forked from dog-qiuqiu/FastestDet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
56 lines (44 loc) · 1.94 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
import torch
import argparse
from torchsummary import summary
from utils.tool import *
from utils.datasets import *
from utils.evaluation import CocoDetectionEvaluator
from module.detector import Detector
# 指定后端设备CUDA&CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if __name__ == '__main__':
# 指定训练配置文件
parser = argparse.ArgumentParser()
parser.add_argument('--yaml', type=str, default="", help='.yaml config')
parser.add_argument('--weight', type=str, default=None, help='.weight config')
opt = parser.parse_args()
assert os.path.exists(opt.yaml), "请指定正确的配置文件路径"
assert os.path.exists(opt.weight), "请指定正确的权重文件路径"
# 解析yaml配置文件
cfg = LoadYaml(opt.yaml)
print(cfg)
# 加载模型权重
print("load weight from:%s"%opt.weight)
model = Detector(cfg.category_num, True).to(device)
model.load_state_dict(torch.load(opt.weight))
model.eval()
# # 打印网络各层的张量维度
summary(model, input_size=(3, cfg.input_height, cfg.input_width))
# 定义验证函数
evaluation = CocoDetectionEvaluator(cfg.names, device)
# 数据集加载
val_dataset = TensorDataset(cfg.val_txt, cfg.input_width, cfg.input_height, False)
#验证集
val_dataloader = torch.utils.data.DataLoader(val_dataset,
batch_size=cfg.batch_size,
shuffle=False,
collate_fn=collate_fn,
num_workers=4,
drop_last=False,
persistent_workers=True
)
# 模型评估
print("computer mAP...")
evaluation.compute_map(val_dataloader, model)