-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDriver.cpp
1002 lines (903 loc) · 40 KB
/
Driver.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <iostream>
#include "depends/SEAL/native/src/seal/seal.h"
#include "ringsnark/zk_proof_systems/rinocchio/rinocchio.hpp"
#include "depends/SEAL-Polytools/include/poly_arith.h"
#include "ringsnark/seal/seal_ring.hpp"
#include "ringsnark/gadgetlib/protoboard.hpp"
#include <vector>
#include <map>
#include <boost/algorithm/string/trim.hpp>
#include <string>
#include <stack>
#include "./stdc++.h"
#include <ctype.h>
#include <regex>
#include <chrono>
using namespace std;
using namespace seal;
/// Type definitions for
// Ring element
typedef ringsnark::seal::RingElem R;
// Encoding element
typedef ringsnark::seal::EncodingElem E;
// Rinocchio proving and verification keys.
typedef ::ringsnark::rinocchio::keypair<ringsnark::seal::RingElem, ringsnark::seal::EncodingElem> RincKeys;
// Rinocchio proof
typedef ringsnark::rinocchio::proof<ringsnark::seal::RingElem, ringsnark::seal::EncodingElem> RincProof;
// Rinocchio proving key
typedef ringsnark::rinocchio::proving_key<ringsnark::seal::RingElem, ringsnark::seal::EncodingElem> RincPb;
// Rinocchio verification key
typedef ringsnark::rinocchio::verification_key<ringsnark::seal::RingElem, ringsnark::seal::EncodingElem> RincVk;
void pause_4_debug(string msg) {
char x;
cout << "\n"
<< msg << endl;
cin >> x;
}
/// A class for initializing variables and elements used for Rinnichio and SEAL HE
class Initializer {
private:
/// polynomial modulus degree for Rinocchio
size_t zkp_poly_modulus_degree; // = pow(2, 11);
/// polynomial modulus degree for SEAL
size_t he_poly_modulus_degree; // = 8192;
/// Plaintext bit size
int zkp_plain_bit_size; //= 20;
int he_plain_bit_size;
/// The secret key object for decryption
SecretKey secretKey;
/// The public key object for decryption
PublicKey publicKey;
/// The relinearization keys for relinearizing the ciphertext
RelinKeys relinKeys;
/// SEAL encryptor object
Encryptor *encryptor;
/// SEAL evaluator object
Evaluator *evaluator;
/// SEAL decryptor object
Decryptor *decryptor;
/// Number Theoretic Tables for multiplying high-degree polynomials for Rinocchio
const util::NTTTables *tables; //= zkp_context.get_context_data(zkp_context.first_parms_id())->small_ntt_tables();
public:
Initializer() {
/// Default polynomial modulus degree for ZKP. Changing it may cause errors or getting noise as a result.
this->zkp_poly_modulus_degree = pow(2, 11);//pow(2, 11);
/// Default polynomial modulus degree for HE
this->he_poly_modulus_degree = pow(2, 14); //8192;
/// Plaintext bit size
this->zkp_plain_bit_size = 30;//20;
this->he_plain_bit_size = 30;//20;
/// Setup SEALContext object for HE.
SEALContext *he_context = getHEContext();
// BatchEncoder *he_encoder = getHEEncoder(*he_context);
/// Setup a SEALContext object for ZKP.
SEALContext *zkp_context = getZKPContext();
// BatchEncoder *zkp_encoder = getZKPEncoder(*zkp_context);
/// Initializing the Ring element and the Encoding element for ZKP.
R::set_context(*zkp_context);
E::set_context();
/// Creating the secret, public, and relinearization keys for HE.
KeyGenerator keygen(*he_context);
secretKey = keygen.secret_key();
keygen.create_public_key(publicKey);
keygen.create_relin_keys(relinKeys); // Won't work with poly_mod_degree < 8192
/// Creating the encryptor, evaluator, and decryptor for HE.
encryptor = new Encryptor(*he_context, publicKey);
evaluator = new Evaluator(*he_context);
decryptor = new Decryptor(*he_context, secretKey);
/// Number Theoretic Tables for multiplying high-degree polynomials for Rinocchio
tables = zkp_context->get_context_data(zkp_context->first_parms_id())->small_ntt_tables();
}
/**Creates a SEALContext object comprising the parameters for HE.
* @return context a SEALContext object.
* */
[[nodiscard]] SEALContext *getHEContext() const {
// Define the scheme type = bgv
EncryptionParameters params(scheme_type::bgv);
params.set_poly_modulus_degree(he_poly_modulus_degree);
// Initialize the coefficient modulus
params.set_coeff_modulus(CoeffModulus::BFVDefault(he_poly_modulus_degree));
// Initialize the plain modulus
params.set_plain_modulus(PlainModulus::Batching(he_poly_modulus_degree, he_plain_bit_size));
// wrap the parameters in a context object
auto context = new SEALContext(params);
return context;
}
/** Creates a BatchEncoder object for HE.
* @param he_context a SEALContext object
* @return batchEncoder a batchEncoder object.
* */
BatchEncoder *getHEEncoder(SEALContext &he_context) const {
auto *batchEncoder = new BatchEncoder(he_context);
return batchEncoder;
}
/**
* Creates a SEALContext object for ZKP.
* @return context a SEALContext object.
* */
[[nodiscard]] SEALContext *getZKPContext() const {
// Define the scheme type = bgv
EncryptionParameters params(scheme_type::bgv);
// Define the polynomial modulus degree = 2^11
params.set_poly_modulus_degree(this->zkp_poly_modulus_degree);
// Initialize the coefficient modulus
params.set_coeff_modulus(CoeffModulus::BFVDefault(this->zkp_poly_modulus_degree));
// Initialize the plain modulus
params.set_plain_modulus(PlainModulus::Batching(this->zkp_poly_modulus_degree,
this->zkp_plain_bit_size));
// wrap the parameters in a context object
auto context = new SEALContext(params);
return context;
}
/**
* Creates a BatchEncoder object for ZKP.
* @return batchEncoder
* */
BatchEncoder *getZKPEncoder(SEALContext &zkp_context) const {
auto *batchEncoder = new BatchEncoder(zkp_context);
return batchEncoder;
}
/**
* Creates Rinnochhio key pair object.
* @param pb a protoboard object that holds the R1CS constraint.
* @return keypair an object has the proving and verification keys.
* */
RincKeys get_Rinocchio_keys(const ringsnark::protoboard<R> &pb) {
const auto keypair = ringsnark::rinocchio::generator<R, E>(pb.get_constraint_system());
return keypair;
}
[[nodiscard]] size_t getZkpPolyModulusDegree() const {
return zkp_poly_modulus_degree;
}
[[nodiscard]] size_t getHePolyModulusDegree() const {
return he_poly_modulus_degree;
}
[[nodiscard]] int getPlainBitSize() const {
return zkp_plain_bit_size;
}
[[nodiscard]] const SecretKey &getSecretKey() const {
return secretKey;
}
[[nodiscard]] const PublicKey &getPublicKey() const {
return publicKey;
}
[[nodiscard]] const RelinKeys &getRelinKeys() const {
return relinKeys;
}
[[nodiscard]] Encryptor *getEncryptor() const {
return encryptor;
}
[[nodiscard]] Evaluator *getEvaluator() const {
return evaluator;
}
[[nodiscard]] Decryptor *getDecryptor() const {
return decryptor;
}
[[nodiscard]] const util::NTTTables *getTables() const {
return tables;
}
};
class Circuit {
private:
/// This variale used to track the size of the execution vector, which holds the instruction to be executed.
size_t n;
/// The last value computed and stored in the ciphers vector is the result. This variable is used to track the
/// values computed and stored in the vector.
int res_indx;
/// A boolean variable to check if the computations has been verified or not.
bool verified = false;
/// A boolean variable to check if the circuit has been created before excution or not.
bool circuit_created = false;
/// The number of variables being used within the circuit.
int vars_count;
/// A vector holding the ciphertext involved in the computations
vector<Ciphertext> ciphers;
/// A vector of RingElem objects that define the R1CS system
ringsnark::pb_variable_array<R> vars;
/// A vector of unsigned integers that are involved in the computations. Just normal values for debugging
vector<int64_t> vs;
/// A vector of SealPoly for running Rinocchio
vector<::polytools::SealPoly> polys;
/// A vector of RingElem objects for Rinocchio
vector<ringsnark::seal::RingElem> values;
/// A 2D vector holding the instructions (operations) to be executed by the circuit.
/// The first dimension holds vectors of operations.
/// The second dimension is a vector that holds the operation code (opcode) and the its parameters.
vector<vector<int>> exec_lst;
/// Encryptor object for HE.
Encryptor *encryptor;
/// Evaluator object for HE.
Evaluator *evaluator;
/// Decryptor object for HE.
Decryptor *decryptor;
/// The secret key for HE decryption.
SecretKey secretKey;
/// The public key for HE encryption.
PublicKey publicKey;
/// The relinearization keys for bootstrapping HE operations.
RelinKeys relinKeys;
/// A BatchEncoder object for ZKP.
BatchEncoder *zkp_encoder;
/// A SEALContext object for ZKP.
SEALContext *zkp_context;
/// A BatchEncoder object for HE.
BatchEncoder *he_encoder;
/// A SEALContext object for HE.
SEALContext *he_context;
/// Number Theoretic Tables for ZKP.
const util::NTTTables *tables;
/// An object for defining the R1CS constraints.
ringsnark::protoboard<R> pb;
/**
* Compute the multiplication between two ciphertexts.
* @param op1_indx the index of the first ciphertext.
* @param op2_indx the index of the second ciphertext.
* @param res_indx the index at which to store the result.
* */
void mul_(int op1_indx, int op2_indx, int res_indx) {
// uint64_t op1 = vs[op1_indx];
// uint64_t op2 = vs[op2_indx];
// vs[res_indx] = op1 * op2;
/// For HE
evaluator->multiply(ciphers[op1_indx], ciphers[op2_indx], ciphers[res_indx]);
evaluator->relinearize_inplace(ciphers[res_indx], relinKeys);
//evaluator->mod_switch_to_next_inplace(ciphers[res_indx]);
/// For ZKP
auto poly = ::polytools::SealPoly(polys[op1_indx]);
poly.multiply_inplace(polys[op2_indx]);
polys[res_indx] = poly;
values[res_indx] = ringsnark::seal::RingElem(poly);
// cout << "mul:\t" << vs[res_indx] << endl;
}
/**
* Compute the addition between two ciphertexts.
* @param op1_indx the index of the first ciphertext.
* @param op2_indx the index of the second ciphertext.
* @param one_indx the index of the value 1 to be multiplied by the result of the addition operation.
* @param res_indx the index at which to store the result.
* */
void add_(int op1_indx, int op2_indx, int one_indx, int res_indx) {
// vs[res_indx] = vs[op1_indx] + vs[op2_indx];
// For HE
evaluator->add(ciphers[op1_indx], ciphers[op2_indx], ciphers[res_indx]);
/*Cancel relineraizing after additions*/
//evaluator->relinearize_inplace(ciphers[res_indx], relinKeys);
// For ZKP
auto poly = ::polytools::SealPoly(polys[op1_indx]);
poly.add_inplace(polys[op2_indx]);
poly.multiply_inplace(polys[one_indx]);
polys[res_indx] = poly;
values[res_indx] = ringsnark::seal::RingElem(poly);
}
/**
* Store a ciphertext in the ciphers vector.
* @param cipher the ciphertext to be stored.
* @param indx the index at which the ciphertext will be stored.*/
void def_val_(Ciphertext cipher, int indx) {
// vs[indx] = const_val;
// vector<int64_t> pod_matrix(1, const_val);
// Plaintext pt;
// he_encoder->encode(pod_matrix, pt);
// encryptor->encrypt(pt, ciphers[indx]);
Plaintext x;
ciphers[indx] = cipher;
zkp_encoder->encode(cipher, x);
auto poly = polytools::SealPoly(*zkp_context, x, &(zkp_context->first_parms_id()));
poly.ntt_inplace(tables);
polys[indx] = poly;
values[indx] = ringsnark::seal::RingElem(poly);
// cout << "def:\t" << vs[indx] << endl;
}
/**
* Negate a ciphertext.
* @param indx the indx of the ciphertext to be negated.
* @param neg_one_indx the index of -1 to be multiplied by the ciphertext.
* @param res_indx the index at which the result will be stored.
* */
void negate_(int indx, int neg_one_indx, int res_indx) {
// vs[res_indx] = vs[indx] * -1;
evaluator->negate(ciphers[indx], ciphers[res_indx]);
auto poly = ::polytools::SealPoly(polys[indx]);
poly.multiply_inplace(polys[neg_one_indx]);
polys[res_indx] = poly;
values[res_indx] = ringsnark::seal::RingElem(poly);
}
/**
* Compute the subtraction between two ciphertexts.
* @param op1_indx the index of the first ciphertext.
* @param op2_indx the index of the second ciphertext.
* @param one_indx the index of the value 1 to be multiplied by the result of the addition operation.
* @param res_indx the index at which to store the result.
* */
void subtract_(int op1_indx, int op2_indx, int one_indx, int res_indx) {
evaluator->sub(ciphers[op1_indx], ciphers[op2_indx], ciphers[res_indx]);
auto poly = ::polytools::SealPoly(polys[op1_indx]);
poly.subtract_inplace(polys[op2_indx]);
poly.multiply_inplace(polys[one_indx]);
polys[res_indx] = poly;
values[res_indx] = ringsnark::seal::RingElem(poly);
}
/**
* Assigning the encrypted value of variable to another variable within the ciphers vector (e.g., r21 := r15).
* @param lhs_indx the left-hand side index of the variable.
* @param rhs_indx the right-hand side index of the variable.
* */
void assign_(int lhs_indx, int rhs_indx, int one_indx) {
if (rhs_indx >= ciphers.size()) {
cout << "The right-hand side >> r" << rhs_indx << " doesn't exist in ciphers vector!" << endl;
exit(2);
}
if (lhs_indx >= ciphers.size()) {
cout << "The left-hand side >> r" << lhs_indx << " doesn't exist in ciphers vector!" << endl;
exit(2);
}
ciphers[lhs_indx] = ciphers[rhs_indx];
}
/**
* Store the encrypted constants input by the user to the ciphers vector to be used within the circuit.
* @param in_ciphers a vector of Ciphertext.
* */
void setInput_(vector<Ciphertext> in_ciphers) {
Plaintext x;
size_t size = in_ciphers.size();
for (int i = 0; i < size; ++i) {
auto c = in_ciphers[i];
ciphers[i] = c;
zkp_encoder->encode(c, x);
auto poly = polytools::SealPoly(*zkp_context, x, &(zkp_context->first_parms_id()));
poly.ntt_inplace(tables);
polys[i] = poly;
values[i] = ringsnark::seal::RingElem(poly);
}
}
public:
/// The constructor takes an Initializer object to initialze local objects and variables.
explicit Circuit(const Initializer &initializer) {
this->n = 0;
this->res_indx = 0;
this->vars_count = 0;
this->zkp_context = initializer.getZKPContext();
this->zkp_encoder = initializer.getZKPEncoder(*this->zkp_context);
this->he_context = initializer.getHEContext();
this->he_encoder = initializer.getHEEncoder(*this->he_context);
this->encryptor = initializer.getEncryptor();
this->decryptor = initializer.getDecryptor();
this->evaluator = initializer.getEvaluator();
this->secretKey = initializer.getSecretKey();
this->publicKey = initializer.getPublicKey();
this->relinKeys = initializer.getRelinKeys();
this->tables = initializer.getTables();
}
/**
* Establish the circuit defined by the user.
* @param exec_list a 2D vector includes the operations and their operands to be executed.
* @param in_ciphers a vector of Ciphertext includes user's defined encrypted constants.
* @return pb the R1CS constraints.
* */
ringsnark::protoboard<R> create_circuit(vector<vector<int>> exec_list, vector<Ciphertext> &in_ciphers) {
/// the vectors size is the number of operations defined by exec_list + the constants defined by the user.
this->n = exec_list.size() + in_ciphers.size();
/// Setup vars vector for verifying the computations executed by the circuit.
ringsnark::pb_variable_array<R> tmp_vars(n, ringsnark::pb_variable<R>());
vars = tmp_vars;
vars.allocate(pb, n, "x");
/// Set the input size of the circuit.
pb.set_input_sizes(n - 1); // vars[n-1] is private, all other values are public
const size_t N = zkp_context->get_context_data(zkp_context->first_parms_id())->parms().poly_modulus_degree();
/// A vector of plain values involved in the computation
vector<int64_t> tmp_vs(N);
vs = tmp_vs;
/// A vector of Ciphertexts which includes all the values involved in the circuit.
vector<Ciphertext> tmp(n);
ciphers = tmp;
/// A vector of SealPoly used in Rinocchio
vector<::polytools::SealPoly> tmp_polys(n, ::polytools::SealPoly(*this->zkp_context));
polys = tmp_polys;
/// A vector of RingElem used in Rinocchio
vector<ringsnark::seal::RingElem> tmp_values(n);
values = tmp_values;
/// Register user's defined constants within the ciphers vector.
setInput_(in_ciphers);
// Loop over the execution list.
for (int i = 0; i < exec_list.size(); ++i) {
vector<int> inst = exec_list[i]; // get an instruction
int opcode = inst[0]; // the opcode is the first element in the instruction vector.
if (opcode == 0) { // def_val -- do nothing.
continue;
} else if (opcode == 1) { // mul
int op1_indx = inst[1]; // read the index of op1.
int op2_indx = inst[2]; // read the index of op2.
int res_indx = inst[3]; // read the index of the result.
// Register the R1CS constraint.
pb.add_r1cs_constraint(ringsnark::r1cs_constraint<R>(vars[op1_indx], vars[op2_indx],
vars[res_indx]));
} else if (opcode == 2) { // def_var -- do nothing.
continue;
} else if (opcode == 3) { // add
int op1_indx = inst[1]; // read the index of op1.
int op2_indx = inst[2]; // read the index of op2.
int one_indx = inst[3]; // read the index of 1 value.
int res_indx = inst[4]; // read the index of the result.
// Register the R1CS constraint.
pb.add_r1cs_constraint(ringsnark::r1cs_constraint<R>(vars[op1_indx] + vars[op2_indx],
vars[one_indx], vars[res_indx]));
} else if (opcode == 4) { // negate
int indx = inst[1]; // read the index of the value to be negated.
int neg_one_indx = inst[2]; // read the index of -1
int res_indx = inst[3]; // read the index of the result
// ringsnark::seal::RingElem::one().negate_inplace();
// Register the R1CS constraint.
pb.add_r1cs_constraint(ringsnark::r1cs_constraint<R>(vars[indx], vars[neg_one_indx],
vars[res_indx]));
} else if (opcode == 5) { //subtract
int op1_indx = inst[1];
int op2_indx = inst[2];
int one_indx = inst[3];
int res_indx = inst[4];
pb.add_r1cs_constraint(ringsnark::r1cs_constraint<R>(vars[op1_indx] - vars[op2_indx], vars[one_indx],
vars[res_indx]));
} else if (opcode == 6) { // assignment
continue;
} else if (opcode == 7){
int op1_indx = inst[1];
int op2_indx = inst[2];
int res_indx = inst[3];
}
else {
cout << "Unrecognized opcode >> " << opcode << endl;
}
}
circuit_created = true;
return pb;
}
/**
* Register the multiplication operation in the execution list to be executed by the circuit.
* @param op1_indx the index of the first operand.
* @param op2_indx the index of the second operand.
* @param res_indx the index at which the result is stored.
* */
void mul(int op1_indx, int op2_indx, int res_indx) {
// Encode the instruction into the execution list.
vector<int> instruction{1, op1_indx, op2_indx, res_indx}; // 1 --> is the instruction code.
exec_lst.push_back(instruction);
}
/**
* Register the addition operation in the execution list to be executed by the circuit.
* @param op1_indx the index of the first operand.
* @param op2_indx the index of the second operand.
* @param one_indx the index of the value 1.
* @param res_indx the index at which the result is stored.
* */
void add(int op1_indx, int op2_indx, int one_indx, int res_indx) {
// Encode the instruction into the execution list.
vector<int> instruction{3, op1_indx, op2_indx, one_indx, res_indx}; // 3 --> is the instruction code.
exec_lst.push_back(instruction);
}
[[deprecated]] void def_val(int val, int indx) {
// operation, val, indx, -1
vector<int> instruction{0, val, indx, -1};
exec_lst.push_back(instruction);
}
/**
* Define a variable withing circuit.
* @param var a character represents a variable.
* @param indx the index at which the variable will be stored.
* */
void def_var(char var, int indx) {
this->vars_count++;
vector<int> instruction{2, int(var), indx};
exec_lst.push_back(instruction);
}
/**
* Register a negation operation in the execution list to be executed by the circuit.
* @param indx the index of the value to be negated.
* @param neg_one_indx the index of the -1 value.
* @param res_indx the index at which the result will be stored.
* */
void negate(int indx, int neg_one_indx, int res_indx) {
// Encode the instruction into the execution list.
vector<int> instruction{4, indx, neg_one_indx, res_indx}; // 4 --> is the instruction code.
exec_lst.push_back(instruction);
}
/**
* Register the subtraction operation in the execution list to be executed by the circuit.
* @param op1_indx the index of the first operand.
* @param op2_indx the index of the second operand.
* @param one_indx the index of the value 1.
* @param res_indx the index at which the result is stored.
* */
void subtract(int op1_indx, int op2_indx, int one_indx, int res_indx) {
vector<int> instruction{5, op1_indx, op2_indx, one_indx, res_indx}; // 5 --> is the instruction code.
exec_lst.push_back(instruction);
}
/**
* Assigning the encrypted value of variable to another variable within the ctxt vector (e.g., r21 := r15).
* @param lhs_indx the left-hand side index of the variable.
* @param rhs_indx the right-hand side index of the variable.
* */
void assign(int lhs_indx, int rhs_indx, int one_indx) {
vector<int> instruction{6, lhs_indx, rhs_indx, one_indx}; // 6 --> is the instruction code.
exec_lst.push_back(instruction);
}
/**
* Returns a 2D vector representing the execution list.
* */
vector<vector<int>> get_exec_list() {
return exec_lst;
}
/**
* Print a textual representation of the circuit.
* */
void print_circuit() {
for (int i = 0; i < exec_lst.size(); ++i) {
vector<int> inst = exec_lst[i];
int opcode = inst[0];
if (opcode == 0) { // def_val
cout << "$" << inst[2] << " := " << inst[1] << endl;
} else if (opcode == 1) { // mul
cout << "$" << inst[3] << " := "
<< "$" << inst[1] << " * "
<< "$" << inst[2] << endl;
} else if (opcode == 2) { // def_var
cout << "$" << inst[2] << " := " << char(inst[1]) << endl;
} else if (opcode == 3) { // add
cout << "$" << inst[4] << " := "
<< "$" << inst[1] << " + "
<< "$" << inst[2] << endl;
} else if (opcode == 4) { // negate
cout << "$" << inst[3] << " := "
<< "$(-)" << inst[1] << endl;
} else if (opcode == 5) {
cout << "$" << inst[4] << " := "
<< "$" << inst[1] << " - "
<< "$" << inst[2] << endl;
} else if (opcode == 6) {
cout << "$" << inst[1] << " := "
<< "$" << inst[2] << endl;
} else {
cout << "Unrecognized opcode >> " << opcode << endl;
}
}
}
/**
* Execute the current circuit.
* @param exec_list a 2D vector representing the operations to be executed by the circuit.
* @param vars_vals a map of char-Ciphertext pair representing the ciphertext value of a previously
* defined variable.
* */
void execute(const vector<vector<int>> &exec_list, map<char, Ciphertext> vars_vals) {
if (circuit_created) {
// Loop over each instruction in the list.
for (auto inst: exec_list) {
// get an instruction
// get the instruction code
int opcode = inst[0];
// if it is 0, then it's a value definition operation.
if (opcode == 0) { // def_val
// def_val_(inst[1], inst[2]);
}
// if it is 1, then it is a multiplication operation
else if (opcode == 1) { // mul
mul_(inst[1], inst[2], inst[3]);
res_indx = inst[3];
}
// if it is 2, then it is a summation operation
else if (opcode == 2) { // def_var
char var = char(inst[1]);
auto val = vars_vals[var];
int indx = inst[2];
def_val_(val, indx);
}
// if it is 3, then it is an add operation
else if (opcode == 3) { // add
add_(inst[1], inst[2], inst[3], inst[4]);
res_indx = inst[4];
}
// if it is 4, then it is negation operation
else if (opcode == 4) {
negate_(inst[1], inst[2], inst[3]);
res_indx = inst[3];
} else if (opcode == 5) {
subtract_(inst[1], inst[2], inst[3], inst[4]);
res_indx = inst[4];
} else if (opcode == 6) {
assign_(inst[1], inst[2], inst[3]);
res_indx = inst[1];
} else if (opcode == 7){
// eq_(inst[1], inst[2], inst[3]);
// res_indx = inst[1];
}
else {
cout << "Unrecognized opcode >> " << opcode << endl;
}
}
for (size_t i = 0; i < n; i++) {
pb.val(vars[i]) = values[i];
}
} else {
cout << "The circuit is not created!" << endl;
exit(1);
}
}
/**
* Print the result of the execution. It works only when the circuit is created and the computations are verified.
* */
void get_results() {
if (verified) {
cout << "R1CS satisfied: " << std::boolalpha << pb.is_satisfied() << endl;
// TODO
Plaintext plain_res;
auto ctxt = ciphers[res_indx];
decryptor->decrypt(ctxt, plain_res);
vector<int64_t> plain_res_decode;
he_encoder->decode(plain_res, plain_res_decode);
cout << "Noise Budget= " << decryptor->invariant_noise_budget(ctxt) << endl;
cout << "Decrypted result= " << plain_res_decode[0] << endl;
/////////////////////////
// for (int i = 20; i <23 ; ++i) {
// ctxt = ciphers[i];
// decryptor->decrypt(ctxt, plain_res);
// he_encoder->decode(plain_res, plain_res_decode);
// cout << "Decrypted result= " << plain_res_decode[0] << endl;
// }
cout << endl;
} else {
cout << "The output is not verified!" << endl;
}
}
/**
* Generate a proof for the execution of the circuit.
* @param pk the proving key for Rinocchio.
* */
RincProof prove(const RincPb &pk) {
cout << "\n=== Generating Proof ===" << endl;
auto proof = ringsnark::rinocchio::prover(pk,
pb.primary_input(),
pb.auxiliary_input());
//cout << "Size of proof:\t" << proof.size_in_bits() << " bits" << endl;
return proof;
}
/**
* Verify the generated proof.
* @param vk the verification key.
* @param proof the generated proof.
* */
void verify(const RincVk &vk, const RincProof &proof) {
cout << "\n=== Verifying ===" << endl;
const bool verif = ringsnark::rinocchio::verifier(vk, pb.primary_input(), proof);
cout << "Verification passed: " << std::boolalpha << verif << endl;
verified = verif;
}
BatchEncoder *getHeEncoder() const {
return he_encoder;
}
// void eq_(int op1_indx, int op2_indx, int res_indx, size_t ptxt_mod = 20) {
// auto c1 = ciphers[op1_indx];
// auto c2 = ciphers[op2_indx];
// Ciphertext tmp;
// evaluator->sub(c1, c2, tmp);
// ///////
// Plaintext plain_res;
//
// decryptor->decrypt(tmp, plain_res);
// vector<int64_t> plain_res_decode;
// he_encoder->decode(plain_res, plain_res_decode);
// cout << "Decrypted boolean= " << plain_res_decode[0] << endl;
//
//
//
//
// }
//
// void eq(int op1_indx, int op2_indx, int res_indx){
// vector<int> instruction{7, op1_indx, op2_indx, res_indx};
// exec_lst.push_back(instruction);
// }
};
vector<string> split(string str, char separator) {
vector<string> tokens;
int startIndex = 0, endIndex = 0;
for (int i = 0; i <= str.size(); i++) {
// If we reached the end of the word or the end of the input.
if (str[i] == separator || i == str.size()) {
endIndex = i;
string temp;
temp.append(str, startIndex, endIndex - startIndex);
tokens.push_back(temp);
startIndex = endIndex + 1;
}
}
return tokens;
}
bool is_number(const string &s) {
string::const_iterator it = s.begin();
while (it != s.end() && isdigit(*it))
++it;
return !s.empty() && it == s.end();
}
/**
* Define an encrypted constant within the circuit.
* @param const_val the value (in plain) to be encrypted.
* @param indx the index at which the value will be stored.
* @param ctxt a vector of Ciphertext holding the encrypted constants.
* @param he_encoder a BatchEncoder obejct for HE.
* @param encryptor a SEAL encryptor object.
* */
void def_const(int const_val, int indx, vector<Ciphertext> &ctxt, BatchEncoder &he_encoder, Encryptor &encryptor) {
Ciphertext tmp;
while (indx >= ctxt.size()) {
ctxt.push_back(tmp);
}
vector<int64_t> pod_matrix(1, const_val);
Plaintext pt;
he_encoder.encode(pod_matrix, pt);
encryptor.encrypt(pt, ctxt[indx]);
}
/**
* Returns an encrypted object of a given value.
* @param val the value (in plain) to be encrypted.
* @param he_encoder a BatchEncoder object for HE.
* @param encryptor a SEAL encryptor object.
* @return a ciphertext of the given value.
* */
Ciphertext encrypt(int val, BatchEncoder &he_encoder, Encryptor &encryptor) {
vector<int64_t> pod_matrix(1, val);
Plaintext pt;
he_encoder.encode(pod_matrix, pt);
Ciphertext res;
encryptor.encrypt(pt, res);
return res;
}
void print_header(string title) {
if (!title.empty()) {
size_t title_length = title.length();
size_t banner_length = title_length + 2 * 10;
string banner_top = "+" + std::string(banner_length - 2, '-') + "+";
string banner_middle = "|" + std::string(9, ' ') + title + std::string(9, ' ') + "|";
cout << endl
<< banner_top << endl
<< banner_middle << endl
<< banner_top << endl;
}
}
char *getCmdOption(char **begin, char **end, const std::string &option) {
char **itr = std::find(begin, end, option);
if (itr != end && ++itr != end) {
return *itr;
}
return 0;
}
bool cmdOptionExists(char **begin, char **end, const std::string &option) {
return std::find(begin, end, option) != end;
}
int main(int argc, char *argv[]) {
/**
* todo
* 1) remove relinearization after addition.
* 2) profile the execution.
* 3) track noise growth after each operation -- this might reduce the performance.
* 4) try mod switch*/
Initializer initializer;
ifstream myfile;
char* file;
{
Circuit circuit(initializer);
string opl;
map<char, Ciphertext> vars_vals;
if (cmdOptionExists(argv, argv + argc, "-f")) {
file = getCmdOption(argv, argv + argc, "-f");
myfile.open(file);
if (myfile.is_open()) {
} else {
cout << "Cannot open the file >> " << file << "!" << endl;
}
}
if (cmdOptionExists(argv, argv + argc, "-v")) {
auto vars = getCmdOption(argv, argv + argc, "-v");
vector<string> v_vars = split(vars, ',');
for (auto v: v_vars) {
char variable_name = v[0];
int variable_value = stoi(v.substr(v.find('=') + 1, v.size()));
vars_vals[variable_name] = encrypt(variable_value, *circuit.getHeEncoder(),
*initializer.getEncryptor());
}
}
if (cmdOptionExists(argv, argv + argc, "-h")) {
cout
<< "./[filename] -f [OpL file] -v variable_name1=value,variable_name2=value,variable_name3=value,...\n\n";
cout
<< "*** NOTE ***\n1)The variable name must be ONLY one char (e.g., x, y, z)\n2)There is NO space between the variable name, the equal sign, and the value (e.g., y=5)\n3)Variable names must be same as the ones in the parsed IR file\n";
exit(0);
}
istringstream cir(opl);
vector<Ciphertext> ctxt(1);
int ONE_INDX = 0;
int NEG_ONE_INDX = 1;
def_const(1, 0, ctxt, *circuit.getHeEncoder(), *initializer.getEncryptor());
def_const(-1, 1, ctxt, *circuit.getHeEncoder(), *initializer.getEncryptor());
string inst;
/// inst: result_indx := operand1 op operand2
auto start_opl2circuit = std::chrono::system_clock::now();
while (getline(myfile, inst)) {
auto vec = split(inst, ' ');
string res_indx = vec[0].substr(2);
if (vec.size() == 5) {
string op1_indx = vec[2].substr(1);;
string op = vec[3];
string op2_indx = vec[4].substr(1);;
if (op == "*") {
circuit.mul(stoi(op1_indx), stoi(op2_indx), stoi(res_indx));
} else if (op == "+") {
circuit.add(stoi(op1_indx), stoi(op2_indx),
ONE_INDX, stoi(res_indx));
} else if (op == "-") {
circuit.subtract(stoi(op1_indx), stoi(op2_indx),
ONE_INDX, stoi(res_indx));
}
else {
cout << "Unknown operation!" << endl;
}
} else if (vec.size() == 3) { /// This is either a variable or a constant declaration
string op1 = vec[2];
if (is_number(op1)) { /// define a constant
def_const(stoi(op1), stoi(res_indx), ctxt,
*circuit.getHeEncoder(), *initializer.getEncryptor());
} else if (op1[0] == 'r') {
//circuit.mul(stoi(op1.substr(1)), ONE_INDX, stoi(res_indx));
circuit.assign(stoi(res_indx), stoi(op1.substr(1)), ONE_INDX);
} else {
circuit.def_var(op1[0], stoi(res_indx));
}
}
}
auto end_opl2circuit = std::chrono::system_clock::now();
circuit.print_circuit();
vector<vector<int>> exec_lst = circuit.get_exec_list();
auto start_create_cir_r1cs = std::chrono::system_clock::now();
ringsnark::protoboard<R> pb = circuit.create_circuit(exec_lst, ctxt);
auto end_create_cir_r1cs = std::chrono::system_clock::now();
auto start_rinc_keys = std::chrono::system_clock::now();
const auto keypair = initializer.get_Rinocchio_keys(pb);
auto end_rinc_keys = std::chrono::system_clock::now();
auto start_circ_exec = std::chrono::system_clock::now();
circuit.execute(exec_lst, vars_vals);
auto end_circ_exec = std::chrono::system_clock::now();
auto start_prove = std::chrono::system_clock::now();
auto proof = circuit.prove(keypair.pk);
auto end_prove = std::chrono::system_clock::now();
auto start_verify = std::chrono::system_clock::now();
circuit.verify(keypair.vk, proof);
auto end_verify = std::chrono::system_clock::now();
auto start_decrypt = std::chrono::system_clock::now();
circuit.get_results();
auto end_decrypt = std::chrono::system_clock::now();
cout << "Program\tOpL2Circuit\tCircuit&R1CS\tGenerate Rino. Keys\tCircuit Execution\tProving\tVerifying\tDecryption\t\n";
ofstream data("Running_times.csv", ios::app);
if (!data.is_open()){
cout << "Error writing to Running_times.csv" << endl;
return 1;
}
data << file << ",";
data << chrono::duration_cast<chrono::milliseconds>(end_opl2circuit - start_opl2circuit).count() << ",";
data << chrono::duration_cast<chrono::milliseconds>(end_create_cir_r1cs - start_create_cir_r1cs).count() << ",";
data << chrono::duration_cast<chrono::milliseconds>(end_rinc_keys - start_rinc_keys).count() << ",";
data << chrono::duration_cast<chrono::milliseconds>(end_circ_exec - start_circ_exec).count() << ",";
data << chrono::duration_cast<chrono::milliseconds>(end_prove - start_prove).count() << ",";
data << chrono::duration_cast<chrono::milliseconds>(end_verify - start_verify).count() << ",";
data << chrono::duration_cast<chrono::milliseconds>(end_decrypt - start_decrypt).count() << "";
data << endl;
data.close();
cout << file << "\t";
cout << chrono::duration_cast<chrono::milliseconds>(end_opl2circuit - start_opl2circuit).count() << "\t";
cout << chrono::duration_cast<chrono::milliseconds>(end_create_cir_r1cs - start_create_cir_r1cs).count() << "\t";
cout << chrono::duration_cast<chrono::milliseconds>(end_rinc_keys - start_rinc_keys).count() << "\t";
cout << chrono::duration_cast<chrono::milliseconds>(end_circ_exec - start_circ_exec).count() << "\t";
cout << chrono::duration_cast<chrono::milliseconds>(end_prove - start_prove).count() << "\t";
cout << chrono::duration_cast<chrono::milliseconds>(end_verify - start_verify).count() << "\t";
cout << chrono::duration_cast<chrono::milliseconds>(end_decrypt - start_decrypt).count() << "";
cout << endl;
}
int x;
cin >> x;