-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathBaselineModels.py
646 lines (564 loc) · 29 KB
/
BaselineModels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
import numpy as np
import pandas as pd
from keras.layers import merge, TimeDistributed
from keras.layers.core import *
from keras.layers.recurrent import LSTM
from keras.models import *
from keras.models import Model
from keras.layers import Dense, Embedding, Input
from keras.layers import LSTM, Bidirectional,GRU, GlobalMaxPool1D, Dropout, Conv1D, MaxPooling1D, Flatten,Convolution1D, Reshape
from keras.regularizers import L1L2
from keras.initializers import RandomNormal
from keras.layers.merge import Concatenate
from keras.models import model_from_json
import data_helpers as dh
from data_helpers import alphabet
vocabsize=len(alphabet)+2
###################
'''
this script contains several baselines for text classification
'''
class General():
def __init__(self,):
self.model=None
# Training parameters
self.batch_size = None
self.num_epochs = None
# Prepossessing parameters
self.sequence_length = None
self.vocab_size = None ## changed to fit data size
self.LoadedModel=None
self.Model=None
self.ExternalEmbeddingModel = None
self.EmbeddingType=None
def set_etxrernal_embedding(self,ModelFile,ModelType):
self.ExternalEmbeddingModel=ModelFile
self.EmbeddingType=ModelType
def set_training_paramters(self,batch_size,num_epochs):
self.batch_size=batch_size
self.num_epochs=num_epochs
def set_processing_parameters(self,sequence_length,vocab_size):
self.sequence_length=sequence_length
self.vocab_size=vocab_size
def train_model(self,Model,X_train,Y_train,X_valid,Y_valid):
Model.fit(X_train, Y_train, validation_data=(X_valid, Y_valid), epochs=self.num_epochs, batch_size=self.batch_size)
def Evaluate_model(self,Model,X_test,Y_test):
score=Model.evaluate(X_test,Y_test,verbose=0)
return score
def save_model(self,ModelFileName,Model):
print("Saving model in directory:")
JsonModel = Model.to_json()
with open('models/' + ModelFileName + ".json", "w") as json_file:
json_file.write(JsonModel)
Model.save_weights('models/' + ModelFileName + ".h")
print('model saved in directory')
def Load_model(self,ModelFileName):
print("Loading Model from directory!")
JsonFile = open(ModelFileName+".json",'r')
# Load Json file
LoadedModel = model_from_json(JsonFile)
# Load weights
LoadedModel.load_weights(ModelFileName+".h5")
LoadedModel.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
return LoadedModel
#def Return_preds(self,Model,X_test):
class cnn_kim(General): ##inherits General
'''
CNNfor text classification based on kim 2014
works for both static and non-static
different is that network is initialized with RandomNormal distribution
of small standard deviation
'''
def __init__(self,cnn_rand=True,STATIC=False,ExternalEmbeddingModel=None,EmbeddingType=None,n_symbols=None,wordmap=None):
# Model hyperparameters
self.embedding_dim=300##
self.filter_sizes = (3, 8)
self.num_filters = 10
self.hidden_dims=100
self.dropout_prob=(0.5,0.8)
self.loss='categorical_crossentropy'
self.optimizer= 'rmsprop'
self.l1_reg=0
self.l2_reg=3 ##according to kim14
self.std=0.05 ## standard deviation
# Training Parameters
self.set_training_paramters(batch_size=64,num_epochs=10)
self.set_processing_parameters(sequence_length=30,vocab_size=vocabsize) ## changed to fit short text
# Defining Model Layers
if cnn_rand:
##Embedding Layer Randomly initialized
embedding_layer=Embedding(output_dim=self.embedding_dim, input_dim=self.vocab_size)
Classes = dh.read_labels()
n_classes = len(Classes)
else:
## Use pretrained model
#n_symbols, wordmap = dh.get_word_map_num_symbols()
self.set_etxrernal_embedding(ExternalEmbeddingModel,ModelType=EmbeddingType)
if self.EmbeddingType == "skipgram" or self.EmbeddingType == "CBOW":
vecDic = dh.GetVecDicFromGensim(self.ExternalEmbeddingModel)
elif self.EmbeddingType == "fastText":
vecDic = dh.load_fasttext(self.ExternalEmbeddingModel)
Classes = dh.read_labels()
n_classes = len(Classes)
## Define Embedding Layer
embedding_weights = dh.GetEmbeddingWeights(embedding_dim=300, n_symbols=n_symbols, wordmap=wordmap,
vecDic=vecDic)
embedding_layer = Embedding(output_dim=self.embedding_dim, input_dim=n_symbols, trainable=STATIC)
embedding_layer.build((None,)) # if you don't do this, the next step won't work
embedding_layer.set_weights([embedding_weights])
Sequence_in = Input(shape=(self.sequence_length,), dtype='int32')
embedding_seq = embedding_layer(Sequence_in)
x = Dropout(self.dropout_prob[0])(embedding_seq)
## define Core Convultional Layers
conv_blocks = []
for sz in self.filter_sizes:
conv = Convolution1D(filters=self.num_filters,
kernel_size=sz,
padding="valid",
activation="relu",
strides=1)(x)
conv = MaxPooling1D(pool_size=2)(conv)
conv = Flatten()(conv)
conv_blocks.append(conv)
x = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0]
x = Dropout(self.dropout_prob[1])(x)
x = Dense(self.hidden_dims, activation="relu",kernel_initializer=RandomNormal(stddev=self.std),
kernel_regularizer=L1L2(l1=self.l1_reg,l2=self.l2_reg))(x)
preds = Dense(n_classes, activation='softmax')(x)
## return graph model
model = Model(Sequence_in, preds)
model.compile(loss=self.loss, optimizer=self.optimizer, metrics=['accuracy'])
self.model=model
class CrepeCNN(General): ## Todo
def __init__(self,crepe_rand=True,STATIC=False,ExternalEmbeddingModel=None,EmbeddingType=None,n_symbols=None,wordmap=None,vocabsize=None,maxseq=None,embedding_dim=None):
'''
Deep CNN for text classification based on Lecun15
'''
self.embedding_dim = embedding_dim
self.filter_kernels = [7, 7, 3, 3, 3, 3]
self.nb_filters = 256
self.batch_size = 64
self.nb_epochs = 10
self.std = 0.05
self.dropout_prob = (0.5, 0.8)
self.hidden_dim = 300
self.loss = 'categorical_crossentropy'
self.optimizer = 'rmsprop'
''' Set Training Parameters'''
self.set_training_paramters(batch_size=self.batch_size, num_epochs=self.nb_epochs)
self.set_processing_parameters(sequence_length=maxseq, vocab_size=vocabsize)
Classes = dh.read_labels()
n_classes = len(Classes)
if crepe_rand:
##Embedding Layer Randomly initialized
embedding_layer = Embedding(output_dim=self.embedding_dim, input_dim=self.vocab_size)
else:
## Use pretrained model
# n_symbols, wordmap = dh.get_word_map_num_symbols()
self.set_etxrernal_embedding(ExternalEmbeddingModel, ModelType=EmbeddingType)
if self.EmbeddingType == "skipgram" or self.EmbeddingType == "CBOW":
vecDic = dh.GetVecDicFromGensim(self.ExternalEmbeddingModel)
elif self.EmbeddingType == "fastText":
vecDic = dh.load_fasttext(self.ExternalEmbeddingModel)
Classes = dh.read_labels()
n_classes = len(Classes)
## Define Embedding Layer
embedding_weights = dh.GetEmbeddingWeights(embedding_dim=300, n_symbols=n_symbols, wordmap=wordmap,
vecDic=vecDic)
embedding_layer = Embedding(output_dim=self.embedding_dim, input_dim=n_symbols, trainable=STATIC)
embedding_layer.build((None,)) # if you don't do this, the next step won't work
embedding_layer.set_weights([embedding_weights])
SequenceIn=Input(shape=(self.sequence_length,), dtype='int32')
embedding_layer=embedding_layer(SequenceIn)
x = Dropout(self.dropout_prob[0])(embedding_layer)
x = Convolution1D(filters=self.nb_filters,kernel_size=self.filter_kernels[0],padding='valid',activation='relu')(x)
#x = MaxPooling1D(pool_size=3)(x)
x = Convolution1D(filters=self.nb_filters, kernel_size=self.filter_kernels[1], padding='valid', activation='relu')(x)
#x = MaxPooling1D(pool_size=4)(x)
x = Convolution1D(filters=self.nb_filters, kernel_size=self.filter_kernels[2], padding='valid', activation='relu')(x)
x = Convolution1D(filters=self.nb_filters, kernel_size=self.filter_kernels[3], padding='valid', activation='relu')(x)
x = Convolution1D(filters=self.nb_filters, kernel_size=self.filter_kernels[4], padding='valid', activation='relu')(x)
x = Convolution1D(filters=self.nb_filters, kernel_size=self.filter_kernels[5], padding='valid', activation='relu')(x)
x = MaxPooling1D(pool_size=3)(x)
x = Flatten() (x)
x = Dense(self.hidden_dim,activation='relu')(x)
x = Dropout(self.dropout_prob[1])(x)
x = Dense(self.hidden_dim, activation='relu')(x)
x = Dropout(self.dropout_prob[1])(x)
preds = Dense(n_classes, activation='softmax')(x)
## return graph model
model = Model(SequenceIn, preds)
model.compile(loss=self.loss, optimizer=self.optimizer, metrics=['accuracy'])
self.model = model
class cnn_char(General): ##inherits General
## Todo
'''
CNNfor text classification based on kim 2014
works for both static and non-static
different is that network is initialized with RandomNormal distribution
of small standard deviation
'''
def __init__(self,cnn_rand=True,STATIC=False,ExternalEmbeddingModel=None,n_symbols=None,wordmap=None,vocabsize=None):
# Model hyperparameters
self.embedding_dim=50##
self.filter_sizes = (3, 8)
self.num_filters = 10
self.hidden_dims=100
self.dropout_prob=(0.5,0.8)
self.loss='categorical_crossentropy'
self.optimizer= 'rmsprop'
self.l1_reg=0
self.l2_reg=3 ##according to kim14
self.std=0.05 ## standard deviation
# Training Parameters
self.set_training_paramters(batch_size=64,num_epochs=10)
self.set_processing_parameters(sequence_length=500,vocab_size=vocabsize) ## changed to fit short text
# Defining Model Layers
if cnn_rand:
##Embedding Layer Randomly initialized
embedding_layer=Embedding(output_dim=self.embedding_dim, input_dim=self.vocab_size+1)
Classes = dh.read_labels()
n_classes = len(Classes)
else:
## Use pretrained model
#n_symbols, wordmap = dh.get_word_map_num_symbols()
self.set_etxrernal_embedding(ExternalEmbeddingModel)
vecDic = dh.GetVecDicFromGensim(self.ExternalEmbeddingModel)
Classes = dh.read_labels()
n_classes = len(Classes)
## Define Embedding Layer
embedding_weights = dh.GetEmbeddingWeights(embedding_dim=300, n_symbols=n_symbols, wordmap=wordmap,
vecDic=vecDic)
embedding_layer = Embedding(output_dim=self.embedding_dim, input_dim=n_symbols, trainable=STATIC)
embedding_layer.build((None,)) # if you don't do this, the next step won't work
embedding_layer.set_weights([embedding_weights])
Sequence_in = Input(shape=(self.sequence_length,), dtype='int32')
embedding_seq = embedding_layer(Sequence_in)
x = Dropout(self.dropout_prob[0])(embedding_seq)
## define Core Convultional Layers
conv_blocks = []
for sz in self.filter_sizes:
conv = Convolution1D(filters=self.num_filters,
kernel_size=sz,
padding="valid",
activation="relu",
strides=1)(x)
conv = MaxPooling1D(pool_size=2)(conv)
conv = Flatten()(conv)
conv_blocks.append(conv)
x = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0]
x = Dropout(self.dropout_prob[1])(x)
x = Dense(self.hidden_dims, activation="relu",kernel_initializer=RandomNormal(stddev=self.std),
kernel_regularizer=L1L2(l1=self.l1_reg,l2=self.l2_reg))(x)
preds = Dense(n_classes, activation='softmax')(x)
## return graph model
model = Model(Sequence_in, preds)
model.compile(loss=self.loss, optimizer=self.optimizer, metrics=['accuracy'])
self.model=model
class clstm(General): # inherits general
'''
CLSTM like based on Zhu 16
paper link: https://arxiv.org/pdf/1511.08630.pdf
'''
def __init__(self,clstm_rand=True,STATIC=False,ExternalEmbeddingModel=None,EmbeddingType=None,n_symbols=None,wordmap=None):
# Model hyperparameters
self.embedding_dim=300##
#self.filter_sizes = (3, 8)
self.num_filters = 10
self.hidden_dims=100
self.dropout_prob=(0.5,0.8)
self.loss='categorical_crossentropy'
self.optimizer= 'rmsprop'
self.l1_reg=0
self.l2_reg=3 ##according to kim14
self.std=0.05 ## standard deviation
self.kernel_size=3
# Training Parameters
self.set_training_paramters(batch_size=64,num_epochs=10)
self.set_processing_parameters(sequence_length=30,vocab_size=50000) ## changed to fit short text
# Defining Model Layers
if clstm_rand:
##Embedding Layer Randomly initialized
embedding_layer = Embedding(output_dim=self.embedding_dim, input_dim=self.vocab_size)
Classes = dh.read_labels()
n_classes = len(Classes)
else:
## Use pretrained model
# n_symbols, wordmap = dh.get_word_map_num_symbols()
self.set_etxrernal_embedding(ExternalEmbeddingModel, ModelType=EmbeddingType)
print(self.EmbeddingType)
if self.EmbeddingType == "skipgram" or "CBOW":
vecDic = dh.GetVecDicFromGensim(self.ExternalEmbeddingModel)
elif self.EmbeddingType == "fastText":
vecDic = dh.load_fasttext(self.ExternalEmbeddingModel)
Classes = dh.read_labels()
n_classes = len(Classes)
## Define Embedding Layer
embedding_weights = dh.GetEmbeddingWeights(embedding_dim=300, n_symbols=n_symbols, wordmap=wordmap,
vecDic=vecDic)
embedding_layer = Embedding(output_dim=self.embedding_dim, input_dim=n_symbols, trainable=STATIC)
embedding_layer.build((None,)) # if you don't do this, the next step won't work
embedding_layer.set_weights([embedding_weights])
Sequence_in = Input(shape=(self.sequence_length,), dtype='int32')
embedding_seq = embedding_layer(Sequence_in)
x = Dropout(self.dropout_prob[0])(embedding_seq)
## define Core Convultional Layers
conv = Convolution1D(filters=self.num_filters,
kernel_size=self.kernel_size,
padding="valid",
activation="relu",
strides=1)(x)
conv = MaxPooling1D(pool_size=2)(conv)
x = Dropout(self.dropout_prob[1])(conv)
## Till this point CNN model, Now change to LSTM
x = LSTM(self.hidden_dims, kernel_initializer=RandomNormal(stddev=self.std),
kernel_regularizer=L1L2(l1=self.l1_reg, l2=self.l2_reg),return_sequences=False)(x)
preds = Dense(n_classes, activation='softmax')(x)
## return graph model
model = Model(Sequence_in, preds)
model.compile(loss=self.loss, optimizer=self.optimizer, metrics=['accuracy'])
self.model = model
class BasicLSTM(General): ## inherits General
'''
LSTM Our implementation
'''
def __init__(self,lstm_rand=True,STATIC=False,ExternalEmbeddingModel=None,EmbeddingType=None,n_symbols=None,wordmap=None):
self.embedding_dim = 300
self.hidden_dims = 100
self.dropout_prob = (0.5, 0.8)
self.loss = 'categorical_crossentropy'
self.optimizer = 'rmsprop'
self.l1_reg = 0
self.l2_reg = 3 ##according to kim14
self.std = 0.05 ## standard deviation
# Training Parameters
self.set_training_paramters(batch_size=64, num_epochs=10)
self.set_processing_parameters(sequence_length=30, vocab_size=50000) ## changed to fit short text
# Defining Model Layers if clstm_rand:
##Embedding Layer Randomly initialized
if lstm_rand:
##Embedding Layer Randomly initialized
embedding_layer = Embedding(output_dim=self.embedding_dim, input_dim=self.vocab_size)
Classes = dh.read_labels()
n_classes = len(Classes)
else:
## Use pretrained model
# n_symbols, wordmap = dh.get_word_map_num_symbols()
self.set_etxrernal_embedding(ExternalEmbeddingModel, ModelType=EmbeddingType)
if self.EmbeddingType == "skipgram" or self.EmbeddingType == "CBOW":
vecDic = dh.GetVecDicFromGensim(self.ExternalEmbeddingModel)
elif self.EmbeddingType == "fastText":
vecDic = dh.load_fasttext(self.ExternalEmbeddingModel)
Classes = dh.read_labels()
n_classes = len(Classes)
## Define Embedding Layer
embedding_weights = dh.GetEmbeddingWeights(embedding_dim=300, n_symbols=n_symbols, wordmap=wordmap,
vecDic=vecDic)
embedding_layer = Embedding(output_dim=self.embedding_dim, input_dim=n_symbols, trainable=STATIC)
embedding_layer.build((None,)) # if you don't do this, the next step won't work
embedding_layer.set_weights([embedding_weights])
Sequence_in = Input(shape=(self.sequence_length,), dtype='int32')
embedding_seq = embedding_layer(Sequence_in)
x = Dropout(self.dropout_prob[0])(embedding_seq)
x = LSTM(self.hidden_dims, kernel_initializer=RandomNormal(stddev=self.std),
kernel_regularizer=L1L2(l1=self.l1_reg, l2=self.l2_reg), return_sequences=False)(x)
preds = Dense(n_classes, activation='softmax')(x)
## return graph model
model = Model(Sequence_in, preds)
model.compile(loss=self.loss, optimizer=self.optimizer, metrics=['accuracy'])
self.model = model
##
class BasicBiLSTM(General): ## inherits General
'''
BiLSTM Our implementation
'''
def __init__(self,bilstm_rand=True,STATIC=False,ExternalEmbeddingModel=None,EmbeddingType=None,n_symbols=None,wordmap=None):
self.embedding_dim = 300
self.hidden_dims = 100
self.dropout_prob = (0.5, 0.8)
self.loss = 'categorical_crossentropy'
self.optimizer = 'rmsprop'
self.l1_reg = 0
self.l2_reg = 3 ##according to kim14
self.std = 0.05 ## standard deviation
# Training Parameters
self.set_training_paramters(batch_size=64, num_epochs=2)
self.set_processing_parameters(sequence_length=30, vocab_size=50000) ## changed to fit short text
# Defining Model Layers if clstm_rand:
##Embedding Layer Randomly initialized
if bilstm_rand:
##Embedding Layer Randomly initialized
embedding_layer = Embedding(output_dim=self.embedding_dim, input_dim=self.vocab_size)
Classes = dh.read_labels()
n_classes = len(Classes)
else:
## Use pretrained model
# n_symbols, wordmap = dh.get_word_map_num_symbols()
self.set_etxrernal_embedding(ExternalEmbeddingModel, ModelType=EmbeddingType)
if self.EmbeddingType == "skipgram" or self.EmbeddingType == "CBOW":
vecDic = dh.GetVecDicFromGensim(self.ExternalEmbeddingModel)
elif self.EmbeddingType == "fastText":
vecDic = dh.load_fasttext(self.ExternalEmbeddingModel)
Classes = dh.read_labels()
n_classes = len(Classes)
## Define Embedding Layer
embedding_weights = dh.GetEmbeddingWeights(embedding_dim=300, n_symbols=n_symbols, wordmap=wordmap,
vecDic=vecDic)
embedding_layer = Embedding(output_dim=self.embedding_dim, input_dim=n_symbols, trainable=STATIC)
embedding_layer.build((None,)) # if you don't do this, the next step won't work
embedding_layer.set_weights([embedding_weights])
Sequence_in = Input(shape=(self.sequence_length,), dtype='int32')
embedding_seq = embedding_layer(Sequence_in)
x = Dropout(self.dropout_prob[0])(embedding_seq)
x = Bidirectional(LSTM(self.hidden_dims, kernel_initializer=RandomNormal(stddev=self.std),
kernel_regularizer=L1L2(l1=self.l1_reg, l2=self.l2_reg), return_sequences=False))(x)
preds = Dense(n_classes, activation='softmax')(x)
## return graph model
model = Model(Sequence_in, preds)
model.compile(loss=self.loss, optimizer=self.optimizer, metrics=['accuracy'])
self.model = model
class BasicBiGRUs(General): ## inherits General
'''
BiLSTM Our implementation
'''
def __init__(self,BiGRU_rand=True,STATIC=False,ExternalEmbeddingModel=None,EmbeddingType=None,n_symbols=None,wordmap=None):
self.embedding_dim = 300
self.hidden_dims = 100
self.dropout_prob = (0.5, 0.8)
self.loss = 'categorical_crossentropy'
self.optimizer = 'rmsprop'
self.l1_reg = 0
self.l2_reg = 3 ##according to kim14
self.std = 0.05 ## standard deviation
# Training Parameters
self.set_training_paramters(batch_size=64, num_epochs=10)
self.set_processing_parameters(sequence_length=30, vocab_size=50000) ## changed to fit short text
# Defining Model Layers if clstm_rand:
##Embedding Layer Randomly initialized
if BiGRU_rand:
##Embedding Layer Randomly initialized
embedding_layer = Embedding(output_dim=self.embedding_dim, input_dim=self.vocab_size)
Classes = dh.read_labels()
n_classes = len(Classes)
else:
## Use pretrained model
# n_symbols, wordmap = dh.get_word_map_num_symbols()
self.set_etxrernal_embedding(ExternalEmbeddingModel, ModelType=EmbeddingType)
if self.EmbeddingType == "skipgram" or self.EmbeddingType == "CBOW":
vecDic = dh.GetVecDicFromGensim(self.ExternalEmbeddingModel)
elif self.EmbeddingType == "fastText":
vecDic = dh.load_fasttext(self.ExternalEmbeddingModel)
Classes = dh.read_labels()
n_classes = len(Classes)
## Define Embedding Layer
embedding_weights = dh.GetEmbeddingWeights(embedding_dim=300, n_symbols=n_symbols, wordmap=wordmap,
vecDic=vecDic)
embedding_layer = Embedding(output_dim=self.embedding_dim, input_dim=n_symbols, trainable=STATIC)
embedding_layer.build((None,)) # if you don't do this, the next step won't work
embedding_layer.set_weights([embedding_weights])
Sequence_in = Input(shape=(self.sequence_length,), dtype='int32')
embedding_seq = embedding_layer(Sequence_in)
x = Dropout(self.dropout_prob[0])(embedding_seq)
x = Bidirectional(GRU(self.hidden_dims, kernel_initializer=RandomNormal(stddev=self.std),
kernel_regularizer=L1L2(l1=self.l1_reg, l2=self.l2_reg), return_sequences=False))(x)
preds = Dense(n_classes, activation='softmax')(x)
## return graph model
model = Model(Sequence_in, preds)
model.compile(loss=self.loss, optimizer=self.optimizer, metrics=['accuracy'])
self.model = model
####################################################
class AttentionBiGru(General):
def __init__(self):
self.dropout_prob = (0.5, 0.8)
self.hidden_dims = 100
self.std = 0.05
self.l1_reg = 3
self.l2_reg = 3
self.loss = 'categorical_crossentropy'
self.optimizer = 'rmsprop'
self.sequence_length=30
self.embedding_dim=300
self.vocab_size=50000
self.num_epochs=10
self.batch_size=64
## Define the BiGRU model
SeqIn= Input(shape=(self.sequence_length,),dtype='int32')
embedding_layer = Embedding(output_dim=self.embedding_dim, input_dim=self.vocab_size)(SeqIn)
M1 = Dropout(self.dropout_prob[0])(embedding_layer)
activations = Bidirectional(GRU(self.hidden_dims, kernel_initializer=RandomNormal(stddev=self.std),
kernel_regularizer=L1L2(l1=self.l1_reg, l2=self.l2_reg), return_sequences=True))(M1)
## Timedistributed dense for each activation
attention = TimeDistributed(Dense(1,activation='tanh'))(activations)
attention = Flatten()(attention)
attention = Activation('softmax')(attention)
attention = RepeatVector(int(2*self.hidden_dims))(attention)
attention = Permute([2, 1])(attention)
# apply the attention
sent_representation = merge([activations, attention], mode='mul')
sent_representation = Lambda(lambda xin: K.sum(xin, axis=1))(sent_representation)
Classes = dh.read_labels()
n_classes = len(Classes)
preds= Dense(n_classes, activation='softmax')(sent_representation)
model = Model(input=SeqIn, output=preds)
model.compile(optimizer=self.optimizer, loss=self.loss, metrics=[])
self.model = model
#####################################################
class AttentionBiLSTM(General):
def __init__(self,att_rand=True,ExternalEmbeddingModel=None,EmbeddingType=None,n_symbols=None,wordmap=None,STATIC=True):
self.dropout_prob = (0.36, 0.36)
self.hidden_dims = 100
self.std = 0.05
self.l1_reg = 3
self.l2_reg = 3
self.loss = 'categorical_crossentropy'
self.optimizer = 'rmsprop'
self.sequence_length = 30
self.embedding_dim = 300
self.vocab_size = 50000
self.num_epochs = 5
self.batch_size = 64
## Define the BiGRU model
if att_rand:
##Embedding Layer Randomly initialized
embedding_layer = Embedding(output_dim=self.embedding_dim, input_dim=self.vocab_size)
else:
## Use pretrained model
# n_symbols, wordmap = dh.get_word_map_num_symbols()
self.set_etxrernal_embedding(ExternalEmbeddingModel, ModelType=EmbeddingType)
if self.EmbeddingType == "skipgram" or self.EmbeddingType == "CBOW":
print('using '+self.EmbeddingType)
vecDic = dh.GetVecDicFromGensim(self.ExternalEmbeddingModel)
elif self.EmbeddingType == "fastText":
print('using ' + self.EmbeddingType)
vecDic = dh.load_fasttext(self.ExternalEmbeddingModel)
Classes = dh.read_labels()
n_classes = len(Classes)
## Define Embedding Layer
embedding_weights = dh.GetEmbeddingWeights(embedding_dim=300, n_symbols=n_symbols, wordmap=wordmap,
vecDic=vecDic)
embedding_layer = Embedding(output_dim=self.embedding_dim, input_dim=n_symbols, trainable=STATIC)
embedding_layer.build((None,)) # if you don't do this, the next step won't work
embedding_layer.set_weights([embedding_weights])
###################################################
SeqIn = Input(shape=(self.sequence_length,), dtype='int32')
embedding_seq = embedding_layer(SeqIn)
M1 = Dropout(self.dropout_prob[0])(embedding_seq)
#M1 = Activation('tanh')(embedding_seq)
activations = Bidirectional(GRU(self.hidden_dims, kernel_initializer=RandomNormal(stddev=self.std),
kernel_regularizer=L1L2(l1=self.l1_reg, l2=self.l2_reg),
return_sequences=True))(M1)
## Timedistributed dense for each activation
attention = TimeDistributed(Dense(1, activation='tanh'))(activations)
attention = Flatten()(attention)
attention = Activation('softmax')(attention)
attention = RepeatVector(2*(self.hidden_dims))(attention)
attention = Permute([2, 1])(attention)
# apply the attention
sent_representation = merge([activations, attention], mode='mul')
sent_representation = Lambda(lambda xin: K.sum(xin, axis=1))(sent_representation)
Classes = dh.read_labels()
n_classes = len(Classes)
preds = Dense(n_classes, activation='softmax')(sent_representation)
model = Model(input=SeqIn, output=preds)
model.compile(optimizer=self.optimizer, loss=self.loss, metrics=['accuracy'])
self.model = model