-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathmain_min.py
142 lines (113 loc) · 5.6 KB
/
main_min.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch
import torchvision
import torch.nn.functional as F
import argparse
from data.cifar import CIFAR10
from data.datasets import input_dataset
from hoc import *
import time
import random
import argparse
import numpy as np
import pickle
# Options ----------------------------------------------------------------------
parser = argparse.ArgumentParser()
parser.add_argument("--pre_type", type=str, default='cifar') # image, cifar
parser.add_argument('--noise_rate', type = float, help = 'corruption rate, should be less than 1', default = 0.2)
parser.add_argument('--noise_type', type = str, default='manual')#manual
parser.add_argument('--dataset', type = str, help = 'cifar10, cifar100', default = 'cifar10')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)')
parser.add_argument('--G', type=int, default=50, help='num of rounds (parameter G in Algorithm 1)')
parser.add_argument('--max_iter', type=int, default=1500, help='num of iterations to get a T')
parser.add_argument("--local", default=False, action='store_true')
parser.add_argument('--loss', type = str, help = 'ce, fw', default = 'fw')
parser.add_argument('--label_file_path', type = str, help = 'the path of noisy labels', default = './data/noise_label_human.pt')
def set_model_min(config):
# use resnet18 (pretrained with CIFAR-10). Only for the minimum implementation of HOC
if config.pre_type == 'cifar':
model = res_cifar.resnet18(pretrained=True)
else:
RuntimeError('Undefined pretrained model.')
for param in model.parameters():
param.requires_grad = False
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, config.num_classes)
model.to(config.device)
return model
def get_T_global_min(args, record, max_step = 501, T0 = None, p0 = None, lr = 0.1, NumTest = 50, all_point_cnt = 15000):
total_len = sum([len(a) for a in record])
origin_trans = torch.zeros(total_len, record[0][0]['feature'].shape[0])
origin_label = torch.zeros(total_len).long()
cnt, lb = 0, 0
for item in record:
for i in item:
origin_trans[cnt] = i['feature']
origin_label[cnt] = lb
cnt += 1
lb += 1
data_set = {'feature': origin_trans, 'noisy_label': origin_label}
# Build Feature Clusters --------------------------------------
KINDS = args.num_classes
# NumTest = 50
# all_point_cnt = 15000
p_estimate = [[] for _ in range(3)]
p_estimate[0] = torch.zeros(KINDS)
p_estimate[1] = torch.zeros(KINDS, KINDS)
p_estimate[2] = torch.zeros(KINDS, KINDS, KINDS)
p_estimate_rec = torch.zeros(NumTest, 3)
for idx in range(NumTest):
print(idx, flush=True)
# global
sample = np.random.choice(range(data_set['feature'].shape[0]), all_point_cnt, replace=False)
# final_feat, noisy_label = get_feat_clusters(data_set, sample)
final_feat = data_set['feature'][sample]
noisy_label = data_set['noisy_label'][sample]
cnt_y_3 = count_y(KINDS, final_feat, noisy_label, all_point_cnt)
for i in range(3):
cnt_y_3[i] /= all_point_cnt
p_estimate[i] = p_estimate[i] + cnt_y_3[i] if idx != 0 else cnt_y_3[i]
for j in range(3):
p_estimate[j] = p_estimate[j] / NumTest
args.device = set_device()
loss_min, E_calc, P_calc, T_init = calc_func(KINDS, p_estimate, False, args.device, max_step, T0, p0, lr = lr)
E_calc = E_calc.cpu().numpy()
T_init = T_init.cpu().numpy()
return E_calc, T_init
def error(T, T_true):
error = np.sum(np.abs(T-T_true)) / np.sum(np.abs(T_true))
return error
if __name__ == "__main__":
# Setup ------------------------------------------------------------------------
config = parser.parse_args()
config.device = set_device()
torch.manual_seed(config.seed)
np.random.seed(config.seed)
random.seed(config.seed)
# load dataset
train_dataset,test_dataset,num_classes,num_training_samples, num_testing_samples = input_dataset(config.dataset,config.noise_type,config.noise_rate, transform=False, noise_file = config.label_file_path)
config.num_classes = num_classes
config.num_training_samples = num_training_samples
config.num_testing_samples = num_testing_samples
model_pre = set_model_min(config)
train_dataloader_EF = torch.utils.data.DataLoader(train_dataset,
batch_size=128,
shuffle=True,
num_workers=2,
drop_last=False)
model_pre.eval()
record = [[] for _ in range(config.num_classes)]
for i_batch, (feature, label, index) in enumerate(train_dataloader_EF):
feature = feature.to(config.device)
label = label.to(config.device)
extracted_feature, _ = model_pre(feature)
for i in range(extracted_feature.shape[0]):
record[label[i]].append({'feature': extracted_feature[i].detach().cpu(), 'index': index[i]})
# minimal implementation of HOC (an example)
new_estimate_T, _ = get_T_global_min(config, record, max_step=config.max_iter, lr = 0.1, NumTest = config.G)
print(f'\n\n-----------------------------------------')
print(f'Estimation finished!')
np.set_printoptions(precision=1)
print(f'The estimated T (*100) is \n{new_estimate_T*100}')
# The following code can print the error (matrix L11 norm) when the true T is given
# estimate_error_2 = error(True_T, new_estimate_T)
# print('---------New Estimate error: {:.6f}'.format(estimate_error_2))