Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

"failed to find valid initial parameters" without the use of truncated #2476

Open
bspanoghe opened this issue Jan 22, 2025 · 8 comments
Open
Assignees
Labels

Comments

@bspanoghe
Copy link

Minimal working example

using Turing

@model function xymodel()
	X ~ Exponential(100)
	Y ~ Uniform(0, X)
end

condmodel = xymodel() | (Y = 50.0,)
sample(condmodel, NUTS(), 1000)

Description

Throws ERROR: failed to find valid initial parameters in 1000 tries. This may indicate an error with the model or AD backend; please open an issue at https://github.com/TuringLang/Turing.jl/issues.

I assume this is related to #2389, sampling works fine with gradientless samplers. Might not be relevant since it seems like a known issue caused by the AD backends, but I've only seen the error mentioned along with a truncated distribution so since that's not the case here I thought it might be interesting to someone. Additional point of interest, sampling does work for low enough values of Y, e.g. (Y = 5.0,) works just fine.

Julia version info

versioninfo()
Julia Version 1.11.1
Commit 8f5b7ca12a (2024-10-16 10:53 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Windows (x86_64-w64-mingw32)
  CPU: 12 × 12th Gen Intel(R) Core(TM) i7-1265U
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, alderlake)
Threads: 1 default, 0 interactive, 1 GC (on 12 virtual cores)
Environment:
  JULIA_EDITOR = code
  JULIA_NUM_THREADS =

Manifest

Presumably the most relevant parts:

(ModSim) pkg> st --manifest
Status `~\ModSim\Manifest.toml`
  [fce5fe82] Turing v0.36.0
  [f6369f11] ForwardDiff v0.10.38

And full:

]st --manifest
(ModSim) pkg> st --manifest
Status `~\ModSim\Manifest.toml`
  [47edcb42] ADTypes v1.12.0
  [621f4979] AbstractFFTs v1.5.0
  [80f14c24] AbstractMCMC v5.6.0
⌅ [7a57a42e] AbstractPPL v0.9.0
  [1520ce14] AbstractTrees v0.4.5
  [7d9f7c33] Accessors v0.1.41
  [79e6a3ab] Adapt v4.1.1
  [0bf59076] AdvancedHMC v0.6.4
  [5b7e9947] AdvancedMH v0.8.5
  [576499cb] AdvancedPS v0.6.0
⌅ [b5ca4192] AdvancedVI v0.2.11
  [66dad0bd] AliasTables v1.1.3
  [dce04be8] ArgCheck v2.4.0
  [ec485272] ArnoldiMethod v0.4.0
  [7d9fca2a] Arpack v0.5.4
  [4fba245c] ArrayInterface v7.18.0
  [4c555306] ArrayLayouts v1.11.0
  [a9b6321e] Atomix v1.0.1
  [13072b0f] AxisAlgorithms v1.1.0
  [39de3d68] AxisArrays v0.4.7
  [198e06fe] BangBang v0.4.3
  [9718e550] Baselet v0.1.1
  [e2ed5e7c] Bijections v0.1.9
  [76274a88] Bijectors v0.15.4
  [d1d4a3ce] BitFlags v0.1.9
  [62783981] BitTwiddlingConvenienceFunctions v0.1.6
  [8e7c35d0] BlockArrays v1.3.0
  [70df07ce] BracketingNonlinearSolve v1.1.0
  [2a0fbf3d] CPUSummary v0.2.6
  [00ebfdb7] CSTParser v3.4.3
  [479239e8] Catalyst v14.4.1
  [082447d4] ChainRules v1.72.2
  [d360d2e6] ChainRulesCore v1.25.1
  [9e997f8a] ChangesOfVariables v0.1.9
  [fb6a15b2] CloseOpenIntervals v0.1.13
  [aaaa29a8] Clustering v0.15.8
  [944b1d66] CodecZlib v0.7.6
  [35d6a980] ColorSchemes v3.28.0
  [3da002f7] ColorTypes v0.12.0
  [c3611d14] ColorVectorSpace v0.11.0
  [5ae59095] Colors v0.13.0
  [861a8166] Combinatorics v1.0.2
  [a80b9123] CommonMark v0.8.15
  [38540f10] CommonSolve v0.2.4
  [bbf7d656] CommonSubexpressions v0.3.1
  [f70d9fcc] CommonWorldInvalidations v1.0.0
  [34da2185] Compat v4.16.0
  [b152e2b5] CompositeTypes v0.1.4
  [a33af91c] CompositionsBase v0.1.2
  [2569d6c7] ConcreteStructs v0.2.3
  [f0e56b4a] ConcurrentUtilities v2.4.3
  [88cd18e8] ConsoleProgressMonitor v0.1.2
  [187b0558] ConstructionBase v1.5.8
  [d38c429a] Contour v0.6.3
  [adafc99b] CpuId v0.3.1
  [a8cc5b0e] Crayons v4.1.1
  [9a962f9c] DataAPI v1.16.0
  [864edb3b] DataStructures v0.18.20
  [e2d170a0] DataValueInterfaces v1.0.0
  [244e2a9f] DefineSingletons v0.1.2
  [8bb1440f] DelimitedFiles v1.9.1
  [b429d917] DensityInterface v0.4.0
  [2b5f629d] DiffEqBase v6.161.0
  [459566f4] DiffEqCallbacks v4.2.2
  [77a26b50] DiffEqNoiseProcess v5.24.1
  [163ba53b] DiffResults v1.1.0
  [b552c78f] DiffRules v1.15.1
  [a0c0ee7d] DifferentiationInterface v0.6.31
  [8d63f2c5] DispatchDoctor v0.4.19
  [b4f34e82] Distances v0.10.12
  [31c24e10] Distributions v0.25.117
  [ced4e74d] DistributionsAD v0.6.57
  [ffbed154] DocStringExtensions v0.9.3
  [5b8099bc] DomainSets v0.7.15
⌅ [366bfd00] DynamicPPL v0.32.2
  [7c1d4256] DynamicPolynomials v0.6.1
  [06fc5a27] DynamicQuantities v1.4.0
  [cad2338a] EllipticalSliceSampling v2.0.0
  [4e289a0a] EnumX v1.0.4
  [f151be2c] EnzymeCore v0.8.8
  [460bff9d] ExceptionUnwrapping v0.1.11
  [d4d017d3] ExponentialUtilities v1.27.0
  [e2ba6199] ExprTools v0.1.10
⌅ [6b7a57c9] Expronicon v0.8.5
  [c87230d0] FFMPEG v0.4.2
  [7a1cc6ca] FFTW v1.8.0
  [7034ab61] FastBroadcast v0.3.5
  [9aa1b823] FastClosures v0.3.2
  [442a2c76] FastGaussQuadrature v1.0.2
  [29a986be] FastLapackInterface v2.0.4
  [a4df4552] FastPower v1.1.1
  [1a297f60] FillArrays v1.13.0
  [64ca27bc] FindFirstFunctions v1.4.1
  [6a86dc24] FiniteDiff v2.26.2
  [53c48c17] FixedPointNumbers v0.8.5
  [1fa38f19] Format v1.3.7
  [f6369f11] ForwardDiff v0.10.38
  [069b7b12] FunctionWrappers v1.1.3
  [77dc65aa] FunctionWrappersWrappers v0.1.3
  [d9f16b24] Functors v0.5.2
  [46192b85] GPUArraysCore v0.2.0
  [28b8d3ca] GR v0.73.12
  [c145ed77] GenericSchur v0.5.4
  [c27321d9] Glob v1.3.1
  [86223c79] Graphs v1.12.0
  [42e2da0e] Grisu v1.0.2
  [cd3eb016] HTTP v1.10.15
  [3e5b6fbb] HostCPUFeatures v0.1.17
  [34004b35] HypergeometricFunctions v0.3.25
  [615f187c] IfElse v0.1.1
  [d25df0c9] Inflate v0.1.5
  [22cec73e] InitialValues v0.3.1
  [505f98c9] InplaceOps v0.3.0
  [18e54dd8] IntegerMathUtils v0.1.2
  [a98d9a8b] Interpolations v0.15.1
  [8197267c] IntervalSets v0.7.10
  [3587e190] InverseFunctions v0.1.17
  [41ab1584] InvertedIndices v1.3.1
  [92d709cd] IrrationalConstants v0.2.2
  [c8e1da08] IterTools v1.10.0
  [82899510] IteratorInterfaceExtensions v1.0.0
  [1019f520] JLFzf v0.1.9
  [692b3bcd] JLLWrappers v1.7.0
  [682c06a0] JSON v0.21.4
  [98e50ef6] JuliaFormatter v1.0.62
  [ccbc3e58] JumpProcesses v9.14.1
  [ef3ab10e] KLU v0.6.0
  [63c18a36] KernelAbstractions v0.9.32
  [5ab0869b] KernelDensity v0.6.9
  [ba0b0d4f] Krylov v0.9.9
  [5be7bae1] LBFGSB v0.4.1
  [8ac3fa9e] LRUCache v1.6.1
  [b964fa9f] LaTeXStrings v1.4.0
  [23fbe1c1] Latexify v0.16.5
  [10f19ff3] LayoutPointers v0.1.17
  [5078a376] LazyArrays v2.3.2
  [1d6d02ad] LeftChildRightSiblingTrees v0.2.0
  [6f1fad26] Libtask v0.8.8
  [87fe0de2] LineSearch v0.1.4
  [d3d80556] LineSearches v7.3.0
  [7ed4a6bd] LinearSolve v2.38.0
  [6fdf6af0] LogDensityProblems v2.1.2
  [996a588d] LogDensityProblemsAD v1.13.0
  [2ab3a3ac] LogExpFunctions v0.3.29
  [e6f89c97] LoggingExtras v1.1.0
  [bdcacae8] LoopVectorization v0.12.171
  [c7f686f2] MCMCChains v6.0.7
  [be115224] MCMCDiagnosticTools v0.3.14
  [e80e1ace] MLJModelInterface v1.11.0
  [d8e11817] MLStyle v0.4.17
  [1914dd2f] MacroTools v0.5.15
  [d125e4d3] ManualMemory v0.1.8
  [dbb5928d] MappedArrays v0.4.2
  [bb5d69b7] MaybeInplace v0.1.4
  [739be429] MbedTLS v1.1.9
  [442fdcdd] Measures v0.3.2
  [128add7d] MicroCollections v0.2.0
  [e1d29d7a] Missings v1.2.0
  [961ee093] ModelingToolkit v9.61.0
  [46d2c3a1] MuladdMacro v0.2.4
  [102ac46a] MultivariatePolynomials v0.5.7
  [6f286f6a] MultivariateStats v0.10.3
  [d8a4904e] MutableArithmetics v1.6.2
  [d41bc354] NLSolversBase v7.8.3
  [872c559c] NNlib v0.9.27
  [77ba4419] NaNMath v1.0.3
  [86f7a689] NamedArrays v0.10.3
  [c020b1a1] NaturalSort v1.0.0
  [b8a86587] NearestNeighbors v0.4.21
  [8913a72c] NonlinearSolve v4.3.0
  [be0214bd] NonlinearSolveBase v1.4.0
  [5959db7a] NonlinearSolveFirstOrder v1.2.0
  [9a2c21bd] NonlinearSolveQuasiNewton v1.1.0
  [26075421] NonlinearSolveSpectralMethods v1.1.0
  [510215fc] Observables v0.5.5
  [6fe1bfb0] OffsetArrays v1.15.0
  [4d8831e6] OpenSSL v1.4.3
  [429524aa] Optim v1.10.0
  [3bd65402] Optimisers v0.4.4
  [7f7a1694] Optimization v4.1.0
  [bca83a33] OptimizationBase v2.4.0
  [36348300] OptimizationOptimJL v0.4.1
  [bac558e1] OrderedCollections v1.7.0
  [1dea7af3] OrdinaryDiffEq v6.90.1
  [89bda076] OrdinaryDiffEqAdamsBashforthMoulton v1.1.0
  [6ad6398a] OrdinaryDiffEqBDF v1.2.0
  [bbf590c4] OrdinaryDiffEqCore v1.15.0
  [50262376] OrdinaryDiffEqDefault v1.2.0
  [4302a76b] OrdinaryDiffEqDifferentiation v1.3.0
  [9286f039] OrdinaryDiffEqExplicitRK v1.1.0
  [e0540318] OrdinaryDiffEqExponentialRK v1.2.0
  [becaefa8] OrdinaryDiffEqExtrapolation v1.3.0
  [5960d6e9] OrdinaryDiffEqFIRK v1.6.0
  [101fe9f7] OrdinaryDiffEqFeagin v1.1.0
  [d3585ca7] OrdinaryDiffEqFunctionMap v1.1.1
  [d28bc4f8] OrdinaryDiffEqHighOrderRK v1.1.0
  [9f002381] OrdinaryDiffEqIMEXMultistep v1.2.0
  [521117fe] OrdinaryDiffEqLinear v1.1.0
  [1344f307] OrdinaryDiffEqLowOrderRK v1.2.0
  [b0944070] OrdinaryDiffEqLowStorageRK v1.2.1
  [127b3ac7] OrdinaryDiffEqNonlinearSolve v1.3.0
  [c9986a66] OrdinaryDiffEqNordsieck v1.1.0
  [5dd0a6cf] OrdinaryDiffEqPDIRK v1.2.0
  [5b33eab2] OrdinaryDiffEqPRK v1.1.0
  [04162be5] OrdinaryDiffEqQPRK v1.1.0
  [af6ede74] OrdinaryDiffEqRKN v1.1.0
  [43230ef6] OrdinaryDiffEqRosenbrock v1.4.0
  [2d112036] OrdinaryDiffEqSDIRK v1.2.0
  [669c94d9] OrdinaryDiffEqSSPRK v1.2.0
  [e3e12d00] OrdinaryDiffEqStabilizedIRK v1.2.0
  [358294b1] OrdinaryDiffEqStabilizedRK v1.1.0
  [fa646aed] OrdinaryDiffEqSymplecticRK v1.1.0
  [b1df2697] OrdinaryDiffEqTsit5 v1.1.0
  [79d7bb75] OrdinaryDiffEqVerner v1.1.1
  [90014a1f] PDMats v0.11.32
  [65ce6f38] PackageExtensionCompat v1.0.2
  [d96e819e] Parameters v0.12.3
  [69de0a69] Parsers v2.8.1
  [b98c9c47] Pipe v1.3.0
  [ccf2f8ad] PlotThemes v3.3.0
  [995b91a9] PlotUtils v1.4.3
  [91a5bcdd] Plots v1.40.9
  [e409e4f3] PoissonRandom v0.4.4
  [f517fe37] Polyester v0.7.16
  [1d0040c9] PolyesterWeave v0.2.2
  [85a6dd25] PositiveFactorizations v0.2.4
  [d236fae5] PreallocationTools v0.4.24
  [aea7be01] PrecompileTools v1.2.1
  [21216c6a] Preferences v1.4.3
  [08abe8d2] PrettyTables v2.4.0
  [27ebfcd6] Primes v0.5.6
  [33c8b6b6] ProgressLogging v0.1.4
  [92933f4c] ProgressMeter v1.10.2
  [43287f4e] PtrArrays v1.3.0
  [1fd47b50] QuadGK v2.11.1
  [74087812] Random123 v1.7.0
  [e6cf234a] RandomNumbers v1.6.0
  [b3c3ace0] RangeArrays v0.3.2
  [c84ed2f1] Ratios v0.4.5
  [c1ae055f] RealDot v0.1.0
  [3cdcf5f2] RecipesBase v1.3.4
  [01d81517] RecipesPipeline v0.6.12
  [731186ca] RecursiveArrayTools v3.27.4
  [f2c3362d] RecursiveFactorization v0.2.23
  [189a3867] Reexport v1.2.2
  [05181044] RelocatableFolders v1.0.1
  [ae029012] Requires v1.3.0
  [ae5879a3] ResettableStacks v1.1.1
  [79098fc4] Rmath v0.8.0
  [f2b01f46] Roots v2.2.4
  [7e49a35a] RuntimeGeneratedFunctions v0.5.13
  [9dfe8606] SCCNonlinearSolve v1.0.0
  [94e857df] SIMDTypes v0.1.0
  [476501e8] SLEEFPirates v0.6.43
⌅ [26aad666] SSMProblems v0.1.1
  [0bca4576] SciMLBase v2.71.4
  [19f34311] SciMLJacobianOperators v0.1.1
  [c0aeaf25] SciMLOperators v0.3.12
  [53ae85a6] SciMLStructures v1.6.1
  [30f210dd] ScientificTypesBase v3.0.0
  [6c6a2e73] Scratch v1.2.1
  [91c51154] SentinelArrays v1.4.8
  [efcf1570] Setfield v1.1.1
  [992d4aef] Showoff v1.0.3
  [777ac1f9] SimpleBufferStream v1.2.0
  [727e6d20] SimpleNonlinearSolve v2.1.0
  [699a6c99] SimpleTraits v0.9.4
  [ce78b400] SimpleUnPack v1.1.0
  [a2af1166] SortingAlgorithms v1.2.1
  [9f842d2f] SparseConnectivityTracer v0.6.9
  [47a9eef4] SparseDiffTools v2.23.1
  [dc90abb0] SparseInverseSubset v0.1.2
  [0a514795] SparseMatrixColorings v0.4.11
  [e56a9233] Sparspak v0.3.9
  [276daf66] SpecialFunctions v2.5.0
  [171d559e] SplittablesBase v0.1.15
  [860ef19b] StableRNGs v1.0.2
  [aedffcd0] Static v1.1.1
  [0d7ed370] StaticArrayInterface v1.8.0
  [90137ffa] StaticArrays v1.9.10
  [1e83bf80] StaticArraysCore v1.4.3
  [64bff920] StatisticalTraits v3.4.0
  [10745b16] Statistics v1.11.1
  [82ae8749] StatsAPI v1.7.0
  [2913bbd2] StatsBase v0.34.4
  [4c63d2b9] StatsFuns v1.3.2
  [f3b207a7] StatsPlots v0.15.7
  [7792a7ef] StrideArraysCore v0.5.7
  [892a3eda] StringManipulation v0.4.0
⌃ [09ab397b] StructArrays v0.6.21
  [2efcf032] SymbolicIndexingInterface v0.3.37
  [19f23fe9] SymbolicLimits v0.2.2
  [d1185830] SymbolicUtils v3.11.0
  [0c5d862f] Symbolics v6.24.0
  [ab02a1b2] TableOperations v1.2.0
  [3783bdb8] TableTraits v1.0.1
  [bd369af6] Tables v1.12.0
  [62fd8b95] TensorCore v0.1.1
  [8ea1fca8] TermInterface v2.0.0
  [5d786b92] TerminalLoggers v0.1.7
  [1c621080] TestItems v1.0.0
  [8290d209] ThreadingUtilities v0.5.2
  [a759f4b9] TimerOutputs v0.5.26
  [0796e94c] Tokenize v0.5.29
  [9f7883ad] Tracker v0.2.37
  [3bb67fe8] TranscodingStreams v0.11.3
  [28d57a85] Transducers v0.4.84
  [d5829a12] TriangularSolve v0.2.1
  [410a4b4d] Tricks v0.1.10
  [781d530d] TruncatedStacktraces v1.4.0
  [fce5fe82] Turing v0.36.0
  [5c2747f8] URIs v1.5.1
  [3a884ed6] UnPack v1.0.2
  [1cfade01] UnicodeFun v0.4.1
  [1986cc42] Unitful v1.22.0
  [45397f5d] UnitfulLatexify v1.6.4
  [a7c27f48] Unityper v0.1.6
  [013be700] UnsafeAtomics v0.3.0
  [41fe7b60] Unzip v0.2.0
  [3d5dd08c] VectorizationBase v0.21.71
  [19fa3120] VertexSafeGraphs v0.2.0
  [897b6980] WeakValueDicts v0.1.0
  [cc8bc4a8] Widgets v0.6.7
  [efce3f68] WoodburyMatrices v1.0.0
  [700de1a5] ZygoteRules v0.2.7
⌅ [68821587] Arpack_jll v3.5.1+1
  [6e34b625] Bzip2_jll v1.0.8+4
  [83423d85] Cairo_jll v1.18.2+1
  [ee1fde0b] Dbus_jll v1.14.10+0
  [2702e6a9] EpollShim_jll v0.0.20230411+1
  [2e619515] Expat_jll v2.6.4+3
⌅ [b22a6f82] FFMPEG_jll v4.4.4+1
  [f5851436] FFTW_jll v3.3.10+3
  [a3f928ae] Fontconfig_jll v2.15.0+0
  [d7e528f0] FreeType2_jll v2.13.3+1
  [559328eb] FriBidi_jll v1.0.16+0
  [0656b61e] GLFW_jll v3.4.0+2
  [d2c73de3] GR_jll v0.73.12+0
  [78b55507] Gettext_jll v0.21.0+0
  [7746bdde] Glib_jll v2.82.4+0
  [3b182d85] Graphite2_jll v1.3.14+1
  [2e76f6c2] HarfBuzz_jll v8.5.0+0
⌅ [1d5cc7b8] IntelOpenMP_jll v2024.2.1+0
  [aacddb02] JpegTurbo_jll v3.1.1+0
  [c1c5ebd0] LAME_jll v3.100.2+0
  [88015f11] LERC_jll v4.0.1+0
  [1d63c593] LLVMOpenMP_jll v18.1.7+0
  [dd4b983a] LZO_jll v2.10.3+0
  [81d17ec3] L_BFGS_B_jll v3.0.1+0
⌅ [e9f186c6] Libffi_jll v3.2.2+2
  [d4300ac3] Libgcrypt_jll v1.11.0+0
  [7e76a0d4] Libglvnd_jll v1.7.0+0
  [7add5ba3] Libgpg_error_jll v1.51.1+0
  [94ce4f54] Libiconv_jll v1.18.0+0
  [4b2f31a3] Libmount_jll v2.40.3+0
  [89763e89] Libtiff_jll v4.7.1+0
  [38a345b3] Libuuid_jll v2.40.3+0
⌅ [856f044c] MKL_jll v2024.2.0+0
  [e7412a2a] Ogg_jll v1.3.5+1
  [458c3c95] OpenSSL_jll v3.0.15+3
  [efe28fd5] OpenSpecFun_jll v0.5.6+0
  [91d4177d] Opus_jll v1.3.3+0
  [36c8627f] Pango_jll v1.55.5+0
⌅ [30392449] Pixman_jll v0.43.4+0
⌅ [c0090381] Qt6Base_jll v6.7.1+1
  [629bc702] Qt6Declarative_jll v6.7.1+2
  [ce943373] Qt6ShaderTools_jll v6.7.1+1
  [e99dba38] Qt6Wayland_jll v6.7.1+1
  [f50d1b31] Rmath_jll v0.5.1+0
  [a44049a8] Vulkan_Loader_jll v1.3.243+0
  [a2964d1f] Wayland_jll v1.21.0+2
  [2381bf8a] Wayland_protocols_jll v1.36.0+0
  [02c8fc9c] XML2_jll v2.13.5+0
  [aed1982a] XSLT_jll v1.1.42+0
  [ffd25f8a] XZ_jll v5.6.4+0
  [f67eecfb] Xorg_libICE_jll v1.1.1+0
  [c834827a] Xorg_libSM_jll v1.2.4+0
  [4f6342f7] Xorg_libX11_jll v1.8.6+3
  [0c0b7dd1] Xorg_libXau_jll v1.0.12+0
  [935fb764] Xorg_libXcursor_jll v1.2.3+0
  [a3789734] Xorg_libXdmcp_jll v1.1.5+0
  [1082639a] Xorg_libXext_jll v1.3.6+3
  [d091e8ba] Xorg_libXfixes_jll v6.0.0+0
  [a51aa0fd] Xorg_libXi_jll v1.8.2+0
  [d1454406] Xorg_libXinerama_jll v1.1.5+0
  [ec84b674] Xorg_libXrandr_jll v1.5.4+0
  [ea2f1a96] Xorg_libXrender_jll v0.9.11+1
  [14d82f49] Xorg_libpthread_stubs_jll v0.1.2+0
  [c7cfdc94] Xorg_libxcb_jll v1.17.0+3
  [cc61e674] Xorg_libxkbfile_jll v1.1.2+1
  [e920d4aa] Xorg_xcb_util_cursor_jll v0.1.4+0
  [12413925] Xorg_xcb_util_image_jll v0.4.0+1
  [2def613f] Xorg_xcb_util_jll v0.4.0+1
  [975044d2] Xorg_xcb_util_keysyms_jll v0.4.0+1
  [0d47668e] Xorg_xcb_util_renderutil_jll v0.3.9+1
  [c22f9ab0] Xorg_xcb_util_wm_jll v0.4.1+1
  [35661453] Xorg_xkbcomp_jll v1.4.6+1
  [33bec58e] Xorg_xkeyboard_config_jll v2.39.0+0
  [c5fb5394] Xorg_xtrans_jll v1.5.1+0
  [3161d3a3] Zstd_jll v1.5.7+0
  [35ca27e7] eudev_jll v3.2.9+0
  [214eeab7] fzf_jll v0.56.3+0
  [1a1c6b14] gperf_jll v3.1.1+1
  [a4ae2306] libaom_jll v3.11.0+0
  [0ac62f75] libass_jll v0.15.2+0
  [1183f4f0] libdecor_jll v0.2.2+0
  [2db6ffa8] libevdev_jll v1.11.0+0
  [f638f0a6] libfdk_aac_jll v2.0.3+0
  [36db933b] libinput_jll v1.18.0+0
  [b53b4c65] libpng_jll v1.6.45+1
  [f27f6e37] libvorbis_jll v1.3.7+2
  [009596ad] mtdev_jll v1.1.6+0
  [1317d2d5] oneTBB_jll v2021.12.0+0
⌅ [1270edf5] x264_jll v2021.5.5+0
⌅ [dfaa095f] x265_jll v3.5.0+0
  [d8fb68d0] xkbcommon_jll v1.4.1+2
  [0dad84c5] ArgTools v1.1.2
  [56f22d72] Artifacts v1.11.0
  [2a0f44e3] Base64 v1.11.0
  [ade2ca70] Dates v1.11.0
  [8ba89e20] Distributed v1.11.0
  [f43a241f] Downloads v1.6.0
  [7b1f6079] FileWatching v1.11.0
  [9fa8497b] Future v1.11.0
  [b77e0a4c] InteractiveUtils v1.11.0
  [4af54fe1] LazyArtifacts v1.11.0
  [b27032c2] LibCURL v0.6.4
  [76f85450] LibGit2 v1.11.0
  [8f399da3] Libdl v1.11.0
  [37e2e46d] LinearAlgebra v1.11.0
  [56ddb016] Logging v1.11.0
  [d6f4376e] Markdown v1.11.0
  [a63ad114] Mmap v1.11.0
  [ca575930] NetworkOptions v1.2.0
  [44cfe95a] Pkg v1.11.0
  [de0858da] Printf v1.11.0
  [3fa0cd96] REPL v1.11.0
  [9a3f8284] Random v1.11.0
  [ea8e919c] SHA v0.7.0
  [9e88b42a] Serialization v1.11.0
  [1a1011a3] SharedArrays v1.11.0
  [6462fe0b] Sockets v1.11.0
  [2f01184e] SparseArrays v1.11.0
  [f489334b] StyledStrings v1.11.0
  [4607b0f0] SuiteSparse
  [fa267f1f] TOML v1.0.3
  [a4e569a6] Tar v1.10.0
  [8dfed614] Test v1.11.0
  [cf7118a7] UUIDs v1.11.0
  [4ec0a83e] Unicode v1.11.0
  [e66e0078] CompilerSupportLibraries_jll v1.1.1+0
  [deac9b47] LibCURL_jll v8.6.0+0
  [e37daf67] LibGit2_jll v1.7.2+0
  [29816b5a] LibSSH2_jll v1.11.0+1
  [c8ffd9c3] MbedTLS_jll v2.28.6+0
  [14a3606d] MozillaCACerts_jll v2023.12.12
  [4536629a] OpenBLAS_jll v0.3.27+1
  [05823500] OpenLibm_jll v0.8.1+2
  [efcefdf7] PCRE2_jll v10.42.0+1
  [bea87d4a] SuiteSparse_jll v7.7.0+0
  [83775a58] Zlib_jll v1.2.13+1
  [8e850b90] libblastrampoline_jll v5.11.0+0
  [8e850ede] nghttp2_jll v1.59.0+0
  [3f19e933] p7zip_jll v17.4.0+2
@bspanoghe bspanoghe added the bug label Jan 22, 2025
@DominiqueMakowski
Copy link
Contributor

Just to add that after updating Turing I also noticed this error in some models that were previously fine, and it kept erroring if I manually set (good) initial parameters :/

@mhauru mhauru self-assigned this Jan 23, 2025
@mhauru
Copy link
Member

mhauru commented Jan 23, 2025

Thanks for reporting @bspanoghe. This is actually not an AD issue, but rather a case where the way we sample initial guesses for HMC/NUTS will never pick a value for X for which the likelihood would not be 0. To be more specific, on this line: https://github.com/TuringLang/Turing.jl/blob/24d5556786a835fd6fc3bdf11866cab93ff4cce3/src/mcmc/hmc.jl#L197C45-L197C50
we pick initial guesses from a uniform distribution between -2 and 2 in the unconstrained space. The largest value for X we'll ever get from that is exp(2) ≈ 7.389, whereas to get non-zero likelihood we would need X > 50.

@yebai is there a reason we don't sample from the prior for our initial guesses?

We should improve our automatic initial parameter finding, but note that you can also get around this by giving a good initial parameter yourself, e.g. sample(condmodel, NUTS(), 1000; initial_params=[100.0]).

The only thing that changed in the linked PR, which was first included v0.35.2, is that this errors after 1000 attempts rather than getting into an infinite loop. If you have a case where were some model worked fine but stopped working after v0.35.2, or doesn't work even if you give it good initial parameters by hand, please do send us an MWE (@DominiqueMakowski).

@penelopeysm
Copy link
Member

penelopeysm commented Jan 23, 2025

The [-2, 2] thing comes from Stan: https://mc-stan.org/rstan/reference/stan.html (see 'init' section)

Some discussion about the rationale for this vs. sampling from the prior:

https://stats.stackexchange.com/questions/418705/why-does-stan-initialize-an-mcmc-chain-with-a-random-value-generated-uniformly-f

https://discourse.mc-stan.org/t/initialization-using-prior/12512

@penelopeysm
Copy link
Member

penelopeysm commented Jan 23, 2025

In light of this it seems that maybe we should have a configurable option to initialise parameters using:

  • sampling from Uniform(a, b) in unconstrained space (where a, b are also configurable)
  • sampling from Prior

In the meantime, a quick fix could be generate initial_params by manually sampling from the prior:

julia> using DynamicPPL

julia> # instantiating a VarInfo samples from the prior; the [:] turns it into a vector of parameter values
       # it would definitely be useful to have a convenience method for this
       initial_params = DynamicPPL.VarInfo(condmodel)[:]
1-element Vector{Float64}:
 112.45927127783834

julia> sample(condmodel, NUTS(), 1000; initial_params=initial_params)
┌ Info: Found initial step size
└   ϵ = 3.2
Sampling 100%|███████████████████████████████████████████████████████████████████| Time: 0:00:00
Chains MCMC chain (1000×13×1 Array{Float64, 3}):

Iterations        = 501:1:1500
Number of chains  = 1
Samples per chain = 1000
Wall duration     = 0.07 seconds
Compute duration  = 0.07 seconds
parameters        = X
internals         = lp, n_steps, is_accept, acceptance_rate, log_density, hamiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, nom_step_size

Summary Statistics
  parameters       mean       std      mcse   ess_bulk   ess_tail      rhat   ess_per_sec
      Symbol    Float64   Float64   Float64    Float64    Float64   Float64       Float64

           X   107.7615   69.9560    5.3643   170.6348   270.6350    1.0059     2337.4624

Quantiles
  parameters      2.5%     25.0%     50.0%      75.0%      97.5%
      Symbol   Float64   Float64   Float64    Float64    Float64

           X   50.8721   62.5282   83.6638   127.2002   306.6304

@mhauru
Copy link
Member

mhauru commented Jan 23, 2025

In light of this it seems that maybe we should have a configurable option to initialise parameters using

I wonder if any option that requires a conscious action from the user is much better than asking them to just provide initial_params. It could still be a slight convenience to be able to say ; initial_params=:from_prior or something, but I think the largest hurdle is forcing the user to think about initialisation at all.

@DominiqueMakowski
Copy link
Contributor

My two cents as a user is that I think adding the option might be overkill and not worth it, especially if there is a convenient & visibly documented way of doing that outside.

I would personally love to see a convenience function to extract the mean of priors (ie a wrapper around mapreduce(DynamicPPL.tovec ∘ mean, vcat, values(Turing.extract_priors(fitted))))

@penelopeysm
Copy link
Member

penelopeysm commented Jan 23, 2025

It's quite cheap to add an option:

(*mutters about the lack of sum types in Julia*)

abstract type InitialisationStrategy

struct Prior <: InitialisationStrategy end
struct Uniform <: InitialisationStrategy
    a::Real
    b::Real
end
struct Manual <: InitialisationStrategy
    params::AbstractVector{<:Real}
end

Then document this, and add a link to the docs in the error message, that's how you can 'force' (or teach) people to think about initialisation.

And I think it'd be a huge improvement over making users instantiate VarInfo, having a type like this carries semantic information that makes code easier to read and understand, so it's not just a matter of convenience / saving characters, it's also making code written with Turing clearer.

@yebai
Copy link
Member

yebai commented Jan 23, 2025

I think we could generalise the initial_params option so one can pass a more general struct instead of a vector of floats. This struct type could be an initialisation strategy, as @penelopeysm proposed above, or a named tuple discussed: #2452 and TuringLang/DynamicPPL.jl#774

In the longer term, we could add this initial_params argument to AbstractMCMC.sample.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

5 participants