-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathutils.jl
1263 lines (1015 loc) · 37.7 KB
/
utils.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# singleton for indicating if no default arguments are present
struct NoDefault end
const NO_DEFAULT = NoDefault()
"""
@addlogprob!(ex)
Add the result of the evaluation of `ex` to the joint log probability.
# Examples
This macro allows you to [include arbitrary terms in the likelihood](https://github.com/TuringLang/Turing.jl/issues/1332)
```jldoctest; setup = :(using Distributions)
julia> myloglikelihood(x, μ) = loglikelihood(Normal(μ, 1), x);
julia> @model function demo(x)
μ ~ Normal()
@addlogprob! myloglikelihood(x, μ)
end;
julia> x = [1.3, -2.1];
julia> loglikelihood(demo(x), (μ=0.2,)) ≈ myloglikelihood(x, 0.2)
true
```
and to [reject samples](https://github.com/TuringLang/Turing.jl/issues/1328):
```jldoctest; setup = :(using Distributions, LinearAlgebra)
julia> @model function demo(x)
m ~ MvNormal(zero(x), I)
if dot(m, x) < 0
@addlogprob! -Inf
# Exit the model evaluation early
return
end
x ~ MvNormal(m, I)
return
end;
julia> logjoint(demo([-2.1]), (m=[0.2],)) == -Inf
true
```
!!! note
The `@addlogprob!` macro increases the accumulated log probability regardless of the evaluation context,
i.e., regardless of whether you evaluate the log prior, the log likelihood or the log joint density.
If you would like to avoid this behaviour you should check the evaluation context.
It can be accessed with the internal variable `__context__`.
For instance, in the following example the log density is not accumulated when only the log prior is computed:
```jldoctest; setup = :(using Distributions)
julia> myloglikelihood(x, μ) = loglikelihood(Normal(μ, 1), x);
julia> @model function demo(x)
μ ~ Normal()
if DynamicPPL.leafcontext(__context__) !== PriorContext()
@addlogprob! myloglikelihood(x, μ)
end
end;
julia> x = [1.3, -2.1];
julia> logprior(demo(x), (μ=0.2,)) ≈ logpdf(Normal(), 0.2)
true
julia> loglikelihood(demo(x), (μ=0.2,)) ≈ myloglikelihood(x, 0.2)
true
```
"""
macro addlogprob!(ex)
return quote
$(esc(:(__varinfo__))) = acclogp!!(
$(esc(:(__context__))), $(esc(:(__varinfo__))), $(esc(ex))
)
end
end
"""
addargnames!(args)
Adds names to unnamed arguments in `args`.
The names are generated with `gensym(:arg)` to avoid conflicts with other variable names.
# Examples
```jldoctest; filter = r"var\\"##arg#[0-9]+\\""
julia> args = :(f(x::Int, y, ::Type{T}=Float64)).args[2:end]
3-element Vector{Any}:
:(x::Int)
:y
:($(Expr(:kw, :(::Type{T}), :Float64)))
julia> DynamicPPL.addargnames!(args)
julia> args
3-element Vector{Any}:
:(x::Int)
:y
:($(Expr(:kw, :(var"##arg#301"::Type{T}), :Float64)))
```
"""
function addargnames!(args)
if isempty(args)
return nothing
end
@inbounds for i in eachindex(args)
arg = args[i]
if MacroTools.@capture(arg, ::T_)
args[i] = Expr(:(::), gensym(:arg), T)
elseif MacroTools.@capture(arg, ::T_ = val_)
args[i] = Expr(:kw, Expr(:(::), gensym(:arg), T), val)
end
end
return nothing
end
"""
getargs_dottilde(x)
Return the arguments `L` and `R`, if `x` is an expression of the form `L .~ R` or
`(~).(L, R)`, or `nothing` otherwise.
"""
getargs_dottilde(x) = nothing
function getargs_dottilde(expr::Expr)
return MacroTools.@match expr begin
(.~)(L_, R_) => (L, R)
(~).(L_, R_) => (L, R)
# Julia 1.6: see https://github.com/TuringLang/Turing.jl/issues/1525
(L_ .~ R_) => (L, R)
x_ => nothing
end
end
"""
getargs_tilde(x)
Return the arguments `L` and `R`, if `x` is an expression of the form `L ~ R`, or `nothing`
otherwise.
"""
getargs_tilde(x) = nothing
function getargs_tilde(expr::Expr)
return MacroTools.@match expr begin
(~)(L_, R_) => (L, R)
x_ => nothing
end
end
"""
getargs_assignment(x)
Return the arguments `L` and `R`, if `x` is an expression of the form `L = R`, or `nothing`
otherwise.
"""
getargs_assignment(x) = nothing
function getargs_assignment(expr::Expr)
return MacroTools.@match expr begin
(L_ = R_) => (L, R)
x_ => nothing
end
end
"""
getargs_coloneq(x)
Return the arguments `L` and `R`, if `x` is an expression of the form `L := R`, or `nothing`
otherwise.
"""
getargs_coloneq(x) = nothing
function getargs_coloneq(expr::Expr)
return MacroTools.@match expr begin
(L_ := R_) => (L, R)
x_ => nothing
end
end
function to_namedtuple_expr(syms)
length(syms) == 0 && return :(NamedTuple())
names_expr = Expr(:tuple, QuoteNode.(syms)...)
return :(NamedTuple{$names_expr}(($(syms...),)))
end
# FIXME: the prob macro still uses this.
function to_namedtuple_expr(syms, vals)
length(syms) == 0 && return :(NamedTuple())
names_expr = Expr(:tuple, QuoteNode.(syms)...)
vals_expr = Expr(:tuple, vals...)
return :(NamedTuple{$names_expr}($vals_expr))
end
"""
link_transform(dist)
Return the constrained-to-unconstrained bijector for distribution `dist`.
By default, this is just `Bijectors.bijector(dist)`.
!!! warning
Note that currently this is not used by `Bijectors.logpdf_with_trans`,
hence that needs to be overloaded separately if the intention is
to change behavior of an existing distribution.
"""
link_transform(dist) = bijector(dist)
"""
invlink_transform(dist)
Return the unconstrained-to-constrained bijector for distribution `dist`.
By default, this is just `inverse(link_transform(dist))`.
!!! warning
Note that currently this is not used by `Bijectors.logpdf_with_trans`,
hence that needs to be overloaded separately if the intention is
to change behavior of an existing distribution.
"""
invlink_transform(dist) = inverse(link_transform(dist))
#####################################################
# Helper functions for vectorize/reconstruct values #
#####################################################
"""
UnwrapSingletonTransform(input_size::InSize)
A transformation that unwraps a singleton array, returning a scalar.
The `input_size` field is the expected size of the input. In practice this only determines
the number of indices, since all dimensions must be 1 for a singleton. `input_size` is used
to check the validity of the input, but also to determine the correct inverse operation.
By default `input_size` is `(1,)`, in which case `tovec` is the inverse.
"""
struct UnwrapSingletonTransform{InSize} <: Bijectors.Bijector
input_size::InSize
end
UnwrapSingletonTransform() = UnwrapSingletonTransform((1,))
function (f::UnwrapSingletonTransform)(x)
if size(x) != f.input_size
throw(DimensionMismatch("Expected input of size $(f.input_size), got $(size(x))"))
end
return only(x)
end
Bijectors.with_logabsdet_jacobian(f::UnwrapSingletonTransform, x) = (f(x), 0)
function Bijectors.with_logabsdet_jacobian(
inv_f::Bijectors.Inverse{<:UnwrapSingletonTransform}, x
)
f = inv_f.orig
return (reshape([x], f.input_size), 0)
end
"""
ReshapeTransform(input_size::InSize, output_size::OutSize)
A `Bijector` that transforms arrays of size `input_size` to arrays of size `output_size`.
`input_size` is not needed for the implementation of the transformation. It is only used to
check that the input is of the expected size, and to determine the correct inverse
operation.
By default `input_size` is the vectorized version of `output_size`. In this case this
transformation is the inverse of `tovec` called on an array.
"""
struct ReshapeTransform{InSize,OutSize} <: Bijectors.Bijector
input_size::InSize
output_size::OutSize
end
function ReshapeTransform(output_size::Tuple)
input_size = (prod(output_size),)
return ReshapeTransform(input_size, output_size)
end
ReshapeTransform(x::AbstractArray) = ReshapeTransform(size(x))
# TODO: Should we materialize the `reshape`?
function (f::ReshapeTransform)(x)
if size(x) != f.input_size
throw(DimensionMismatch("Expected input of size $(f.input_size), got $(size(x))"))
end
# The call to `tovec` is only needed in case `x` is a scalar.
return reshape(tovec(x), f.output_size)
end
function (inv_f::Bijectors.Inverse{<:ReshapeTransform})(x)
f = inv_f.orig
inverse = ReshapeTransform(f.output_size, f.input_size)
return inverse(x)
end
Bijectors.with_logabsdet_jacobian(f::ReshapeTransform, x) = (f(x), 0)
function Bijectors.with_logabsdet_jacobian(inv_f::Bijectors.Inverse{<:ReshapeTransform}, x)
return (inv_f(x), 0)
end
struct ToChol <: Bijectors.Bijector
uplo::Char
end
Bijectors.with_logabsdet_jacobian(f::ToChol, x) = (Cholesky(Matrix(x), f.uplo, 0), 0)
Bijectors.with_logabsdet_jacobian(::Bijectors.Inverse{<:ToChol}, y::Cholesky) = (y.UL, 0)
function Bijectors.with_logabsdet_jacobian(::Bijectors.Inverse{<:ToChol}, y)
return error(
"Inverse{ToChol} is only defined for Cholesky factorizations. " *
"Got a $(typeof(y)) instead.",
)
end
"""
from_vec_transform(x)
Return the transformation from the vector representation of `x` to original representation.
"""
from_vec_transform(x::AbstractArray) = from_vec_transform_for_size(size(x))
from_vec_transform(C::Cholesky) = ToChol(C.uplo) ∘ ReshapeTransform(size(C.UL))
from_vec_transform(::Real) = UnwrapSingletonTransform()
"""
from_vec_transform_for_size(sz::Tuple)
Return the transformation from the vector representation of a realization of size `sz` to
original representation.
"""
from_vec_transform_for_size(sz::Tuple) = ReshapeTransform(sz)
# TODO(mhauru) Is the below used? If not, this function can be removed.
from_vec_transform_for_size(::Tuple{<:Any}) = identity
"""
from_vec_transform(dist::Distribution)
Return the transformation from the vector representation of a realization from
distribution `dist` to the original representation compatible with `dist`.
"""
from_vec_transform(dist::Distribution) = from_vec_transform_for_size(size(dist))
from_vec_transform(::UnivariateDistribution) = UnwrapSingletonTransform()
from_vec_transform(dist::LKJCholesky) = ToChol(dist.uplo) ∘ ReshapeTransform(size(dist))
"""
from_vec_transform(f, size::Tuple)
Return the transformation from the vector representation of a realization of size `size` to original representation.
This is useful when the transformation alters the size of the realization, in which case we need to account for the
size of the realization after pushed through the transformation.
"""
from_vec_transform(f, sz) = from_vec_transform_for_size(Bijectors.output_size(f, sz))
"""
from_linked_vec_transform(dist::Distribution)
Return the transformation from the unconstrained vector to the constrained
realization of distribution `dist`.
By default, this is just `invlink_transform(dist) ∘ from_vec_transform(dist)`.
See also: [`DynamicPPL.invlink_transform`](@ref), [`DynamicPPL.from_vec_transform`](@ref).
"""
function from_linked_vec_transform(dist::Distribution)
f_invlink = invlink_transform(dist)
f_vec = from_vec_transform(inverse(f_invlink), size(dist))
return f_invlink ∘ f_vec
end
# UnivariateDistributions need to be handled as a special case, because size(dist) is (),
# which makes the usual machinery think we are dealing with a 0-dim array, whereas in
# actuality we are dealing with a scalar.
# TODO(mhauru) Hopefully all this can go once the old Gibbs sampler is removed and
# VarNamedVector takes over from Metadata.
function from_linked_vec_transform(dist::UnivariateDistribution)
f_invlink = invlink_transform(dist)
f_vec = from_vec_transform(inverse(f_invlink), size(dist))
f_combined = f_invlink ∘ f_vec
sz = Bijectors.output_size(f_combined, size(dist))
return UnwrapSingletonTransform(sz) ∘ f_combined
end
# Specializations that circumvent the `from_vec_transform` machinery.
function from_linked_vec_transform(dist::LKJCholesky)
return inverse(Bijectors.VecCholeskyBijector(dist.uplo))
end
from_linked_vec_transform(::LKJ) = inverse(Bijectors.VecCorrBijector())
"""
to_vec_transform(x)
Return the transformation from the original representation of `x` to the vector
representation.
"""
to_vec_transform(x) = inverse(from_vec_transform(x))
"""
to_linked_vec_transform(dist)
Return the transformation from the constrained realization of distribution `dist`
to the unconstrained vector.
"""
to_linked_vec_transform(x) = inverse(from_linked_vec_transform(x))
# FIXME: When given a `LowerTriangular`, `VarInfo` still stores the full matrix
# flattened, while using `tovec` below flattenes only the necessary entries.
# => Need to either fix how `VarInfo` does things, i.e. use `tovec` everywhere,
# or fix `tovec` to flatten the full matrix instead of using `Bijectors.triu_to_vec`.
tovec(x::Real) = [x]
tovec(x::AbstractArray) = vec(x)
tovec(C::Cholesky) = tovec(Matrix(C.UL))
"""
recombine(dist::Union{UnivariateDistribution,MultivariateDistribution}, vals::AbstractVector, n::Int)
Recombine `vals`, representing a batch of samples from `dist`, so that it's a compatible with `dist`.
!!! warning
This only supports `UnivariateDistribution` and `MultivariateDistribution`, which are the only two
distribution types which are allowed on the right-hand side of a `.~` statement in a model.
"""
function recombine(::UnivariateDistribution, val::AbstractVector, ::Int)
# This is just a no-op, since we're trying to convert a vector into a vector.
return copy(val)
end
function recombine(d::MultivariateDistribution, val::AbstractVector, n::Int)
# Here `val` is of the length `length(d) * n` and so we need to reshape it.
return copy(reshape(val, length(d), n))
end
# Uniform random numbers with range 4 for robust initializations
# Reference: https://mc-stan.org/docs/2_19/reference-manual/initialization.html
randrealuni(rng::Random.AbstractRNG) = 4 * rand(rng) - 2
randrealuni(rng::Random.AbstractRNG, args...) = 4 .* rand(rng, args...) .- 2
istransformable(dist) = link_transform(dist) !== identity
#################################
# Single-sample initialisations #
#################################
inittrans(rng, dist::UnivariateDistribution) = Bijectors.invlink(dist, randrealuni(rng))
function inittrans(rng, dist::MultivariateDistribution)
# Get the length of the unconstrained vector
b = link_transform(dist)
d = Bijectors.output_length(b, length(dist))
return Bijectors.invlink(dist, randrealuni(rng, d))
end
function inittrans(rng, dist::MatrixDistribution)
# Get the size of the unconstrained vector
b = link_transform(dist)
sz = Bijectors.output_size(b, size(dist))
return Bijectors.invlink(dist, randrealuni(rng, sz...))
end
function inittrans(rng, dist::Distribution{CholeskyVariate})
# Get the size of the unconstrained vector
b = link_transform(dist)
sz = Bijectors.output_size(b, size(dist))
return Bijectors.invlink(dist, randrealuni(rng, sz...))
end
################################
# Multi-sample initialisations #
################################
function inittrans(rng, dist::UnivariateDistribution, n::Int)
return Bijectors.invlink(dist, randrealuni(rng, n))
end
function inittrans(rng, dist::MultivariateDistribution, n::Int)
return Bijectors.invlink(dist, randrealuni(rng, size(dist)[1], n))
end
function inittrans(rng, dist::MatrixDistribution, n::Int)
return Bijectors.invlink(dist, [randrealuni(rng, size(dist)...) for _ in 1:n])
end
#######################
# Convenience methods #
#######################
"""
collect_maybe(x)
Return `x` if `x` is an array, otherwise return `collect(x)`.
"""
collect_maybe(x) = collect(x)
collect_maybe(x::AbstractArray) = x
#######################
# BangBang.jl related #
#######################
function set!!(obj, optic::AbstractPPL.ALLOWED_OPTICS, value)
opticmut = BangBang.prefermutation(optic)
return Accessors.set(obj, opticmut, value)
end
function set!!(obj, vn::VarName{sym}, value) where {sym}
optic = BangBang.prefermutation(
AbstractPPL.getoptic(vn) ∘ Accessors.PropertyLens{sym}()
)
return Accessors.set(obj, optic, value)
end
#############################
# AbstractPPL.jl extensions #
#############################
# This is preferable to `haskey` because the order of arguments is different, and
# we're more likely to specialize on the key in these settings rather than the container.
# TODO: I'm not sure about this name.
"""
canview(optic, container)
Return `true` if `optic` can be used to view `container`, and `false` otherwise.
# Examples
```jldoctest; setup=:(using Accessors; using DynamicPPL: canview)
julia> canview(@o(_.a), (a = 1.0, ))
true
julia> canview(@o(_.a), (b = 1.0, )) # property `a` does not exist
false
julia> canview(@o(_.a[1]), (a = [1.0, 2.0], ))
true
julia> canview(@o(_.a[3]), (a = [1.0, 2.0], )) # out of bounds
false
```
"""
canview(optic, container) = false
canview(::typeof(identity), _) = true
function canview(optic::Accessors.PropertyLens{field}, x) where {field}
return hasproperty(x, field)
end
# `IndexLens`: only relevant if `x` supports indexing.
canview(optic::Accessors.IndexLens, x) = false
function canview(optic::Accessors.IndexLens, x::AbstractArray)
return checkbounds(Bool, x, optic.indices...)
end
# `ComposedOptic`: check that we can view `.inner` and `.outer`, but using
# value extracted using `.inner`.
function canview(optic::Accessors.ComposedOptic, x)
return canview(optic.inner, x) && canview(optic.outer, optic.inner(x))
end
"""
parent(vn::VarName)
Return the parent `VarName`.
# Examples
```julia-repl; setup=:(using DynamicPPL: parent)
julia> parent(@varname(x.a[1]))
x.a
julia> (parent ∘ parent)(@varname(x.a[1]))
x
julia> (parent ∘ parent ∘ parent)(@varname(x.a[1]))
x
```
"""
function parent(vn::VarName)
p = parent(getoptic(vn))
return p === nothing ? VarName(vn, identity) : VarName(vn, p)
end
"""
parent(optic)
Return the parent optic. If `optic` doesn't have a parent,
`nothing` is returned.
See also: [`parent_and_child`].
# Examples
```jldoctest; setup=:(using Accessors; using DynamicPPL: parent)
julia> parent(@o(_.a[1]))
(@o _.a)
julia> # Parent of optic without parents results in `nothing`.
(parent ∘ parent)(@o(_.a[1])) === nothing
true
```
"""
parent(optic::AbstractPPL.ALLOWED_OPTICS) = first(parent_and_child(optic))
"""
parent_and_child(optic)
Return a 2-tuple of optics `(parent, child)` where `parent` is the
parent optic of `optic` and `child` is the child optic of `optic`.
If `optic` does not have a parent, we return `(nothing, optic)`.
See also: [`parent`].
# Examples
```jldoctest; setup=:(using Accessors; using DynamicPPL: parent_and_child)
julia> parent_and_child(@o(_.a[1]))
((@o _.a), (@o _[1]))
julia> parent_and_child(@o(_.a))
(nothing, (@o _.a))
```
"""
parent_and_child(optic::AbstractPPL.ALLOWED_OPTICS) = (nothing, optic)
function parent_and_child(optic::Accessors.ComposedOptic)
p, child = parent_and_child(optic.outer)
parent = p === nothing ? optic.inner : p ∘ optic.inner
return parent, child
end
"""
splitoptic(condition, optic)
Return a 3-tuple `(parent, child, issuccess)` where, if `issuccess` is `true`,
`parent` is a optic such that `condition(parent)` is `true` and `child ∘ parent == optic`.
If `issuccess` is `false`, then no such split could be found.
# Examples
```jldoctest; setup=:(using Accessors; using DynamicPPL: splitoptic)
julia> p, c, issucesss = splitoptic(@o(_.a[1])) do parent
# Succeeds!
parent == @o(_.a)
end
((@o _.a), (@o _[1]), true)
julia> c ∘ p
(@o _.a[1])
julia> splitoptic(@o(_.a[1])) do parent
# Fails!
parent == @o(_.b)
end
(nothing, (@o _.a[1]), false)
```
"""
function splitoptic(condition, optic)
current_parent, current_child = parent_and_child(optic)
# We stop if either a) `condition` is satisfied, or b) we reached the root.
while !condition(current_parent) && current_parent !== nothing
current_parent, c = parent_and_child(current_parent)
current_child = current_child ∘ c
end
return current_parent, current_child, condition(current_parent)
end
"""
remove_parent_optic(vn_parent::VarName, vn_child::VarName)
Remove the parent optic `vn_parent` from `vn_child`.
# Examples
```jldoctest; setup = :(using Accessors; using DynamicPPL: remove_parent_optic)
julia> remove_parent_optic(@varname(x), @varname(x.a))
(@o _.a)
julia> remove_parent_optic(@varname(x), @varname(x.a[1]))
(@o _.a[1])
julia> remove_parent_optic(@varname(x.a), @varname(x.a[1]))
(@o _[1])
julia> remove_parent_optic(@varname(x.a), @varname(x.a[1].b))
(@o _[1].b)
julia> remove_parent_optic(@varname(x.a), @varname(x.a))
ERROR: Could not find x.a in x.a
julia> remove_parent_optic(@varname(x.a[2]), @varname(x.a[1]))
ERROR: Could not find x.a[2] in x.a[1]
```
"""
function remove_parent_optic(vn_parent::VarName{sym}, vn_child::VarName{sym}) where {sym}
_, child, issuccess = splitoptic(getoptic(vn_child)) do optic
o = optic === nothing ? identity : optic
VarName(vn_child, o) == vn_parent
end
issuccess || error("Could not find $vn_parent in $vn_child")
return child
end
# HACK(torfjelde): This makes it so it works on iterators, etc. by default.
# TODO(torfjelde): Do better.
"""
unflatten(original, x::AbstractVector)
Return instance of `original` constructed from `x`.
"""
function unflatten(original, x::AbstractVector)
lengths = map(length, original)
end_indices = cumsum(lengths)
return map(zip(original, lengths, end_indices)) do (v, l, end_idx)
start_idx = end_idx - l + 1
return unflatten(v, @view(x[start_idx:end_idx]))
end
end
unflatten(::Real, x::Real) = x
unflatten(::Real, x::AbstractVector) = only(x)
unflatten(::AbstractVector{<:Real}, x::Real) = vcat(x)
unflatten(::AbstractVector{<:Real}, x::AbstractVector) = x
unflatten(original::AbstractArray{<:Real}, x::AbstractVector) = reshape(x, size(original))
function unflatten(original::Tuple, x::AbstractVector)
lengths = map(length, original)
end_indices = cumsum(lengths)
return ntuple(length(original)) do i
v = original[i]
l = lengths[i]
end_idx = end_indices[i]
start_idx = end_idx - l + 1
return unflatten(v, @view(x[start_idx:end_idx]))
end
end
function unflatten(original::NamedTuple{names}, x::AbstractVector) where {names}
return NamedTuple{names}(unflatten(values(original), x))
end
function unflatten(original::AbstractDict, x::AbstractVector)
D = ConstructionBase.constructorof(typeof(original))
return D(zip(keys(original), unflatten(collect(values(original)), x)))
end
# TODO: Move `getvalue` and `hasvalue` to AbstractPPL.jl.
"""
getvalue(vals, vn::VarName)
Return the value(s) in `vals` represented by `vn`.
Note that this method is different from `getindex`. See examples below.
# Examples
For `NamedTuple`:
```jldoctest
julia> vals = (x = [1.0],);
julia> DynamicPPL.getvalue(vals, @varname(x)) # same as `getindex`
1-element Vector{Float64}:
1.0
julia> DynamicPPL.getvalue(vals, @varname(x[1])) # different from `getindex`
1.0
julia> DynamicPPL.getvalue(vals, @varname(x[2]))
ERROR: BoundsError: attempt to access 1-element Vector{Float64} at index [2]
[...]
```
For `AbstractDict`:
```jldoctest
julia> vals = Dict(@varname(x) => [1.0]);
julia> DynamicPPL.getvalue(vals, @varname(x)) # same as `getindex`
1-element Vector{Float64}:
1.0
julia> DynamicPPL.getvalue(vals, @varname(x[1])) # different from `getindex`
1.0
julia> DynamicPPL.getvalue(vals, @varname(x[2]))
ERROR: BoundsError: attempt to access 1-element Vector{Float64} at index [2]
[...]
```
In the `AbstractDict` case we can also have keys such as `v[1]`:
```jldoctest
julia> vals = Dict(@varname(x[1]) => [1.0,]);
julia> DynamicPPL.getvalue(vals, @varname(x[1])) # same as `getindex`
1-element Vector{Float64}:
1.0
julia> DynamicPPL.getvalue(vals, @varname(x[1][1])) # different from `getindex`
1.0
julia> DynamicPPL.getvalue(vals, @varname(x[1][2]))
ERROR: BoundsError: attempt to access 1-element Vector{Float64} at index [2]
[...]
julia> DynamicPPL.getvalue(vals, @varname(x[2][1]))
ERROR: KeyError: key x[2][1] not found
[...]
```
"""
getvalue(vals::NamedTuple, vn::VarName) = get(vals, vn)
getvalue(vals::AbstractDict, vn::VarName) = nested_getindex(vals, vn)
"""
hasvalue(vals, vn::VarName)
Determine whether `vals` has a mapping for a given `vn`, as compatible with [`getvalue`](@ref).
# Examples
With `x` as a `NamedTuple`:
```jldoctest
julia> DynamicPPL.hasvalue((x = 1.0, ), @varname(x))
true
julia> DynamicPPL.hasvalue((x = 1.0, ), @varname(x[1]))
false
julia> DynamicPPL.hasvalue((x = [1.0],), @varname(x))
true
julia> DynamicPPL.hasvalue((x = [1.0],), @varname(x[1]))
true
julia> DynamicPPL.hasvalue((x = [1.0],), @varname(x[2]))
false
```
With `x` as a `AbstractDict`:
```jldoctest
julia> DynamicPPL.hasvalue(Dict(@varname(x) => 1.0, ), @varname(x))
true
julia> DynamicPPL.hasvalue(Dict(@varname(x) => 1.0, ), @varname(x[1]))
false
julia> DynamicPPL.hasvalue(Dict(@varname(x) => [1.0]), @varname(x))
true
julia> DynamicPPL.hasvalue(Dict(@varname(x) => [1.0]), @varname(x[1]))
true
julia> DynamicPPL.hasvalue(Dict(@varname(x) => [1.0]), @varname(x[2]))
false
```
In the `AbstractDict` case we can also have keys such as `v[1]`:
```jldoctest
julia> vals = Dict(@varname(x[1]) => [1.0,]);
julia> DynamicPPL.hasvalue(vals, @varname(x[1])) # same as `haskey`
true
julia> DynamicPPL.hasvalue(vals, @varname(x[1][1])) # different from `haskey`
true
julia> DynamicPPL.hasvalue(vals, @varname(x[1][2]))
false
julia> DynamicPPL.hasvalue(vals, @varname(x[2][1]))
false
```
"""
function hasvalue(vals::NamedTuple, vn::VarName{sym}) where {sym}
# LHS: Ensure that `nt` indeed has the property we want.
# RHS: Ensure that the optic can view into `nt`.
return haskey(vals, sym) && canview(getoptic(vn), getproperty(vals, sym))
end
# For `dictlike` we need to check wether `vn` is "immediately" present, or
# if some ancestor of `vn` is present in `dictlike`.
function hasvalue(vals::AbstractDict, vn::VarName)
# First we check if `vn` is present as is.
haskey(vals, vn) && return true
# If `vn` is not present, we check any parent-varnames by attempting
# to split the optic into the key / `parent` and the extraction optic / `child`.
# If `issuccess` is `true`, we found such a split, and hence `vn` is present.
parent, child, issuccess = splitoptic(getoptic(vn)) do optic
o = optic === nothing ? identity : optic
haskey(vals, VarName(vn, o))
end
# When combined with `VarInfo`, `nothing` is equivalent to `identity`.
keyoptic = parent === nothing ? identity : parent
# Return early if no such split could be found.
issuccess || return false
# At this point we just need to check that we `canview` the value.
value = vals[VarName(vn, keyoptic)]
return canview(child, value)
end
"""
nested_getindex(values::AbstractDict, vn::VarName)
Return value corresponding to `vn` in `values` by also looking
in the the actual values of the dict.
"""
function nested_getindex(values::AbstractDict, vn::VarName)
maybeval = get(values, vn, nothing)
if maybeval !== nothing
return maybeval
end
# Split the optic into the key / `parent` and the extraction optic / `child`.
parent, child, issuccess = splitoptic(getoptic(vn)) do optic
o = optic === nothing ? identity : optic
haskey(values, VarName(vn, o))
end
# When combined with `VarInfo`, `nothing` is equivalent to `identity`.
keyoptic = parent === nothing ? identity : parent
# If we found a valid split, then we can extract the value.
if !issuccess
# At this point we just throw an error since the key could not be found.
throw(KeyError(vn))
end
# TODO: Should we also check that we `canview` the extracted `value`
# rather than just let it fail upon `get` call?
value = values[VarName(vn, keyoptic)]
return child(value)
end
"""
update_values!!(vi::AbstractVarInfo, vals::NamedTuple, vns)
Return instance similar to `vi` but with `vns` set to values from `vals`.
"""
function update_values!!(vi::AbstractVarInfo, vals::NamedTuple, vns)
for vn in vns
vi = DynamicPPL.setindex!!(vi, get(vals, vn), vn)
end
return vi
end
"""
float_type_with_fallback(x)
Return type corresponding to `float(typeof(x))` if possible; otherwise return `Real`.
"""
float_type_with_fallback(::Type) = Real
float_type_with_fallback(::Type{Union{}}) = Real
float_type_with_fallback(::Type{T}) where {T<:Real} = float(T)
"""
infer_nested_eltype(x::Type)
Recursively unwrap the type, returning the first type where `eltype(x) === typeof(x)`.
This is useful for obtaining a reasonable default `eltype` in deeply nested types.
# Examples
```jldoctest
julia> # `AbstractArrary`
DynamicPPL.infer_nested_eltype(typeof([1.0]))
Float64
julia> # `NamedTuple` with `Float32`
DynamicPPL.infer_nested_eltype(typeof((x = [1f0], )))
Float32
julia> # `AbstractDict`
DynamicPPL.infer_nested_eltype(typeof(Dict(:x => [1.0, ])))
Float64
julia> # Nesting of containers.
DynamicPPL.infer_nested_eltype(typeof([Dict(:x => 1.0,) ]))
Float64
julia> DynamicPPL.infer_nested_eltype(typeof([Dict(:x => [1.0,],) ]))
Float64
julia> # Empty `Tuple`.
DynamicPPL.infer_nested_eltype(typeof(()))
Any
julia> # Empty `Dict`.
DynamicPPL.infer_nested_eltype(typeof(Dict()))
Any
```
"""
function infer_nested_eltype(::Type{T}) where {T}
ET = eltype(T)
return ET === T ? T : infer_nested_eltype(ET)
end
# We can do a better job than just `Any` with `Union`.
infer_nested_eltype(::Type{Union{}}) = Any
function infer_nested_eltype(::Type{U}) where {U<:Union}
return promote_type(U.a, infer_nested_eltype(U.b))
end
# Handle `NamedTuple` and `Tuple` specially given how prolific they are.
function infer_nested_eltype(::Type{<:NamedTuple{<:Any,V}}) where {V}
return infer_nested_eltype(V)
end
# Recursively deal with `Tuple` so it has the potential of being compiled away.
infer_nested_eltype(::Type{Tuple{T}}) where {T} = infer_nested_eltype(T)
function infer_nested_eltype(::Type{T}) where {T<:Tuple{<:Any,Vararg{Any}}}
return promote_type(
infer_nested_eltype(Base.tuple_type_tail(T)),