently, cj eventually gossips—albeit possibly
indirectly— to the remainder of the group of uninformed
nodes. As such, we conclude that revocations propagate across
a network in case there exists at least a single honest node.



6

In the worst case, ci gossips to each node belonging to the m
nodes, resulting in a runtime of O(n) and a propagation time

of
∑n−1

i=0

(
tgi ·

mpi

ngi
+ ∆(pi) + ci

)
. Note that this node may

be the Authority of the revocations.

E. Attestation Interactions

Self-Sovereign Identity is built around Verifiable Claims
(VCs) (Mühle et al., 2018), which are composed of several
types of information. Firstly, a claim is made by a Sub-
ject (Sporny et al., 2019). Authorities can attest to a claim,
making it a VC. When metadata is added to a VC, we speak
of an Attribute. Finally, a set of related attributes is referred
to as a Credential (Mühle et al., 2018).

In the proposed design, each Claim is represented by an
anonymised Token, which stores a reference to a claim via
its hash. A Token can be references by multiple Metadata
structures which assign different properties to a Claim (e.g. a
validity term). Furthermore, multiple Attestations can be made
for a Metadata. Finally, although not explicitly modelled,
multiple Credentials can reference multiple Attestations and as
such, multiple Claims. The Tokens are stored in a Blockchain-
esque structure, referencing the previous Token. This aids in
preventing the withholdment of claims as well as making it
more difficult for one to use stolen credentials. The first token,
comparable to a genesis-block in Blockchain structures such
as Nakamoto (2009), contains the hash of the public key of
the Subject. Any subsequent Credential, thus, generates a new
Token, occupying a place as a shackle in the chain. As such,
it is improbable for a client to attempt to hide the existence of
an attestation or attempt to cheat the system, as otherwise the
attestations of other Authorities become invalid (as the hash
of the token will no longer be correct).

Next, we discuss the lifecycle of these credentials. We
identify three main interactions surrounding VCs:

1) Attestation Signing
2) Attribute Presentation
3) Attribute Verification

F. Attestation Signing

The attestation procedure is visible in Figure 4. It consists
of two phases: the Claim-phase and the Attestation-phase
which do not necessarily require subsequent execution. More
specifically, for a single to be attested claim, the Claim-
phase requires a single execution, which must occur before the
Attestation-phase. Whilst subsequently, the Attestation-phase
can be performed indefinitely by different Authorities.

1) Claim-phase: The Claim-phase is initiated by a Subject
through a request. In this request a subject makes metadata
such as its public key, the proof format and the attribute name
apparent. The public key belongs to a single-use key pair,
strengthening privacy. The Authority may respond by creating
a Zero-Knowledge Proof incorporating the value belonging
to the requested claim. As may become apparent from this
description two modus operandi are possible. Firstly, a client
may self-create this claim, following the natural description of
a claim. However, a client may not know the associated claim.

Fig. 4: Attestation Flow

Hence, the second modus operandi delegates the creation of
the claim to an Authority, not requiring prior sharing of the
claim value.

2) Attestation-phase: After possessing a claim, a Subject
request an attestation for said Claim, creating a VC and
subsequently an Attribute. When a Subject requests an attes-
tation from Authority it discloses the prior attestations and
tokens, allowing the Authority to verify previous attributes.
Furthermore, the Authority creates metadata for properties
of the attestation, including the hash of the plaintext value.
The attestation is made through a signature over the claim.
However, as a hash would allow for trivial preimage attacks for
attributes with a limited message space (e.g. an age credential),
we propose the usage of salts (Arias, 2021).

Fig. 5: Attestation Presentation

G. Presentation Flow

The interactions for the presentation of attributes is por-
trayed in Figure 5. In this structure, an Authority requests an
attribute with a specific name. A Subject may subsequently
decide whether to respond to such a request and to disclosure
the corresponding attribute. Next, similarly to the Attestation
flow, an Authority may request the tokens of previous claims
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until has gain enough confidence. Note here that the attribute
request is not necessarily required, as a client can disclosure
an attribute directly. However, the specification of an attribute
name aids in selective disclosure whilst additionally allowing
the Authority to determine whether a specific credential is
solicited. After a credential has been disclosed and, thus,
presented, the Authority may verify its validity.

H. Verification Flow

Fig. 6: Interactive Verification

We propose two types of verification: an interactive and
a non-interactive variant. Both methodologies use the attes-
tations made by authorities. Hence, the list of attestors must
contain an Authority that is trusted by the Verifier.

The former variant is presented in Figure 6. For active
verification, a Verifier requests the underlying Claim of an
attribute from the Subject (procured through prior presen-
tation). The Subject may consent by sending the requested
Claim. Next the Verifier may send challenges to verify the
underlying ZKP. Note that for this to happen, the Authority
must either be already aware of the value belonging to the
attribute or the plaintext value must be shared. Sharing of
the plaintext value can be done during presentation-time. This
should be performed using encryption in order to preserve
privacy. Furthermore, the Authority verifies the presented
attestations.

The second method for verification solely uses the attesta-
tions. In order for this attestation to pass, the list of attestors
must contain an authority that is trusted by the Verifier. If
this is the case, a Verifier may accept the value proposed by
the Subject in case the metadata contains the hash of this
value and the signature made by one of the acknowledged
authorities over the metadata is valid. This approach does
not require any connectivity between the Subject and Verifier,
apart from the presentation itself. However a presentation does
not necessarily require any form of digital communication (e.g.

it can be performed through QR-codes), allowing full offline
verification. It is, however, to note that this offline verification,
thus, does not rely on any additional token requests and, as
such, all tokens must either be made directly apparent to the
Verifier during presentation-time or the verifier must make its
decision based on the presented Attestation and his reliance
on and knowledge of acknowledged authorities.

V. ALGORITHMS & SIMULATION

The analysis of the revocation mechanism is two-fold.
Firstly, we discuss a simulation showcasing scalability
amongst high numbers of clients (up to 10.000). Secondly,
we showcase analysis through deployment of smartphones
in section VII, portaying the usability on mobile clients. The
simulations were performed on a system with a i7-6700HQ
clocked at 2.60 GHz and 16GB of RAM.

Algorithm 1: Revocation Gossip
input : Set of Clients in the network

C = {c0, . . . , ci}, Set of known
Authority-Version pairs
A = {(a0, vj), . . . , (aj , vk)} Gossip interval
tg , Peer selection amount ng

output: Revocation update gossip

while True do
Cg ← SelectPeers (C, ng);
foreach ci ∈ Cg do

GossipRevocations(ci,A);

Wait(tg);

Algorithm 2: Revocation Update Request Procedure
input : Set of Authority-Version pairs

A = {(a0, vj), . . . , (aj , vk)}, Set of trusted
Authorities (TAS) T = {t0, . . . , tn}

output: Revocation update request

On reception of A by Client ci;
for Authority ai, Version vj in A do

if ri /∈ ORL then
vlocal ← FindMissingVersion(ai);
if vlocal < vj then

RequestUpdate(ci,ai,vj);

A. Simulation

The simulation was performed through mimicking the
gossip of 1 million revocations between clients. Each client
runs three algorithms. A gossiping client runs algorithm 1,
after which a receiving client initiates algorithm 2. Finally,
the revocations are send as modelled by algorithm 3. As the
simulation is performed on a single machine, network usage
was of no impact. As such, arbitrary delays between 20-50
ms are introduced in order to simulate the impact of network
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Algorithm 3: Revocation Gossip
input : Set of Clients in the network

C = {c0, . . . , ci}, Set of known
Authority-Version pairs
A = {(a0, vj), . . . , (aj , vk)} Gossip interval
tg , Peer selection amount ng

output: Revocation update gossip

for Authority ai, Version vj , , in A do
Cg ← SelectPeers (C, ng);
foreach ci ∈ Cg do

GossipRevocations(ci,A);

Wait(tg);

delays. Furthermore an arbitrary delay between 2500-3000
ms is added to simulate the receival of 1 million SHA3-256
hashes of 32 Byte, based on the average network speed
of around 100 mbps (Ookla, 2021). The revocations were
released on t = 0 by a single client. We opted to simulate
revocation data in order to allow more emulated clients.

B. Simulation Results

The individual traces are visible in Figure 7. As expected,
increasing the tg leads to higher propagation times. Contrary to
expectations, Figure 7a and Figure 7b portray a quadratic run
time increase with respect to the number of clients. However,
as visible this increase is far less prominent with fewer clients,
especially portrayed by Figure 7b. This behaviour can be ex-
plained by hardware limitations on the workstation limiting the
number of messages between clients, as we noted high CPU
usage. The high-interval timings (Figure 7c and Figure 7d)
portray more the expected logarithmic-natured runtime, as
the increased interval imposes less load on the workstation.
Furthermore, it can seen that the increase of ng leads to lower
propagation timings, however, this additionally increases the
load on the client. To conclude, the simulation showcases great
scalability in the revocation mechanism, however, portrays
that hardware constrains must be taken into considerations
as parameters that impose higher throughput may decrease
overall performance due to overhead in system load.

VI. IMPLEMENTATION & FIELD TRIAL

Sections IV & V presented a Self-Sovereign Identity frame-
work based on the prior works by Stokkink & Pouwelse
(2018); Stokkink et al. (2020) with the novel fully dis-
tributed revocation algorithm and offline verification capabil-
ities. Based on this design, two implementations have been
made using the IPv8 protocol stack4. The selection of IPv8
stems from firstly its academic background, proving its via-
bility through various publications. Secondly, IPv8 allows for
direct client-to-client communication, hence, enabling a fully
distributed infrastructure at the core of the solution. Finally,

4For the official (Python) documentation of IPv8, see: https://py
-ipv8.readthedocs.io/en/latest/

IPv8 does not require (expensive) Proof-of-Work algorithms
utilised by Blockchain structures such as Nakamoto (2009)
and Buterin (2013).

Three semantic layers have been implemented on top of the
Kotlin implementation of IPv85. Per authors choice two ZKPs
claim types have been implemented: firstly, a ZKP proof
allowing arbitrary data and the verification of exact values.
The implementation is based on the algorithm proposed
by Boneh et al. (2005), allowing verifiable computation
through 2-DNF formulae over bits. Secondly, the range ZKP
proposed by Peng & Bao (2010), allowing encoding of
integer values laying in a specific range. The commitment
scheme proposed by Boudot (2000) has been implemented
in order to realise this range proof, based on the work
by Stokkink & Pouwelse (2018). Both of these proofs are
interactive. However, as shown by Koens et al. (2018), the
schema introduced by Peng & Bao (2010) can be made
non-interactive. The code for the reference implementation of
these semantic layers is available on the IPv8 repository6.

Secondly, a mobile client has been implemented in the form
of an Android application. This client uses the implementation
of the three semantic layers and showcases the usability on
smart phones. The application supports all discussed commu-
nications per the three semantic layers. In addition, clients
can create multi-party communication channels in order to
force visibility with one another. This is performed through
specialised tokens. The application enables offline verification
through the presentation of Claims and attestation through QR-
codes. As the Claims can comprise any form of data, the
client even supports attestations to pictures; opening up the
possibility for digitally attested to passport photographs. The
application was validated using a minor real-life trial for the
ZKP verification of age of majority (see Figure 8). Further
trials were cancelled due to the COVID-19 pandemic. The
implementation can be found on the Trustchain superapp
repository7.

VII. PERFORMANCE ANALYSIS

The analysis on smartphones was performed in a test setup
measuring the time required to gossip revocations between an
Authority and a regular client. For revocations, we generated
datasets of 32 bytes SHA3-256 hashes, a format used by
the implementation. Revocations were split-up into sets of
1000 in order to minimise the impact of a single packet loss.
In order to further prevent packet loss, the gossiping client
was restricted to 10 UDP packets per second. For the default
parameters, the gossip-interval tg was set to 100ms in order to
maximise throughput of gossip. The number of selected peers
mp was set to 5, as IPv8 recommends up to 30 simultaneous
connections, such a small amount suffices, especially since the
measurements were collected on device basis.

5For the Kotlin implementation of IPv8, see: https://github.com/
Tribler/kotlin-ipv8

6For the Kotlin IPv8 repository, see: https://github.com/
Tribler/kotlin-ipv8

7For the Android application, see: https://github.com/Tribler/
trustchain-superapp

https://py-ipv8.readthedocs.io/en/latest/
https://py-ipv8.readthedocs.io/en/latest/
https://github.com/Tribler/kotlin-ipv8
https://github.com/Tribler/kotlin-ipv8
https://github.com/Tribler/kotlin-ipv8
https://github.com/Tribler/kotlin-ipv8
https://github.com/Tribler/trustchain-superapp
https://github.com/Tribler/trustchain-superapp
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(a) tg = 100 ms (b) tg = 1000 ms (c) tg = 10000 ms (d) tg = 30000 ms

Fig. 7: Simulated propagation times

A. Revocation Amount

Figure 9 showcases the revocation scaling in a system of 1
Authority and 3 regular clients (n = 1,m = 3). As visible,
the propagation time scales linearly with respect to the number
of revocations. As visible 1 million revocations take roughly
up to 8000 seconds or around 2 hours. As this can be deemed
more than two years worth of revocations (HM Passport Office
& The Rt Hon Caroline Nokes MP, 2018), we deem this
scalability usable.

Compared to the simulation discussed prior, the perfor-
mance is worse. We note that this can be explained mostly due
to communication overhead caused by UDP packet splitting.
The tremendous amount of packages led to many packet
drops, in turn leading to the loss of specific revocation
versions. As the reference implementation naively provides
the gossiping client with a lower bound of missing versions,
the additional network traffic of already gossiped versions
causes more packet losses. This snowballing effect worsens
the performance of the algorithm.

VIII. CONCLUSION

We presented a Self-Sovereign Identity framework which
can facilitate the digital identity needs of the European Union.

Fig. 8: Real life trial

Fig. 9: Propagation timings on smartphones

Most notably containing a first-of-a-kind distributed SSI re-
vocation mechanism, enabling offline verification, capable of
fulfilling the missing revocation link in SSI. The model is
shown to provide fully distributed reliable revocation through
unreliable communication links and showcases usability on
smartphones. Privacy is aided through the usage of zero-
knowledge proofs and communication with selected peers. A
reference implementation for the semantic layer has been cre-
ated, as well as a mobile client showcasing full feasibility on
smartphones. Our small scale trial shows that fully distributed
SSI is feasible on modern handheld devices and that this is a
promising direction to further explore.

[TODO: Fix references]
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