-
Notifications
You must be signed in to change notification settings - Fork 1
/
models.py
251 lines (207 loc) · 8.71 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import torch
import torchvision
from torch import nn
from torch.nn import init
import torch.nn.functional as func
import torchvision.models as models
class LeNet(nn.Module):
def __init__(self, num_classes=10):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(3, 6, kernel_size=5)
self.conv2 = nn.Conv2d(6, 16, kernel_size=5)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, num_classes)
def forward(self, x):
x = func.relu(self.conv1(x))
x = func.max_pool2d(x, 2)
x = func.relu(self.conv2(x))
x = func.max_pool2d(x, 2)
x = x.view(x.size(0), -1)
x = func.relu(self.fc1(x))
x = func.relu(self.fc2(x))
x = self.fc3(x)
return x
class LeNetMNIST(nn.Module):
def __init__(self, num_classes=10):
super(LeNetMNIST, self).__init__()
self.conv1 = nn.Conv2d(1, 6, kernel_size=5)
self.conv2 = nn.Conv2d(6, 16, kernel_size=5)
self.fc1 = nn.Linear(16*4*4, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, num_classes)
def forward(self, x):
x = func.relu(self.conv1(x))
x = func.max_pool2d(x, 2)
x = func.relu(self.conv2(x))
x = func.max_pool2d(x, 2)
x = x.view(x.size(0), -1)
x = func.relu(self.fc1(x))
x = func.relu(self.fc2(x))
x = self.fc3(x)
return x
__all__ = ['ResNet', 'resnet20', 'resnet32', 'resnet18', 'resnet44', 'resnet56', 'resnet110', 'resnet1202']
def _weights_init(m):
classname = m.__class__.__name__
#print(classname)
if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight)
class LambdaLayer(nn.Module):
def __init__(self, lambd):
super(LambdaLayer, self).__init__()
self.lambd = lambd
def forward(self, x):
return self.lambd(x)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1, option='A'):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != planes:
if option == 'A':
"""
For CIFAR10 ResNet paper uses option A.
"""
self.shortcut = LambdaLayer(lambda x:
func.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, planes//4, planes//4), "constant", 0))
elif option == 'B':
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes)
)
def forward(self, x):
out = func.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = func.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_planes = 16
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2)
self.linear = nn.Linear(64, num_classes)
self.apply(_weights_init)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = func.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = func.avg_pool2d(out, out.size()[3])
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def resnet20(num_classes = 10):
return ResNet(BasicBlock, [3, 3, 3], num_classes = num_classes)
def resnet56(num_classes = 10):
return ResNet(BasicBlock, [9, 9, 9], num_classes=num_classes)
def resnet18(num_classes = 1000):
return models.resnet18(num_classes=num_classes)
def efficientnet_b0(num_classes = 1000):
return models.efficientnet_b0(num_classes=num_classes)
def densenet121(num_classes = 1000):
return models.densenet121(num_classes=num_classes)
def resnet50(num_classes = 1000):
return models.resnet50(num_classes=num_classes)
class ConvNet(nn.Module):
def __init__(self, channel, num_classes, net_width, net_depth, net_act, net_norm, net_pooling, im_size = (32,32)):
super(ConvNet, self).__init__()
self.features, shape_feat = self._make_layers(channel, net_width, net_depth, net_norm, net_act, net_pooling, im_size)
num_feat = shape_feat[0]*shape_feat[1]*shape_feat[2]
self.classifier = nn.Linear(num_feat, num_classes)
def forward(self, x):
# print("MODEL DATA ON: ", x.get_device(), "MODEL PARAMS ON: ", self.classifier.weight.data.get_device())
out = self.features(x)
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out
def _get_activation(self, net_act):
if net_act == 'sigmoid':
return nn.Sigmoid()
elif net_act == 'relu':
return nn.ReLU(inplace=True)
elif net_act == 'leakyrelu':
return nn.LeakyReLU(negative_slope=0.01)
else:
exit('unknown activation function: %s'%net_act)
def _get_pooling(self, net_pooling):
if net_pooling == 'maxpooling':
return nn.MaxPool2d(kernel_size=2, stride=2)
elif net_pooling == 'avgpooling':
return nn.AvgPool2d(kernel_size=2, stride=2)
elif net_pooling == 'none':
return None
else:
exit('unknown net_pooling: %s'%net_pooling)
def _get_normlayer(self, net_norm, shape_feat):
# shape_feat = (c*h*w)
if net_norm == 'batchnorm':
return nn.BatchNorm2d(shape_feat[0], affine=True)
elif net_norm == 'layernorm':
return nn.LayerNorm(shape_feat, elementwise_affine=True)
elif net_norm == 'instancenorm':
return nn.GroupNorm(shape_feat[0], shape_feat[0], affine=True)
elif net_norm == 'groupnorm':
return nn.GroupNorm(4, shape_feat[0], affine=True)
elif net_norm == 'none':
return None
else:
exit('unknown net_norm: %s'%net_norm)
def _make_layers(self, channel, net_width, net_depth, net_norm, net_act, net_pooling, im_size):
layers = []
in_channels = channel
if im_size[0] == 28:
im_size = (32, 32)
shape_feat = [in_channels, im_size[0], im_size[1]]
for d in range(net_depth):
layers += [nn.Conv2d(in_channels, net_width, kernel_size=3, padding=3 if channel == 1 and d == 0 else 1)]
shape_feat[0] = net_width
if net_norm != 'none':
layers += [self._get_normlayer(net_norm, shape_feat)]
layers += [self._get_activation(net_act)]
in_channels = net_width
if net_pooling != 'none':
layers += [self._get_pooling(net_pooling)]
shape_feat[1] //= 2
shape_feat[2] //= 2
return nn.Sequential(*layers), shape_feat
class AlexNet(nn.Module):
def __init__(self, num_classes=10):
super().__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
nn.LocalResponseNorm(4, alpha=0.001 / 9.0, beta=0.75, k=1),
nn.Conv2d(64, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(inplace=True),
nn.LocalResponseNorm(4, alpha=0.001 / 9.0, beta=0.75, k=1),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
)
self.classifier = nn.Sequential(
nn.Linear(4096, 384),
nn.ReLU(inplace=True),
nn.Linear(384, 192),
nn.ReLU(inplace=True),
nn.Linear(192, num_classes),
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), 4096)
x = self.classifier(x)
return x