-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathctmf_common.cpp
410 lines (364 loc) · 14.5 KB
/
ctmf_common.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
// Taken from https://github.com/aoles/EBImage/blob/master/src/medianFilter.c
// With R-specific code removed
// This one file continues to be under the GPL, as Simon Perreault's
// original was released that way.
// Modifications:
// Removed sse2 specialization and instead ensured that gcc
// autovectorizes this fine (this made it about 10-20% faster due to
// avx2 usage)
// Hardwired channel count to 1 (5% faster)
// Run stripes in parallel using Halide's parallel runtime.
#include <HalideRuntime.h>
// For posix_memalign
#include <malloc.h>
/* medianFilter.c - Constant-time median filtering of 16-bit images
* (for inclusion in the Bioconductor Package EBImage)
*
* The original ctmf algorithm here has minor modifications,
* which continue to be covered by the GNU General Public License.
*
* Contact:
* Joseph Barry
* Huber Group
* EMBL Heidelberg
* Meyerhofstr. 1
* 69115 Germany
*
* joseph.barry@embl.de
*/
/* R/Bioconductor includes */
/*
* ctmf.c - Constant-time median filtering
* Copyright (C) 2006 Simon Perreault
*
* Reference: S. Perreault and P. Hébert, "Median Filtering in Constant Time",
* IEEE Transactions on Image Processing, September 2007.
*
* This program has been obtained from http://nomis80.org/ctmf.html. No patent
* covers this program, although it is subject to the following license:
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Contact:
* Laboratoire de vision et systèmes numériques
* Pavillon Adrien-Pouliot
* Université Laval
* Sainte-Foy, Québec, Canada
G1K 7P4
*
* perreaul@gel.ulaval.ca
*/
/* Standard C includes */
#include <assert.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
/* Type declarations */
#ifdef _MSC_VER
#include <basetsd.h>
typedef UINT8 uint8_t;
typedef UINT16 uint16_t;
typedef UINT32 uint32_t;
#pragma warning(disable : 4799)
#else
#include <stdint.h>
#endif
/* Compiler peculiarities */
#if defined(__GNUC__)
#include <stdint.h>
#define inline __inline__
#define align(x) __attribute__((aligned(x)))
#elif defined(_MSC_VER)
#define inline __inline
#define align(x) __declspec(align(x))
#else
#define inline
#define align(x)
#endif
#ifndef MIN
#define MIN(a, b) ((a) > (b) ? (b) : (a))
#endif
#ifndef MAX
#define MAX(a, b) ((a) < (b) ? (b) : (a))
#endif
/**
* This structure represents a two-tier histogram. The first tier (known as the
* "coarse" level) is 8 bit wide and the second tier (known as the "fine" level)
* is 16 bit wide. Pixels inserted in the fine level also get inserted into the
* coarse bucket designated by the MSBs of the fine bucket value.
*
* The structure is aligned on 16 bytes, which is a prerequisite for SIMD
* instructions. Each bucket is 16 bit wide, which means that extra care must be
* taken to prevent overflow.
*/
typedef struct align(16) {
uint16_t coarse[SQRT_BUCKET_SIZE];
uint16_t fine[SQRT_BUCKET_SIZE][SQRT_BUCKET_SIZE];
}
Histogram;
/**
* HOP is short for Histogram OPeration. This macro makes an operation \a op on
* histogram \a h for pixel value \a x. It takes care of handling both levels.
*/
#define HOP(h, x, op) \
h.coarse[x >> MSB] op; \
*((uint16_t *)h.fine + x) op;
#define COP(c, j, x, op) \
h_coarse[SQRT_BUCKET_SIZE * (n * c + j) + (x >> MSB)] op; \
h_fine[SQRT_BUCKET_SIZE * (n * (SQRT_BUCKET_SIZE * c + (x >> MSB)) + j) + (x & (SQRT_BUCKET_SIZE - 1))] op;
static inline void histogram_add(const uint16_t x[SQRT_BUCKET_SIZE], uint16_t y[SQRT_BUCKET_SIZE]) {
int i;
for (i = 0; i < SQRT_BUCKET_SIZE; ++i) {
y[i] += x[i];
}
}
static inline void histogram_sub(const uint16_t x[SQRT_BUCKET_SIZE], uint16_t y[SQRT_BUCKET_SIZE]) {
int i;
for (i = 0; i < SQRT_BUCKET_SIZE; ++i) {
y[i] -= x[i];
}
}
static inline void histogram_muladd(const uint16_t a, const uint16_t x[SQRT_BUCKET_SIZE],
uint16_t y[SQRT_BUCKET_SIZE]) {
int i;
for (i = 0; i < SQRT_BUCKET_SIZE; ++i) {
y[i] += a * x[i];
}
}
static void ctmf_helper(
const pixel_t *const src, pixel_t *const dst,
const int width, const int height,
const int src_step, const int dst_step,
const int r, const int cn_,
const int pad_left, const int pad_right) {
const int m = height, n = width;
int i, j, k, c;
const pixel_t *p, *q;
// Modified to always use a channel count of one
assert(cn_ == 1);
const int cn = 1;
Histogram H[4];
uint16_t *h_coarse, *h_fine, luc[4][SQRT_BUCKET_SIZE];
assert(src);
assert(dst);
assert(r >= 0);
assert(width >= 2 * r + 1);
assert(height >= 2 * r + 1);
assert(src_step != 0);
assert(dst_step != 0);
h_coarse = (uint16_t *)calloc(1 * SQRT_BUCKET_SIZE * n * cn, sizeof(uint16_t));
h_fine = (uint16_t *)calloc(SQRT_BUCKET_SIZE * SQRT_BUCKET_SIZE * n * cn, sizeof(uint16_t));
/* First row initialization */
for (j = 0; j < n; ++j) {
for (c = 0; c < cn; ++c) {
COP(c, j, src[cn * j + c], += r + 1);
}
}
for (i = 0; i < r; ++i) {
for (j = 0; j < n; ++j) {
for (c = 0; c < cn; ++c) {
COP(c, j, src[src_step * i + cn * j + c], ++);
}
}
}
for (i = 0; i < m; ++i) {
/* Update column histograms for entire row. */
p = src + src_step * MAX(0, i - r - 1);
q = p + cn * n;
for (j = 0; p != q; ++j) {
for (c = 0; c < cn; ++c, ++p) {
COP(c, j, *p, --);
}
}
p = src + src_step * MIN(m - 1, i + r);
q = p + cn * n;
for (j = 0; p != q; ++j) {
for (c = 0; c < cn; ++c, ++p) {
COP(c, j, *p, ++);
}
}
/* First column initialization */
memset(H, 0, cn * sizeof(H[0]));
memset(luc, 0, cn * sizeof(luc[0]));
if (pad_left) {
for (c = 0; c < cn; ++c) {
histogram_muladd(r, &h_coarse[SQRT_BUCKET_SIZE * n * c], H[c].coarse);
}
}
for (j = 0; j < (pad_left ? r : 2 * r); ++j) {
for (c = 0; c < cn; ++c) {
histogram_add(&h_coarse[SQRT_BUCKET_SIZE * (n * c + j)], H[c].coarse);
}
}
for (c = 0; c < cn; ++c) {
for (k = 0; k < SQRT_BUCKET_SIZE; ++k) {
histogram_muladd(2 * r + 1, &h_fine[SQRT_BUCKET_SIZE * n * (SQRT_BUCKET_SIZE * c + k)], &H[c].fine[k][0]);
}
}
for (j = pad_left ? 0 : r; j < (pad_right ? n : n - r); ++j) {
for (c = 0; c < cn; ++c) {
const uint16_t t = 2 * r * r + 2 * r;
uint16_t sum = 0, *segment;
int b;
histogram_add(&h_coarse[SQRT_BUCKET_SIZE * (n * c + MIN(j + r, n - 1))], H[c].coarse);
/* Find median at coarse level */
for (k = 0; k < SQRT_BUCKET_SIZE; ++k) {
sum += H[c].coarse[k];
if (sum > t) {
sum -= H[c].coarse[k];
break;
}
}
assert(k < (uint16_t)SQRT_BUCKET_SIZE);
/* Update corresponding histogram segment */
if (luc[c][k] <= j - r) {
memset(&H[c].fine[k], 0, SQRT_BUCKET_SIZE * sizeof(uint16_t));
for (luc[c][k] = j - r; luc[c][k] < MIN(j + r + 1, n); ++luc[c][k]) {
histogram_add(&h_fine[SQRT_BUCKET_SIZE * (n * (SQRT_BUCKET_SIZE * c + k) + luc[c][k])], H[c].fine[k]);
}
if (luc[c][k] < j + r + 1) {
histogram_muladd(j + r + 1 - n, &h_fine[SQRT_BUCKET_SIZE * (n * (SQRT_BUCKET_SIZE * c + k) + (n - 1))], &H[c].fine[k][0]);
luc[c][k] = j + r + 1;
}
} else {
for (; luc[c][k] < j + r + 1; ++luc[c][k]) {
histogram_sub(&h_fine[SQRT_BUCKET_SIZE * (n * (SQRT_BUCKET_SIZE * c + k) + MAX(luc[c][k] - 2 * r - 1, 0))], H[c].fine[k]);
histogram_add(&h_fine[SQRT_BUCKET_SIZE * (n * (SQRT_BUCKET_SIZE * c + k) + MIN(luc[c][k], n - 1))], H[c].fine[k]);
}
}
histogram_sub(&h_coarse[SQRT_BUCKET_SIZE * (n * c + MAX(j - r, 0))], H[c].coarse);
/* Find median in segment */
segment = H[c].fine[k];
for (b = 0; b < SQRT_BUCKET_SIZE; ++b) {
sum += segment[b];
if (sum > t) {
dst[dst_step * i + cn * j + c] = SQRT_BUCKET_SIZE * k + b;
break;
}
}
assert(b < (uint16_t)SQRT_BUCKET_SIZE);
}
}
}
free(h_coarse);
free(h_fine);
}
/**
* \brief Constant-time median filtering
*
* This function does a median filtering of an 16-bit image. The source image is
* processed as if it was padded with zeros. The median kernel is square with
* odd dimensions. Images of arbitrary size may be processed.
*
* To process multi-channel images, you must call this function multiple times,
* changing the source and destination adresses and steps such that each channel
* is processed as an independent single-channel image.
*
* Processing images of arbitrary bit depth is not supported.
*
* The computing time is O(1) per pixel, independent of the radius of the
* filter. The algorithm's initialization is O(r*width), but it is negligible.
* Memory usage is simple: it will be as big as the cache size, or smaller if
* the image is small. For efficiency, the histograms' bins are 16-bit wide.
* This may become too small and lead to overflow as \a r increases.
*
* \param src Source image data.
* \param dst Destination image data. Must be preallocated.
* \param width Image width, in pixels.
* \param height Image height, in pixels.
* \param src_step Distance between adjacent pixels on the same column in
* the source image, in bytes.
* \param dst_step Distance between adjacent pixels on the same column in
* the destination image, in bytes.
* \param r Median filter radius. The kernel will be a 2*r+1 by
* 2*r+1 square.
* \param cn Number of channels. For example, a grayscale image would
* have cn=1 while an RGB image would have cn=3.
* \param num_stripes The number of stripes to use. The algorithm is
* parallel over stripes, so set this to some multiple
* of the number of cores you want to use.
*/
void CTMF_FN(
const pixel_t *const src, pixel_t *const dst,
const int width, const int height,
const int src_step, const int dst_step,
const int r, const int cn, int num_stripes) {
/*
* Processing the image in vertical stripes is an optimization made
* necessary by the limited size of the CPU cache. Each histogram is 544
* bytes big and therefore I can fit a limited number of them in the cache.
* That number may sometimes be smaller than the image width, which would be
* the number of histograms I would need without stripes.
*
* I need to keep histograms in the cache so that they are available
* quickly when processing a new row. Each row needs access to the previous
* row's histograms. If there are too many histograms to fit in the cache,
* thrashing to RAM happens.
*
* To solve this problem, I figure out the maximum number of histograms
* that can fit in cache. From this is determined the number of stripes in
* an image. The formulas below make the stripes all the same size and use
* as few stripes as possible.
*
* Note that each stripe causes an overlap on the neighboring stripes, as
* when mowing the lawn. That overlap is proportional to r. When the overlap
* is a significant size in comparison with the stripe size, then we are not
* O(1) anymore, but O(r). In fact, we have been O(r) all along, but the
* initialization term was neglected, as it has been (and rightly so) in B.
* Weiss, "Fast Median and Bilateral Filtering", SIGGRAPH, 2006. Processing
* by stripes only makes that initialization term bigger.
*
* Also, note that the leftmost and rightmost stripes don't need overlap.
* A flag is passed to ctmf_helper() so that it treats these cases as if the
* image was zero-padded.
*/
// Modification: The whole memory size thing didn't seem to have
// any performance effect for the sizes tested in this
// paper. Instead we always use num_cores stripes and parallelize
// over stripes.
// Force the stripes to be at least 2*r + 1 wide.
int stripe_size, last_stripe;
num_stripes *= 2;
do {
num_stripes /= 2;
stripe_size = (width + num_stripes - 1) / num_stripes;
last_stripe = width - stripe_size * (num_stripes - 1);
} while (last_stripe < 2 * r + 1);
struct Closure {
int stripe_size, r, width, height, cn, src_step, dst_step;
const pixel_t *src;
pixel_t *dst;
} closure{stripe_size, r, width, height, cn, src_step, dst_step,
src, dst};
auto do_one_stripe = [](void *ucon, int idx, uint8_t *closure) {
Closure *c = (Closure *)closure;
bool first_stripe = false, last_stripe = false;
int start = idx * c->stripe_size;
int end = start + c->stripe_size + 2 * c->r;
if (end >= c->width) {
end = c->width;
last_stripe = true;
}
if (idx == 0) {
start = 0;
first_stripe = true;
}
int extent = end - start;
ctmf_helper(c->src + c->cn * start, c->dst + c->cn * start, extent,
c->height, c->src_step, c->dst_step, c->r, c->cn,
first_stripe, last_stripe);
return 0;
};
halide_do_par_for(nullptr, do_one_stripe, 0, num_stripes, (uint8_t *)(&closure));
}