forked from KimMeen/Neural-Temporal-Walks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodule.py
747 lines (620 loc) · 35.1 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
import time
import numpy as np
import torch
import multiprocessing as mp
import torch.nn as nn
from utils import *
from position import *
from torch.nn import MultiheadAttention
import torch.nn.functional as F
from torchdiffeq import odeint_adjoint as odeint
class MergeLayer(torch.nn.Module):
def __init__(self, dim1, dim2, dim3, dim4, non_linear=True):
super().__init__()
self.fc1 = torch.nn.Linear(dim1 + dim2, dim3)
self.fc2 = torch.nn.Linear(dim3, dim4)
self.act = torch.nn.ReLU()
torch.nn.init.xavier_normal_(self.fc1.weight)
torch.nn.init.xavier_normal_(self.fc2.weight)
self.non_linear = non_linear
if not non_linear:
assert(dim1 == dim2)
self.fc = nn.Linear(dim1, 1)
torch.nn.init.xavier_normal_(self.fc1.weight)
def forward(self, x1, x2):
z_walk = None
if self.non_linear:
x = torch.cat([x1, x2], dim=-1)
h = self.act(self.fc1(x))
z = self.fc2(h)
else:
x = torch.cat([x1, x2], dim=-2)
z_walk = self.fc(x).squeeze(-1)
z = z_walk.sum(dim=-1, keepdim=True)
return z, z_walk
class PosEncode(torch.nn.Module):
def __init__(self, expand_dim, seq_len):
super().__init__()
self.pos_embeddings = nn.Embedding(num_embeddings=seq_len, embedding_dim=expand_dim)
def forward(self, ts):
order = ts.argsort()
ts_emb = self.pos_embeddings(order)
return ts_emb
class EmptyEncode(torch.nn.Module):
def __init__(self, expand_dim):
super().__init__()
self.expand_dim = expand_dim
def forward(self, ts):
out = torch.zeros_like(ts).float()
out = torch.unsqueeze(out, dim=-1)
out = out.expand(out.shape[0], out.shape[1], self.expand_dim)
return out
class MeanPool(torch.nn.Module):
def __init__(self, feat_dim, edge_dim):
super(MeanPool, self).__init__()
self.edge_dim = edge_dim
self.feat_dim = feat_dim
self.act = torch.nn.ReLU()
self.merger = MergeLayer(edge_dim + feat_dim, feat_dim, feat_dim, feat_dim)
def forward(self, src, src_t, seq, seq_t, seq_e, mask):
src_x = src
seq_x = torch.cat([seq, seq_e], dim=2)
hn = seq_x.mean(dim=1)
output = self.merger(hn, src_x)
return output, None
class GRUCell(torch.nn.Module):
def __init__(self, input_size, hidden_size, bias=True):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.bias = bias
self.lin_xr = torch.nn.Linear(input_size, hidden_size, bias=bias)
self.lin_xz = torch.nn.Linear(input_size, hidden_size, bias=bias)
self.lin_xn = torch.nn.Linear(input_size, hidden_size, bias=bias)
self.lin_hr = torch.nn.Linear(hidden_size, hidden_size, bias=False)
self.lin_hz = torch.nn.Linear(hidden_size, hidden_size, bias=False)
self.lin_hn = torch.nn.Linear(hidden_size, hidden_size, bias=False)
def forward(self, x, h):
r = torch.sigmoid(self.lin_xr(x) + self.lin_hr(h))
z = torch.sigmoid(self.lin_xz(x) + self.lin_hz(h))
g = torch.tanh(self.lin_xn(x) + self.lin_hn(r * h))
return z * h + (1 - z) * g
class GRUODECell(torch.nn.Module):
def __init__(self, hidden_size, bias=True):
super().__init__()
self.hidden_size = hidden_size
self.bias = bias
self.lin_hr = torch.nn.Linear(hidden_size, hidden_size, bias=False)
self.lin_hz = torch.nn.Linear(hidden_size, hidden_size, bias=False)
self.lin_hn = torch.nn.Linear(hidden_size, hidden_size, bias=False)
def forward(self, t, h):
x = torch.zeros_like(h)
r = torch.sigmoid(x + self.lin_hr(h))
z = torch.sigmoid(x + self.lin_hz(h))
g = torch.tanh(x + self.lin_hn(r * h))
dh = (1 - z) * (g - h)
return dh
class NeurTWs(torch.nn.Module):
def __init__(self, n_feat, e_feat, walk_mutual=False, walk_linear_out=False, pos_enc='saw', pos_dim=0, num_layers=3,
num_neighbors=20, tau=0.1, negs=1, solver='rk4', step_size=0.125, drop_out=0.1, cpu_cores=1,
verbosity=1, get_checkpoint_path=None):
super(NeurTWs, self).__init__()
self.logger = logging.getLogger(__name__)
self.verbosity = verbosity
self.num_neighbors, self.num_layers = process_sampling_numbers(num_neighbors, num_layers)
self.ngh_finder = None
self.n_feat_th = torch.nn.Parameter(torch.from_numpy(n_feat.astype(np.float32)), requires_grad=False)
self.e_feat_th = torch.nn.Parameter(torch.from_numpy(e_feat.astype(np.float32)), requires_grad=False)
self.feat_dim = self.n_feat_th.shape[1]
self.e_feat_dim = self.e_feat_th.shape[1]
self.time_dim = self.feat_dim
self.pos_dim = pos_dim
self.pos_enc = pos_enc
self.model_dim = self.feat_dim + self.e_feat_dim + self.pos_dim
self.logger.info('neighbors: {}, node dim: {}, edge dim: {}, pos dim: {}'.format(self.num_neighbors,
self.feat_dim,
self.e_feat_dim,
self.pos_dim))
self.walk_mutual = walk_mutual
self.walk_linear_out = walk_linear_out
self.dropout_p = drop_out
self.edge_raw_embed = torch.nn.Embedding.from_pretrained(self.e_feat_th, padding_idx=0, freeze=True)
self.node_raw_embed = torch.nn.Embedding.from_pretrained(self.n_feat_th, padding_idx=0, freeze=True)
self.position_encoder = PositionEncoder(enc_dim=self.pos_dim, num_layers=self.num_layers,
ngh_finder=self.ngh_finder, cpu_cores=cpu_cores,
verbosity=verbosity, logger=self.logger, enc=self.pos_enc)
self.solver = solver
self.step_size = step_size
self.walk_encoder = self.init_walk_encoder()
self.logger.info('Encoding module - solver: {}, step size: {}'.format(self.solver, self.step_size))
self.affinity_score = MergeLayer(self.feat_dim, self.feat_dim, self.feat_dim, 1, non_linear=not self.walk_linear_out)
self.get_checkpoint_path = get_checkpoint_path
self.flag_for_cur_edge = True
self.common_node_percentages = {'pos': [], 'neg': []}
self.walk_encodings_scores = {'encodings': [], 'scores': []}
self.tau = tau
self.negatives = negs
self.f = lambda x: torch.exp(x / self.tau)
self.logger.info('Contrastive module - temperature: {}, negatives: {}'.format(self.tau, self.negatives))
def init_walk_encoder(self):
walk_encoder = WalkEncoder(feat_dim=self.model_dim, pos_dim=self.pos_dim,
model_dim=self.model_dim, out_dim=self.feat_dim,
mutual=self.walk_mutual, dropout_p=self.dropout_p,
logger=self.logger, walk_linear_out=self.walk_linear_out,
solver=self.solver, step_size=self.step_size)
return walk_encoder
def contrast(self, src_idx_l, tgt_idx_l, bgd_idx_l, cut_time_l, e_idx_l=None):
scores = 0.0
subgraph_src = self.grab_subgraph(src_idx_l, cut_time_l, e_idx_l=e_idx_l)
subgraph_tgt = self.grab_subgraph(tgt_idx_l, cut_time_l, e_idx_l=e_idx_l)
self.position_encoder.init_internal_data(src_idx_l, tgt_idx_l, cut_time_l, subgraph_src, subgraph_tgt)
subgraph_src = self.subgraph_tree2walk(src_idx_l, cut_time_l, subgraph_src)
subgraph_tgt = self.subgraph_tree2walk(tgt_idx_l, cut_time_l, subgraph_tgt)
src_embed = self.forward_msg(src_idx_l, cut_time_l, subgraph_src)
tgt_embed = self.forward_msg(tgt_idx_l, cut_time_l, subgraph_tgt)
if self.walk_mutual:
src_embed, tgt_embed = self.tune_msg(src_embed, tgt_embed)
pos_score, _ = self.affinity_score(src_embed, tgt_embed)
pos_score.squeeze(dim=-1)
pos_score = self.f(pos_score.sigmoid())
scores += pos_score
size = len(src_idx_l)
start_idx = 0
for i in range(self.negatives):
bgd_idx_cut = bgd_idx_l[start_idx : (i+1) * size]
subgraph_src = self.grab_subgraph(src_idx_l, cut_time_l, e_idx_l=e_idx_l)
subgraph_bgd = self.grab_subgraph(bgd_idx_cut, cut_time_l, e_idx_l=None)
self.position_encoder.init_internal_data(src_idx_l, bgd_idx_cut, cut_time_l, subgraph_src, subgraph_bgd)
subgraph_bgd = self.subgraph_tree2walk(bgd_idx_cut, cut_time_l, subgraph_bgd)
bgd_embed = self.forward_msg(bgd_idx_cut, cut_time_l, subgraph_bgd)
if self.walk_mutual:
src_embed, bgd_embed = self.tune_msg(src_embed, bgd_embed)
neg_score, _ = self.affinity_score(src_embed, bgd_embed)
neg_score = self.f(neg_score.sigmoid())
neg_score.squeeze(dim=-1)
scores += neg_score
start_idx = (i+1) * size
loss = -torch.log(pos_score / scores)
return loss.mean()
def inference(self, src_idx_l, tgt_idx_l, bgd_idx_l, cut_time_l, e_idx_l=None):
subgraph_src = self.grab_subgraph(src_idx_l, cut_time_l, e_idx_l=e_idx_l)
subgraph_tgt = self.grab_subgraph(tgt_idx_l, cut_time_l, e_idx_l=e_idx_l)
subgraph_bgd = self.grab_subgraph(bgd_idx_l, cut_time_l, e_idx_l=None)
self.position_encoder.init_internal_data(src_idx_l, tgt_idx_l, cut_time_l, subgraph_src, subgraph_tgt)
subgraph_src = self.subgraph_tree2walk(src_idx_l, cut_time_l, subgraph_src)
subgraph_tgt = self.subgraph_tree2walk(tgt_idx_l, cut_time_l, subgraph_tgt)
src_embed = self.forward_msg(src_idx_l, cut_time_l, subgraph_src)
tgt_embed = self.forward_msg(tgt_idx_l, cut_time_l, subgraph_tgt)
if self.walk_mutual:
src_embed, tgt_embed = self.tune_msg(src_embed, tgt_embed)
pos_score, _ = self.affinity_score(src_embed, tgt_embed)
pos_score.squeeze(dim=-1)
pos_score = pos_score.sigmoid()
subgraph_src = self.grab_subgraph(src_idx_l, cut_time_l, e_idx_l=e_idx_l)
self.position_encoder.init_internal_data(src_idx_l, bgd_idx_l, cut_time_l, subgraph_src, subgraph_bgd)
subgraph_bgd = self.subgraph_tree2walk(bgd_idx_l, cut_time_l, subgraph_bgd)
bgd_embed = self.forward_msg(bgd_idx_l, cut_time_l, subgraph_bgd)
if self.walk_mutual:
src_embed, bgd_embed = self.tune_msg(src_embed, bgd_embed)
neg_score, _ = self.affinity_score(src_embed, bgd_embed)
neg_score.squeeze(dim=-1)
neg_score = neg_score.sigmoid()
return pos_score, neg_score
def grab_subgraph(self, src_idx_l, cut_time_l, e_idx_l=None):
subgraph = self.ngh_finder.find_k_hop(self.num_layers, src_idx_l, cut_time_l, num_neighbors=self.num_neighbors, e_idx_l=e_idx_l)
return subgraph
def subgraph_tree2walk(self, src_idx_l, cut_time_l, subgraph_src):
node_records, eidx_records, t_records = subgraph_src
node_records_tmp = [np.expand_dims(src_idx_l, 1)] + node_records
eidx_records_tmp = [np.zeros_like(node_records_tmp[0])] + eidx_records
t_records_tmp = [np.expand_dims(cut_time_l, 1)] + t_records
new_node_records = self.subgraph_tree2walk_one_component(node_records_tmp)
new_eidx_records = self.subgraph_tree2walk_one_component(eidx_records_tmp)
new_t_records = self.subgraph_tree2walk_one_component(t_records_tmp)
return new_node_records, new_eidx_records, new_t_records
def subgraph_tree2walk_one_component(self, record_list):
batch, n_walks, walk_len, dtype = record_list[0].shape[0], record_list[-1].shape[-1], len(record_list), record_list[0].dtype
record_matrix = np.empty((batch, n_walks, walk_len), dtype=dtype)
for hop_idx, hop_record in enumerate(record_list):
assert(n_walks % hop_record.shape[-1] == 0)
record_matrix[:, :, hop_idx] = np.repeat(hop_record, repeats=n_walks // hop_record.shape[-1], axis=1)
return record_matrix
def forward_msg(self, src_idx_l, cut_time_l, subgraph_src):
node_records, eidx_records, t_records = subgraph_src
hidden_embeddings, masks = self.init_hidden_embeddings(src_idx_l, node_records)
edge_features = self.retrieve_edge_features(eidx_records)
position_features = self.retrieve_position_features(src_idx_l, node_records, cut_time_l, t_records)
t_records_th = torch.from_numpy(t_records).float().to(self.n_feat_th.device)
final_node_embeddings = self.forward_msg_walk(hidden_embeddings, edge_features,
position_features, t_records_th, None)
return final_node_embeddings
def tune_msg(self, src_embed, tgt_embed):
return self.walk_encoder.mutual_query(src_embed, tgt_embed)
def init_hidden_embeddings(self, src_idx_l, node_records):
device = self.n_feat_th.device
node_records_th = torch.from_numpy(node_records).long().to(device)
hidden_embeddings = self.node_raw_embed(node_records_th)
masks = (node_records_th != 0).sum(dim=-1).long()
return hidden_embeddings, masks
def retrieve_edge_features(self, eidx_records):
device = self.n_feat_th.device
eidx_records_th = torch.from_numpy(eidx_records).to(device)
eidx_records_th[:, :, 0] = 0
edge_features = self.edge_raw_embed(eidx_records_th)
return edge_features
def retrieve_position_features(self, src_idx_l, node_records, cut_time_l, t_records):
start = time.time()
encode = self.position_encoder
if encode.enc_dim == 0:
return None
batch, n_walk, len_walk = node_records.shape
node_records_r, t_records_r = node_records.reshape(batch, -1), t_records.reshape(batch, -1)
position_features, common_nodes, walk_encodings = encode(node_records_r, t_records_r)
position_features = position_features.view(batch, n_walk, len_walk, self.pos_dim)
self.update_common_node_percentages(common_nodes)
end = time.time()
if self.verbosity > 1:
self.logger.info('encode positions encodings for the minibatch, time eclipsed: {} seconds'.format(str(end-start)))
return position_features
def forward_msg_walk(self, hidden_embeddings, edge_features, position_features, t_records_th, masks):
return self.walk_encoder.forward_one_node(hidden_embeddings, edge_features, position_features,
t_records_th, masks)
def update_ngh_finder(self, ngh_finder):
self.ngh_finder = ngh_finder
self.position_encoder.ngh_finder = ngh_finder
def update_common_node_percentages(self, common_node_percentage):
if self.flag_for_cur_edge:
self.common_node_percentages['pos'].append(common_node_percentage)
else:
self.common_node_percentages['neg'].append(common_node_percentage)
def save_common_node_percentages(self, dir):
torch.save(self.common_node_percentages, dir + '/common_node_percentages.pt')
def save_walk_encodings_scores(self, dir):
torch.save(self.walk_encodings_scores, dir + '/walk_encodings_scores.pt')
class PositionEncoder(nn.Module):
def __init__(self, num_layers, enc='saw', enc_dim=2, ngh_finder=None, verbosity=1, cpu_cores=1, logger=None):
super(PositionEncoder, self).__init__()
self.enc = enc
self.enc_dim = enc_dim
self.num_layers = num_layers
self.nodetime2emb_maps = None
self.projection = nn.Linear(1, 1)
self.cpu_cores = cpu_cores
self.ngh_finder = ngh_finder
self.verbosity = verbosity
self.logger = logger
if self.enc == 'spd':
self.trainable_embedding = nn.Embedding(num_embeddings=self.num_layers+2, embedding_dim=self.enc_dim)
else:
assert(self.enc in ['lp', 'saw'])
self.trainable_embedding = nn.Sequential(nn.Linear(in_features=self.num_layers+1, out_features=self.enc_dim),
nn.ReLU(),
nn.Linear(in_features=self.enc_dim, out_features=self.enc_dim))
self.logger.info("Distance encoding: {}".format(self.enc))
def init_internal_data(self, src_idx_l, tgt_idx_l, cut_time_l, subgraph_src, subgraph_tgt):
if self.enc_dim == 0:
return
start = time.time()
self.nodetime2emb_maps = self.collect_pos_mapping_ptree(src_idx_l, tgt_idx_l, cut_time_l,
subgraph_src, subgraph_tgt)
end = time.time()
if self.verbosity > 1:
self.logger.info('init positions encodings for the minibatch, '
'time eclipsed: {} seconds'.format(str(end-start)))
def collect_pos_mapping_ptree(self, src_idx_l, tgt_idx_l, cut_time_l, subgraph_src, subgraph_tgt):
if self.cpu_cores == 1:
subgraph_src_node, _, subgraph_src_ts = subgraph_src
subgraph_tgt_node, _, subgraph_tgt_ts = subgraph_tgt
nodetime2emb_maps = {}
for row in range(len(src_idx_l)):
src = src_idx_l[row]
tgt = tgt_idx_l[row]
cut_time = cut_time_l[row]
src_neighbors_node = [k_hop_neighbors[row] for k_hop_neighbors in subgraph_src_node]
src_neighbors_ts = [k_hop_neighbors[row] for k_hop_neighbors in subgraph_src_ts]
tgt_neighbors_node = [k_hop_neighbors[row] for k_hop_neighbors in subgraph_tgt_node]
tgt_neighbors_ts = [k_hop_neighbors[row] for k_hop_neighbors in subgraph_tgt_ts]
nodetime2emb_map = PositionEncoder.collect_pos_mapping_ptree_sample(src, tgt, cut_time,
src_neighbors_node,
src_neighbors_ts,
tgt_neighbors_node,
tgt_neighbors_ts,
batch_idx=row, enc=self.enc)
nodetime2emb_maps.update(nodetime2emb_map)
else:
nodetime2emb_maps = {}
cores = self.cpu_cores
if cores in [-1, 0]:
cores = mp.cpu_count()
pool = mp.Pool(processes=cores)
nodetime2emb_map = pool.map(PositionEncoder.collect_pos_mapping_ptree_sample_mp,
[(src_idx_l, tgt_idx_l, cut_time_l, subgraph_src, subgraph_tgt, row, self.enc)
for row in range(len(src_idx_l))], chunksize=len(src_idx_l)//cores+1)
pool.close()
for i in range(len(nodetime2emb_map)):
nodetime2emb_maps.update(nodetime2emb_map[i])
return nodetime2emb_maps
@staticmethod
def collect_pos_mapping_ptree_sample(src, tgt, cut_time, src_neighbors_node, src_neighbors_ts,
tgt_neighbors_node, tgt_neighbors_ts, batch_idx, enc='spd'):
n_hop = len(src_neighbors_node)
makekey = nodets2key
nodetime2emb = {}
if enc == 'spd':
for k in range(n_hop-1, -1, -1):
for src_node, src_ts, tgt_node, tgt_ts in zip(src_neighbors_node[k], src_neighbors_ts[k],
tgt_neighbors_node[k], tgt_neighbors_ts[k]):
src_key, tgt_key = makekey(batch_idx, src_node, src_ts), makekey(batch_idx, tgt_node, tgt_ts)
if src_key not in nodetime2emb:
nodetime2emb[src_key] = [k+1, 2*n_hop]
else:
nodetime2emb[src_key][0] = k+1
if tgt_key not in nodetime2emb:
nodetime2emb[tgt_key] = [2*n_hop, k+1]
else:
nodetime2emb[tgt_key][1] = k+1
src_key = makekey(batch_idx, src, cut_time)
tgt_key = makekey(batch_idx, tgt, cut_time)
if src_key in nodetime2emb:
nodetime2emb[src_key][0] = 0
else:
nodetime2emb[src_key] = [0, 2*n_hop]
if tgt_key in nodetime2emb:
nodetime2emb[tgt_key][1] = 0
else:
nodetime2emb[tgt_key] = [2*n_hop, 0]
null_key = makekey(batch_idx, 0, 0.0)
nodetime2emb[null_key] = [2 * n_hop, 2 * n_hop]
elif enc == 'lp':
src_neighbors_node, src_neighbors_ts = [[src]] + src_neighbors_node, [[cut_time]] + src_neighbors_ts
tgt_neighbors_node, tgt_neighbors_ts = [[tgt]] + tgt_neighbors_node, [[cut_time]] + tgt_neighbors_ts
for k in range(n_hop+1):
k_hop_total = len(src_neighbors_node[k])
for src_node, src_ts, tgt_node, tgt_ts in zip(src_neighbors_node[k], src_neighbors_ts[k],
tgt_neighbors_node[k], tgt_neighbors_ts[k]):
src_key, tgt_key = makekey(batch_idx, src_node, src_ts), makekey(batch_idx, tgt_node, tgt_ts)
if src_key not in nodetime2emb:
nodetime2emb[src_key] = np.zeros((2, n_hop+1), dtype=np.float32)
if tgt_key not in nodetime2emb:
nodetime2emb[tgt_key] = np.zeros((2, n_hop+1), dtype=np.float32)
nodetime2emb[src_key][0, k] += 1/k_hop_total
nodetime2emb[tgt_key][1, k] += 1/k_hop_total
null_key = makekey(batch_idx, 0, 0.0)
nodetime2emb[null_key] = np.zeros((2, n_hop + 1), dtype=np.float32)
# nodetime2emb[(0, PositionEncoder.float2str(0.0))] = np.zeros((2, n_hop+1), dtype=np.float32)
else:
assert(enc == 'saw')
src_neighbors_node, src_neighbors_ts = [[src]] + src_neighbors_node, [[cut_time]] + src_neighbors_ts
tgt_neighbors_node, tgt_neighbors_ts = [[tgt]] + tgt_neighbors_node, [[cut_time]] + tgt_neighbors_ts
src_seen_nodes2label = {}
tgt_seen_nodes2label = {}
for k in range(n_hop + 1):
for src_node, src_ts, tgt_node, tgt_ts in zip(src_neighbors_node[k], src_neighbors_ts[k],
tgt_neighbors_node[k], tgt_neighbors_ts[k]):
src_key, tgt_key = makekey(batch_idx, src_node, src_ts), makekey(batch_idx, tgt_node, tgt_ts)
if src_key not in nodetime2emb:
nodetime2emb[src_key] = np.zeros((n_hop + 1, ), dtype=np.float32)
if src_node not in src_seen_nodes2label:
new_src_node_label = k
src_seen_nodes2label[src_key] = k
else:
new_src_node_label = src_seen_nodes2label[src_node]
nodetime2emb[src_key][new_src_node_label] = 1
if tgt_key not in nodetime2emb:
nodetime2emb[tgt_key] = np.zeros((n_hop + 1, ), dtype=np.float32)
if tgt_node not in tgt_seen_nodes2label:
new_tgt_node_label = k
tgt_seen_nodes2label[tgt_node] = k
else:
new_tgt_node_label = tgt_seen_nodes2label[tgt_node]
nodetime2emb[src_key][new_tgt_node_label] = 1
null_key = makekey(batch_idx, 0, 0.0)
nodetime2emb[null_key] = np.zeros((n_hop + 1, ), dtype=np.float32)
return nodetime2emb
def forward(self, node_record, t_record):
device = next(self.projection.parameters()).device
batched_keys = make_batched_keys(node_record, t_record)
unique, inv = np.unique(batched_keys, return_inverse=True)
unordered_encodings = np.array([self.nodetime2emb_maps[key] for key in unique])
encodings = unordered_encodings[inv, :]
encodings = torch.tensor(encodings).to(device)
walk_encodings = None
common_nodes = (((encodings.sum(-1) > 0).sum(-1) == 2).sum().float() / (encodings.shape[0] * encodings.shape[1])).item()
encodings = self.get_trainable_encodings(encodings)
return encodings, common_nodes, walk_encodings
@staticmethod
def collect_pos_mapping_ptree_sample_mp(args):
src_idx_l, tgt_idx_l, cut_time_l, subgraph_src, subgraph_tgt, row, enc = args
subgraph_src_node, _, subgraph_src_ts = subgraph_src
subgraph_tgt_node, _, subgraph_tgt_ts = subgraph_tgt
src = src_idx_l[row]
tgt = tgt_idx_l[row]
cut_time = cut_time_l[row]
src_neighbors_node = [k_hop_neighbors[row] for k_hop_neighbors in subgraph_src_node]
src_neighbors_ts = [k_hop_neighbors[row] for k_hop_neighbors in subgraph_src_ts]
tgt_neighbors_node = [k_hop_neighbors[row] for k_hop_neighbors in subgraph_tgt_node]
tgt_neighbors_ts = [k_hop_neighbors[row] for k_hop_neighbors in subgraph_tgt_ts]
nodetime2emb_map = PositionEncoder.collect_pos_mapping_ptree_sample(src, tgt, cut_time,
src_neighbors_node, src_neighbors_ts,
tgt_neighbors_node, tgt_neighbors_ts,
batch_idx=row, enc=enc)
return nodetime2emb_map
def get_trainable_encodings(self, encodings):
if self.enc == 'spd':
encodings[encodings > (self.num_layers+0.5)] = self.num_layers + 1
encodings = self.trainable_embedding(encodings.long())
encodings = encodings.sum(dim=-2)
elif self.enc == 'lp':
encodings = self.trainable_embedding(encodings.float())
encodings = encodings.sum(dim=-2)
else:
assert(self.enc == 'saw')
encodings = self.trainable_embedding(encodings.float())
return encodings
class WalkEncoder(nn.Module):
def __init__(self, feat_dim, pos_dim, model_dim, out_dim, logger, mutual=False, dropout_p=0.1,
walk_linear_out=False, solver='rk4', step_size=0.125):
super(WalkEncoder, self).__init__()
self.solver = solver
self.step_size = step_size
self.feat_dim = feat_dim
self.pos_dim = pos_dim
self.model_dim = model_dim
self.attn_dim = self.model_dim//2
self.n_head = 8
self.out_dim = out_dim
self.mutual = mutual
self.dropout_p = dropout_p
self.logger = logger
self.feature_encoder = FeatureEncoder(self.feat_dim, self.model_dim, self.dropout_p,
self.solver, self.step_size)
self.position_encoder = FeatureEncoder(self.pos_dim, self.pos_dim, self.dropout_p,
self.solver, self.step_size)
self.projector = nn.Sequential(nn.Linear(self.feature_encoder.hidden_dim + self.position_encoder.hidden_dim,
self.attn_dim), nn.ReLU(), nn.Dropout(self.dropout_p))
if self.mutual:
self.mutual_attention_src2tgt = TransformerDecoderLayer(d_model=self.attn_dim, nhead=self.n_head,
dim_feedforward=4*self.model_dim,
dropout=self.dropout_p,
activation='relu')
self.mutual_attention_tgt2src = TransformerDecoderLayer(d_model=self.attn_dim, nhead=self.n_head,
dim_feedforward=4*self.model_dim,
dropout=self.dropout_p,
activation='relu')
self.pooler = SetPooler(n_features=self.attn_dim, out_features=self.out_dim, dropout_p=self.dropout_p,
walk_linear_out=walk_linear_out)
def forward_one_node(self, hidden_embeddings, edge_features, position_features, t_records, masks=None):
combined_features = self.aggregate(hidden_embeddings, edge_features, position_features)
combined_features = self.feature_encoder.integrate(t_records, combined_features, masks)
if self.pos_dim > 0:
position_features = self.position_encoder.integrate(t_records, position_features, masks)
combined_features = torch.cat([combined_features, position_features], dim=-1)
x = self.projector(combined_features)
x = self.pooler(x, agg='mean')
return x
def mutual_query(self, src_embed, tgt_embed):
src_emb = self.mutual_attention_src2tgt(src_embed, tgt_embed)
tgt_emb = self.mutual_attention_tgt2src(tgt_embed, src_embed)
src_emb = self.pooler(src_emb)
tgt_emb = self.pooler(tgt_emb)
return src_emb, tgt_emb
def aggregate(self, hidden_embeddings, edge_features, position_features):
batch, n_walk, len_walk, _ = hidden_embeddings.shape
device = hidden_embeddings.device
if position_features is None:
assert(self.pos_dim == 0)
combined_features = torch.cat([hidden_embeddings, edge_features], dim=-1)
else:
combined_features = torch.cat([hidden_embeddings, edge_features, position_features], dim=-1)
combined_features = combined_features.to(device)
assert(combined_features.size(-1) == self.feat_dim)
return combined_features
class FeatureEncoder(nn.Module):
start_time = 0.0
end_time = 1.0
def __init__(self, in_features, hidden_features, dropout_p=0.1, solver='rk4', step_size=0.125):
super(FeatureEncoder, self).__init__()
self.hidden_dim = hidden_features
if self.hidden_dim == 0:
return
self.gru = GRUCell(in_features, hidden_features)
self.odefun = GRUODECell(hidden_features)
self.dropout = nn.Dropout(dropout_p)
self.solver = solver
if self.solver == 'euler' or self.solver == 'rk4':
self.step_size = step_size
def integrate(self, t_records, X, mask=None):
batch, n_walk, len_walk, feat_dim = X.shape
X = X.view(batch * n_walk, len_walk, feat_dim)
t_records = t_records.view(batch * n_walk, len_walk, 1)
h = torch.zeros(batch * n_walk, self.hidden_dim).type_as(X)
for i in range(X.shape[1] - 1):
h = self.gru(X[:, i, :], h)
t0 = t_records[:, i+1, :]
t1 = t_records[:, i, :]
delta_t = torch.log10(torch.abs(t1 - t0) + 1.0) + 0.01
h = (torch.zeros_like(t0), delta_t, h)
if self.solver == 'euler' or self.solver == 'rk4':
solution = odeint(self,
h,
torch.tensor([self.start_time, self.end_time]).type_as(X),
method=self.solver,
options=dict(step_size=self.step_size))
elif self.solver == 'dopri5':
solution = odeint(self,
h,
torch.tensor([self.start_time, self.end_time]).type_as(X),
method=self.solver)
else:
raise NotImplementedError('{} solver is not implemented.'.format(self.solver))
_, _, h = tuple(s[-1] for s in solution)
encoded_features = self.gru(X[:, -1, :], h)
encoded_features = encoded_features.view(batch, n_walk, self.hidden_dim)
encoded_features = self.dropout(encoded_features)
return encoded_features
def forward(self, s, state):
t0, t1, x = state
ratio = (t1 - t0) / (self.end_time - self.start_time)
t = (s - self.start_time) * ratio + t0
dx = self.odefun(t, x)
dx = dx * ratio
return torch.zeros_like(t0), torch.zeros_like(t1), dx
class SetPooler(nn.Module):
def __init__(self, n_features, out_features, dropout_p=0.1, walk_linear_out=False):
super(SetPooler, self).__init__()
self.mean_proj = nn.Linear(n_features, n_features)
self.max_proj = nn.Linear(n_features, n_features)
self.attn_weight_mat = nn.Parameter(torch.zeros((2, n_features, n_features)), requires_grad=True)
nn.init.xavier_uniform_(self.attn_weight_mat.data[0])
nn.init.xavier_uniform_(self.attn_weight_mat.data[1])
self.dropout = nn.Dropout(dropout_p)
self.out_proj = nn.Sequential(nn.Linear(n_features, out_features), nn.ReLU(), self.dropout)
self.walk_linear_out = walk_linear_out
def forward(self, X, agg='sum'):
if self.walk_linear_out:
return self.out_proj(X)
if agg == 'sum':
return self.out_proj(X.sum(dim=-2))
else:
assert(agg == 'mean')
return self.out_proj(X.mean(dim=-2))
class TransformerDecoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu"):
super(TransformerDecoderLayer, self).__init__()
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
def forward(self, tgt, memory, tgt_mask=None, memory_mask=None,
tgt_key_padding_mask=None, memory_key_padding_mask=None):
tgt_t = tgt.transpose(0, 1)
tgt2 = self.self_attn(tgt_t, tgt_t, tgt_t, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0].transpose(0, 1)
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
tgt2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)[0]
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
if hasattr(self, "activation"):
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
else:
tgt2 = self.linear2(self.dropout(F.relu(self.linear1(tgt))))
tgt = tgt + self.dropout3(tgt2)
tgt = self.norm3(tgt)
return tgt
def _get_activation_fn(activation):
if activation == "relu":
return F.relu
elif activation == "gelu":
return F.gelu
else:
raise RuntimeError("activation need be relu or gelu, not %s." % activation)