-
Notifications
You must be signed in to change notification settings - Fork 0
/
greg_simple.py
296 lines (264 loc) · 13.3 KB
/
greg_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
'''
Algorithm:
For each instance in the SemEval task with focus word w and context c
For each image v in the instance
s(v, c) = similarity between image i and context c
For each gloss g_i of the focus word w
s(v, g_i) = similarity between image v and gloss g_i
s(c, g_i) = similarity between context c and gloss g_i
Rank the images by the highest total similarity
Formula for the total similarity of an image v:
w_c * s(v, c) + w_g * MAX_i(w_cg * s(c, g_i) + w_vg * s(v, g_i)) where w_* are tunable parameters
'''
# Sample command:
# python greg.py -d semeval-2023-task-1-V-WSD-train-v1/train_v1/train.data.v1.txt -g semeval-2023-task-1-V-WSD-train-v1/train_v1/train.gold.v1.txt -i semeval-2023-task-1-V-WSD-train-v1/train_v1/train_images_v1/ --model openai/clip-vit-base-patch32
# 500 command:
# python greg.py -d /home/ogezi/ideas/v-wsd/semeval-2023-task-1-V-WSD-train-v1/sample/data.500.txt -g /home/ogezi/ideas/v-wsd/semeval-2023-task-1-V-WSD-train-v1/sample/gold.500.txt -i semeval-2023-task-1-V-WSD-train-v1/train_v1/train_images_v1/ --model openai/clip-vit-base-patch32
# Trial command:
# python greg.py -d semeval-2023-task-1-V-WSD-train-v1/trial_v1/trial.data.v1.txt -g semeval-2023-task-1-V-WSD-train-v1/trial_v1/trial.gold.v1.txt -i semeval-2023-task-1-V-WSD-train-v1/trial_v1/trial_images_v1/ --model openai/clip-vit-base-patch32
import argparse
import glob
import os
from time import time
from transformers import CLIPProcessor, CLIPModel, CLIPTokenizer, BertModel, BertTokenizer, AutoModel, AutoTokenizer, AutoProcessor
import termcolor
import torch
from tqdm import tqdm
from PIL import ImageFile, Image
from nltk.corpus import wordnet as wn
import numpy as np
import json
import math
ImageFile.LOAD_TRUNCATED_IMAGES = True
Image.MAX_IMAGE_PIXELS = 1000000000
INST_SIZ = 10
import sys
sys.path.append('.')
from utils import cos_sim, dot_prod_sim, cos_sim_softmax
name = sys.argv[0].replace('.py', '')
parser = argparse.ArgumentParser()
parser.add_argument('--data', '-d', default='semeval-2023-task-1-V-WSD-train-v1/sample/data.100.txt')
parser.add_argument('--gold', '-g', default='semeval-2023-task-1-V-WSD-train-v1/sample/gold.100.txt')
parser.add_argument('--image-dir', '-i', default='semeval-2023-task-1-V-WSD-train-v1/train_v1/train_images_v1')
parser.add_argument('--model', '-m', default='openai/clip-vit-base-patch32')
parser.add_argument('--bert_model', '-bm', default='bert-base-uncased')
parser.add_argument('--output', '-o', default=None)
parser.add_argument('--output_results', '-r', default='prediction.txt')
parser.add_argument('--weight_image_context', '-w_ic', default=1., type=float)
parser.add_argument('--weight_context_gloss', '-w_cg', default=1., type=float)
parser.add_argument('--weight_image_gloss', '-w_ig', default=1., type=float)
parser.add_argument('--weight_pool', '-w', default=1., type=float)
parser.add_argument('--pool_func', '-pf', default='max', choices=['max', 'mean'])
parser.add_argument('--wsd_type', '-t', default='consec', choices=['consec', 'amuse'])
parser.add_argument('--wsd_input', '-wi', default='semeval-2023-task-1-V-WSD-train-v1/sample/predictions.100.prob.jsonl')
parser.add_argument('--use_wsd', default=False, action='store_true')
parser.add_argument('--nouns_only', '-n', action='store_true', default=False)
parser.add_argument('--sim', '-s', default='dot_prod_sim', choices=['dot_prod_sim', 'cos_sim', 'cos_sim_softmax'])
parser.add_argument('--temp', default=1., type=float)
parser.add_argument('--surround', default='"')
args = parser.parse_args()
weight_image_context = args.weight_image_context
weight_pool = args.weight_pool
weight_context_gloss = args.weight_context_gloss
weight_image_gloss = args.weight_image_gloss
pool_func = np.max if args.pool_func == 'max' else np.mean
assert args.wsd_type == 'consec'
if args.output is None:
default_hyp = weight_image_context == 1. and weight_pool == 1. and weight_context_gloss == 1. and weight_image_gloss == 1. and args.pool_func == 'max'
if default_hyp:
hyp_info = '_'
else:
hyp_info = f'_w_ic={weight_image_context}_w_cg={weight_context_gloss}_w_ig={weight_image_gloss}_pf={args.pool_func}'
args.output = f"_logs/{name}{hyp_info}_{int(time())}_{args.model.replace('/', '_')}_log.out"
pos = 'n' if args.nouns_only else None
results = open(args.output_results, 'w')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if args.use_wsd:
parsed_lines = [json.loads(l) for l in open(args.wsd_input).readlines()]
wsd_in = {int(l['id']): {wn.lemma_from_key(k).synset(): p for k, p in sorted(l['probs'].items(), key=lambda x: x[1], reverse=True)} for l in parsed_lines}
model = AutoModel.from_pretrained(args.model, low_cpu_mem_usage=True).to(device)
processor = AutoProcessor.from_pretrained(args.model)
tokenizer = AutoTokenizer.from_pretrained(args.model)
bert_model = BertModel.from_pretrained(args.bert_model, low_cpu_mem_usage=True).to(device)
bert_tokenizer = BertTokenizer.from_pretrained(args.bert_model)
def get_synsets(word) -> list:
syns = wn.synsets(word, pos)
return syns
def sublist_in_list(sub, ls) -> tuple:
start, end = 0, 0
sub_sz = len(sub)
ls_sz = len(ls)
for idx in range(ls_sz):
start = idx
end = idx + sub_sz
if ls[start:end] == sub:
return start, end
return None
data = [l.strip().split('\t') for l in open(args.data).readlines()]
gold_data = [l.strip() for l in open(args.gold).readlines()]
# assert len(data) == len(gold_data)
all_images_paths = glob.glob(os.path.join(args.image_dir, '*'))
correct, total = 0, 0
# TODO: normalize so that sense with many lemmas do not have undue advantage
def lex_sub(focus, context) -> tuple:
senses = wn.synsets(focus)
if senses == []:
return 1, [context]
gen_contexts = [context]
lemma_counts = [len(s.lemma_names()) for s in senses]
hyp_lemma_counts = [[len(h.lemma_names()) for h in (s.hypernyms() + s.instance_hypernyms())] for s in senses]
max_lemma = max(lemma_counts)
max_hyp_lemma = 0 # max([max(x) if x != [] else 0 for x in hyp_lemma_counts])
max_count = max(max_lemma, max_hyp_lemma)
for idx, sense in enumerate(senses):
modded_contexts = [context.replace(focus, lemma.replace('_', ' ')) for lemma in sense.lemma_names()] * math.ceil(max_count / lemma_counts[idx])
modded_contexts = modded_contexts[:max_count]
assert len(modded_contexts) == max_count
gen_contexts.extend(modded_contexts)
# for idx, sense in enumerate(senses):
# for jdx, hypernym in enumerate(sense.hypernyms() + sense.instance_hypernyms()):
# modded = [context.replace(focus, lemma.replace('_', ' ')) for lemma in hypernym.lemma_names()] * math.ceil(max_count / hyp_lemma_counts[idx][jdx])
# modded = modded[:max_count]
# assert len(modded) == max_count
# gen_contexts.extend(modded)
# print(len(gen_contexts), gen_contexts)
return len(gen_contexts), gen_contexts
a, b, c = [], [], []
out = open(args.output, 'w')
sense_counts = []
ranks = []
sim = locals()[args.sim]
iter = tqdm(range(0, len(data)), 'Processing images and text...')
with torch.no_grad():
for i in iter:
if i >= len(data):
break
instance = data[i]
gold = gold_data[i]
def get_def(word, gloss):
article = 'An' if word.lower()[0] in 'aeiou' else 'A'
if gloss.lower().startswith('any '):
pass
elif gloss.lower().startswith('a '):
pass
else:
gloss = ('an ' if gloss.lower()[0] in 'aeiou' else 'a ') + gloss
return f'{article} {word} is {gloss}'
# return gloss
word, context, *image_paths = instance
word_tokens = bert_tokenizer(word).input_ids[1:-1]
synsets = list(set(get_synsets(word)))
glosses = [get_def(s.lemma_names()[0].replace('_', ' '), s.definition()) for s in synsets]
images = [Image.open(os.path.join(args.image_dir, i)) for i in image_paths]
# len_c, extra_contexts = lex_sub(word, context)
# print(extra_contexts)
len_c, extra_contexts = 1, [context.replace(word, f'{args.surround}{word}{args.surround}')]
# extra_contexts = list(set(extra_contexts))
len_c = len(extra_contexts)
inputs = processor(text=[extra_contexts + glosses], images=images, return_tensors="pt", padding=True, truncation=True).to(device)
outputs = model(**inputs)
# bert_inputs = bert_tokenizer(context + glosses, return_tensors='pt', padding=True, truncation=True).to(device)
# bert_outputs = bert_model(**bert_inputs)
# hidden_states, last_hidden_states = bert_outputs
img_embeds = outputs.image_embeds[:]
img_embeds = img_embeds / img_embeds.norm(p=2, dim=-1, keepdim=True)
len_g = len(glosses)
# TODO: Check for bugs
if args.use_wsd and i in wsd_in:
ss = [s for s, p in wsd_in[i].items()]
if len(wsd_in[i]) < len_g:
for s in synsets:
if s not in ss:
wsd_in[i][s] = 0.
assert len(wsd_in[i]) == len_g, f'{wsd_in[i]} {glosses}'
sense_counts.append(len_g)
context_embeds = outputs.text_embeds[:len_c]
context_embeds /= context_embeds.norm(p=2, dim=-1, keepdim=True)
context_embeds = context_embeds.mean(dim=0)
context_embeds /= context_embeds.norm()
# print(context_embeds.shape)
gloss_embeds = outputs.text_embeds[len_c:]
gloss_embeds = gloss_embeds / gloss_embeds.norm(p=2, dim=-1, keepdim=True)
# bert_inputs.input_ids[0:1][0].tolist()
# start, end = sublist_in_list(words_tokens[0], bert_inputs.input_ids[:1][0].tolist())
# mean_focus_word_rep = hidden_states[:l][:, start:end].mean(dim=1)
# context_bert_embeds = last_hidden_states[:len_c]
# gloss_bert_embeds = last_hidden_states[len_c:]
# _context_embeds = outputs.text_embeds[:len_c]
# _context_embeds = context_embeds.mean(dim=0)
# _img_embeds = outputs.image_embeds[:]
# _gloss_embeds = outputs.text_embeds[len_c:]
# _context_embeds = model.get_text_features(inputs.input_ids)[:len_c]
# _context_embeds = _context_embeds.mean(dim=0)
# _img_embeds = model.get_image_features(inputs.pixel_values)
# _gloss_embeds = model.get_text_features(inputs.input_ids)[len_c:]
# t = (_img_embeds @ _context_embeds.T) @ (_img_embeds @ _gloss_embeds.T)
# a.append(t / t.norm())
# t = (_context_embeds @ _gloss_embeds.T)
# b.append(t / t.norm())
# c.append(sim(a[i], b[i].T) if (len(a[i])+len(b[i])) > 0 else 1.)
# print(img_embeds.shape, context_embeds.shape, gloss_embeds.shape)
sim_image_context = sim(img_embeds, context_embeds.T).T
sim_context_gloss = sim(context_embeds, gloss_embeds.T).T
# sim_context_gloss_bert = sim(mean_focus_word_rep, gloss_bert_embeds.T).T
sim_image_gloss = sim(img_embeds, gloss_embeds.T).T
def renorm(probs: dict, temp=args.temp):
vals = torch.tensor(list(probs.values()))
logits = torch.log(vals)
logits /= temp
return {k: x for k, x in zip(probs.keys(), logits.softmax(dim=0))}
# pool_func = np.max
scores = []
# print(word, len_g)
# print(glosses)
# print('sim_image_gloss =', sim_image_gloss)
# print('sim_context_gloss =', sim_context_gloss)
# print('sim_image_context =', sim_image_context)
for idx in range(len(images)):
if len_g > 0:
if args.use_wsd and i in wsd_in:
# print('X')
# print(sim_image_context.shape, sim_context_gloss.shape, sim_image_gloss.shape)
probs = wsd_in[i]
# if idx == 0:
# print(word in (list(probs.keys())[0].lemma_names()[0]), list(probs.keys())[0].lemma_names()[0], word, probs)
# print(probs)
probs = renorm(probs)
# if idx == 0:
# print(probs)
# print(probs, word)
# print(idx, weight_image_context * sim_image_context[idx].item())
# print([weight_context_gloss * probs[synsets[g]] for g in range(len_g)])
# print([weight_image_gloss * sim_image_gloss[idx, g].item() for g in range(len_g)])
score = weight_image_context * sim_image_context[idx].item() \
+ weight_pool * pool_func([weight_context_gloss * probs[synsets[g]] + weight_image_gloss * sim_image_gloss[idx, g].item() for g in range(len_g)])
else:
# print('Y')
# print(sim_image_context.shape, sim_context_gloss.shape, sim_image_gloss.shape)
score = weight_image_context * sim_image_context[idx].item() \
+ weight_pool * pool_func([weight_context_gloss * sim_context_gloss[g].item() \
+ weight_image_gloss * sim_image_gloss[idx, g].item() for g in range(len_g)])
else:
# if True:
score = weight_image_context * sim_image_context[idx].item()
scores.append(score)
scores = torch.tensor(scores)
# print(scores.argmax(), scores.argsort(descending=True), scores)
best = image_paths[scores.argmax().item()]
preds = np.array(image_paths)[scores.argsort(descending=True)].tolist()
results.write('\t'.join(preds) + '\n')
results.flush()
ranks.append(preds.index(gold) + 1)
total += 1
is_correct = int(best == gold)
correct += 1 if is_correct else 0
color = termcolor.colored('right', 'green') if is_correct else termcolor.colored('wrong', 'red')
out.write(f'{word} {best} {gold} {image_paths} -> {"right" if is_correct else "wrong"}\n')
if i % 1 == 0:
iter.set_postfix({'Accuracy': f'{correct / total:.3f}', 'MRR': f'{np.mean(1 / np.array(ranks)):.3f}'})
out.flush()
out.write(f'Sense counts: {sense_counts}')
msg = f'\nAccuracy: {correct / total}\nMRR: {np.mean(1 / np.array(ranks))}'
out.write(msg)
print(msg)
out.close()