diff --git a/microfaune_local_score.py b/microfaune_local_score.py index 2517627..2540669 100644 --- a/microfaune_local_score.py +++ b/microfaune_local_score.py @@ -36,6 +36,8 @@ def isolate(local_scores, SIGNAL, SAMPLE_RATE, audio_dir, filename,isolation_par isolation_df = steinberg_isolate(local_scores, SIGNAL, SAMPLE_RATE, audio_dir, filename,isolation_parameters, manual_id = "bird") elif isolation_parameters["technique"] == "stack": isolation_df = stack_isolate(local_scores, SIGNAL, SAMPLE_RATE, audio_dir, filename, isolation_parameters, manual_id = "bird") + elif isolation_parameters["technique"] == "chunk": + isolation_df = chunk_isolate(local_scores, SIGNAL, SAMPLE_RATE, audio_dir, filename, isolation_parameters, manual_id = "bird") return isolation_df @@ -293,6 +295,67 @@ def stack_isolate(local_scores, SIGNAL, SAMPLE_RATE, audio_dir, filename, isolat # returning pandas dataframe from dictionary constructed with all of the annotations return pd.DataFrame.from_dict(entry) +# Isolation technique that breaks down an audio clip into chunks based on a user-defined duration. It then goes through and finds the max local score +# in those chunks to decide whether or not a chunk contains the vocalization of interest. +# TODO +# Make it so that a user has the option of an overlap between the chunks. +# Make it so that a user can choose how many samples have to be above the threshold in order to consider a chunk to be good or not. +# Give the option to combine annotations that follow one-another. +def chunk_isolate(local_scores, SIGNAL, SAMPLE_RATE, audio_dir, filename, isolation_parameters, manual_id = "bird"): + # configuring the threshold based on isolation parameters + if isolation_parameters["threshold_type"] == "median": + thresh = np.median(local_scores) * isolation_parameters["threshold_const"] + elif isolation_parameters["threshold_type"] == "mean" or isolation_parameters["threshold_type"] == "average": + thresh = np.mean(local_scores) * isolation_parameters["threshold_const"] + elif isolation_parameters["threshold_type"] == "standard deviation": + thresh = np.mean(local_scores) + (np.std(local_scores) * isolation_parameters["threshold_const"]) + elif isolation_parameters["threshold_type"] == "pure": + thresh = isolation_parameters["threshold_const"] + if thresh < 0: + print("Threshold is less than zero, setting to zero") + thresh = 0 + elif thresh > 1: + print("Threshold is greater than one, setting to one.") + thresh = 1 + + # calculate original duration + old_duration = len(SIGNAL) / SAMPLE_RATE + + # initializing the dictionary for the output pandas dataframe + entry = {'FOLDER' : audio_dir, + 'IN FILE' : filename, + 'CHANNEL' : 0, + 'CLIP LENGTH': old_duration, + 'SAMPLE RATE': SAMPLE_RATE, + 'OFFSET' : [], + 'DURATION' : [], + 'MANUAL ID' : manual_id} + + # calculating the number of chunks that define an audio clip + chunk_count = math.ceil(len(SIGNAL)/(isolation_parameters["chunk_size"]*SAMPLE_RATE)) + # calculating the number of local scores per second + scores_per_second = len(local_scores)/old_duration + # calculating the chunk size with respect to the local score array + local_scores_per_chunk = scores_per_second * isolation_parameters["chunk_size"] + # looping through each chunk + for ndx in range(chunk_count): + # finding the start of a chunk + chunk_start = ndx*local_scores_per_chunk + # finding the end of a chunk + chunk_end = min((ndx+1)*local_scores_per_chunk,len(local_scores)) + # breaking up the local_score array into a chunk. + chunk = local_scores[int(chunk_start):int(chunk_end)] + # comparing the largest local score value to the treshold. + # the case for if we label the chunk as an annotation + if max(chunk) >= thresh: + annotation_start = chunk_start/scores_per_second + annotation_end = chunk_end/scores_per_second + entry["OFFSET"].append(annotation_start) + entry["DURATION"].append(annotation_end - annotation_start) + + return pd.DataFrame.from_dict(entry) + + ## Function that applies the moment to moment labeling system to a directory full of wav files. def generate_automated_labels(bird_dir, isolation_parameters, weight_path=None, Normalized_Sample_Rate = 44100, normalize_local_scores = False): @@ -310,6 +373,8 @@ def generate_automated_labels(bird_dir, isolation_parameters, weight_path=None, # init detector # Use Default Microfaune Detector + # TODO + # Expand to neural networks beyond just microfaune if weight_path is None: detector = RNNDetector() # Use Custom weights for Microfaune Detector @@ -596,6 +661,7 @@ def bird_label_scores(automated_df,human_df,plot_fig = False, save_fig = False): f1 = 0 precision = 0 recall = 0 + IoU = 0 # Creating a Dictionary which will be turned into a Pandas Dataframe entry = {'FOLDER' : folder_name,