-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenie.py
202 lines (142 loc) · 6.93 KB
/
genie.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import os
import random
import shutil
import time
import warnings
from enum import Enum
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import random
import os
import numpy as np
import PIL
from PIL import Image
import pdb
import torch
from torch import autocast
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from imagenet_labels import ind2name
from typing import Any, Callable, Dict, List, Optional, Union
from editor import ImageEditor
import warnings
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser(description='PyTorch Diffusion based data generator')
parser.add_argument('data', metavar='DIR', nargs='?', default='imagenet',
help='path to dataset (default: imagenet)')
parser.add_argument('--start_seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--end_seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--method', type=str, default='none',
help='method for data generation (none, positive, negative, prompt)')
parser.add_argument('--noise', default=0.5, type=float, help='noise rate for forward diffusion')
parser.add_argument('--nway', default=10, type=int, help='n-way classification')
parser.add_argument('--budget', default=100, type=int, help='max generated samples per class')
parser.add_argument('--kshot', default=5, type=int, help='n-shot classification')
parser.add_argument('--output_dir', type=str, default='./data/',
help='path to store the generated data')
parser.add_argument('--confusion_matrix', type=str, default='./data/',
help='path to confusion matrix')
parser.add_argument('--prompt', type=str, default='',
help='path to confusion matrix')
parser.add_argument('--imagenet', action='store_true', help="generate from imagenet")
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--dummy', action='store_true', help="use fake data to benchmark")
best_acc1 = 0
def set_all_seeds(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def main():
args = parser.parse_args()
cudnn.deterministic = True
cudnn.benchmark = False
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
if torch.cuda.is_available():
ngpus_per_node = torch.cuda.device_count()
else:
ngpus_per_node = 1
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
editor = ImageEditor()
total_seeds = args.end_seed - args.start_seed
for sind, seed in enumerate(range(args.start_seed, args.end_seed)):
print("processing seed {}, {}/{}".format(seed, sind+1, total_seeds))
set_all_seeds(seed)
dataset_path = args.output_dir
dataset_path = os.path.join(dataset_path , 'dataset{}'.format(seed))
src_data = os.path.join(args.data , 'dataset{}/train/'.format(seed))
dataset = datasets.ImageFolder(
src_data,
transforms.Compose([
transforms.Resize(512),
transforms.CenterCrop(512),
]))
cls_path = [f.path for f in os.scandir(src_data) if f.is_dir()]
cls_path = [c.split("/")[-1] for c in cls_path]
cls_path = np.sort(cls_path)
cls_names = [c[10:] for c in cls_path]
if 'txt2img' in args.method:
train_path = os.path.join(dataset_path, 'train_{}'.format(args.method))
else:
train_path = os.path.join(dataset_path, 'train_{}_noise{}'.format(args.method, args.noise))
os.makedirs(train_path, exist_ok = True)
t = transforms.Compose([transforms.Resize(512),transforms.CenterCrop(512),])
for ind, cls in enumerate(cls_names):
class_path = os.path.join(train_path, cls_path[ind])
os.makedirs(class_path, exist_ok = True)
if 'genie' in args.method:
imgs = [c[0] for c in dataset.samples if c[1]!=ind]
else:
imgs = [c[0] for c in dataset.samples if c[1]==ind]
print("processing class {}, {}/{}".format(cls, ind+1 , len(cls_names)))
for k,img in enumerate(imgs):
if 'genie' in args.method:
prompt = 'a photo of a {}.'.format(cls)
img_ = Image.open(img).convert('RGB')
img_ = t(img_)
output = editor.edit(img_, prompt, args.noise)
img_path = os.path.join(class_path, '{}_genie.jpg'.format(k))
output.save(img_path)
if 'img2img' in args.method:
prompt = 'a photo of a {}.'.format(cls)
img_ = Image.open(img).convert('RGB')
img_ = t(img_)
for j in range(len(cls_names)-1):
output = editor.edit(img_, prompt, args.noise)
img_path = os.path.join(class_path, '{}img2img{}.jpg'.format(k,j))
output.save(img_path)
if 'txt2img' in args.method:
prompt = 'a photo of a {}.'.format(cls)
img_ = Image.open(img).convert('RGB')
img_ = t(img_)
for j in range(len(cls_names)-1):
output = editor.edit(img_, prompt, args.noise)
img_path = os.path.join(class_path, '{}_txt2img{}.jpg'.format(k,j))
output.save(img_path)
if __name__ == '__main__':
main()