diff --git a/PyHa/visualizations.py b/PyHa/visualizations.py index b6d504d..c794f0d 100644 --- a/PyHa/visualizations.py +++ b/PyHa/visualizations.py @@ -90,7 +90,7 @@ def local_line_graph(local_scores,clip_name, sample_rate,samples, automated_df=N # TODO rework function so that instead of generating the automated labels, it takes the automated_df as input # same as it does with the manual dataframe. -def local_score_visualization(clip_path,weight_path = None, human_df = None,automated_df = False, isolation_parameters = None,log_scale = False, save_fig = False, normalize_local_scores = False): +def local_score_visualization(clip_path, weight_path = None, human_df = None,automated_df = False, isolation_parameters = None,log_scale = False, save_fig = False, normalize_local_scores = False): """ Wrapper function for the local_line_graph function for ease of use. Processes clip for local scores to be used for @@ -131,7 +131,7 @@ def local_score_visualization(clip_path,weight_path = None, human_df = None,auto # Running the Mel Spectrogram through the RNN global_score,local_score = detector.predict(microfaune_features) except: - print("Error in " + clip_path + " Skipping.") + print("Skipping " + clip_path + " due to error in Microfaune Prediction") # In the case where the user wants to look at automated bird labels if human_df is None: