-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnavier_stokes.lua
314 lines (255 loc) · 10.8 KB
/
navier_stokes.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
----------------------------------util.ns.CreateApproxSpace----------------------------------------------
--
-- Lua - Script to compute the cylinder problem
--
-- This script sets up a problem for the Navier-Stokes discretization
-- and solves the cylinder problem
--
-- Author: Josef Dubsky, Andreas Vogel
--
--------------------------------------------------------------------------------
PluginRequired("NavierStokes")
ug_load_script("ug_util.lua")
ug_load_script("util/domain_disc_util.lua")
ug_load_script("navier_stokes_util.lua")
ug_load_script("util/conv_rates_static.lua")
dim = util.GetParamNumber("-dim", 2, "world dimension")
numRefs = util.GetParamNumber("-numRefs", 2, "number of grid refinements")
numPreRefs = util.GetParamNumber("-numPreRefs", 0, "number of prerefinements (parallel)")
bConvRates = util.HasParamOption("-convRate", "compute convergence rates")
bBenchmarkRates = util.HasParamOption("-benchRate", "compute benchmark rates")
bStokes = util.HasParamOption("-stokes", "If defined, only Stokes Eq. computed")
bNoLaplace = util.HasParamOption("-nolaplace", "If defined, only laplace term used")
bExactJac = util.HasParamOption("-exactjac", "If defined, exact jacobian used")
bPecletBlend= util.HasParamOption("-pecletblend", "If defined, Peclet Blend used")
upwind = util.GetParam("-upwind", "full", "Upwind type")
stab = util.GetParam("-stab", "flow", "Stabilization type")
diffLength = util.GetParam("-difflength", "cor", "Diffusion length type")
porder = 1
vorder = 1
discType = "fe"
local Viscosity = 1e-3
local Um = 0.3
if dim == 3 then Um = 0.45 end
local H = 0.41
local L = 0.1
local Umean2 = math.pow(2/3*Um, 2)
local ref = {}
ref.CD = 5.57953523384
ref.CL = 0.010618948146
ref.DeltaP = 0.11752016697
if dim == 2 then
gridName = util.GetParam("-grid", "grids/cylinder.ugx")
--gridName = util.GetParam("-grid", "grids/box.ugx")
--gridName = util.GetParam("-grid", "grids/double-arrow-small.ugx")
--gridName = util.GetParam("-grid", "grids/cylinder_tri.ugx")
--gridName = util.GetParam("-grid", "grids/cylinder_box_tri_fine.ugx")
--gridName = util.GetParam("-grid", "grids/cylinder_rotate_box_tri_fine.ugx")
elseif dim == 3 then
gridName = util.GetParam("-grid", "grids/cylinder3d.ugx")
-- gridName = util.GetParam("-grid", "grids/cylinder3d_fine.ugx")
else print("Choosen Dimension not supported. Exiting."); exit(); end
-- Lets write some info about the choosen parameter
print(" Choosen Parater:")
print(" dim = " .. dim)
print(" numTotalRefs = " .. numRefs)
print(" numPreRefs = " .. numPreRefs)
print(" grid = " .. gridName)
print(" porder = " .. porder)
print(" vorder = " .. vorder)
print(" type = " .. discType)
print(" only stokes = " .. tostring(bStokes))
print(" no laplace = " .. tostring(bNoLaplace))
print(" exact jacobian = " .. tostring(bExactJac))
print(" peclet blend = " .. tostring(bPecletBlend))
print(" upwind = " .. upwind)
print(" stab = " .. stab)
print(" diffLength = " .. diffLength)
--------------------------------------------------------------------------------
-- Loading Domain and Domain Refinement
--------------------------------------------------------------------------------
function CreateDomain()
InitUG(dim, AlgebraType("CPU", 1))
local dom = Domain()
LoadDomain(dom, gridName)
-- NOTE: Projector creation in script-code is deprecated. Instead one should
-- add projectors to individual subsets directly in ProMesh.
if dim == 2 then
ProjectVerticesToSphere(dom, {0.2, 0.2}, 0.05, 0.001)
falloffProjector = SphereProjector(MakeVec(0.2, 0.2, 0), 0.1, 0.15)
elseif dim == 3 then
falloffProjector = CylinderProjector(MakeVec(0.5, 0.2, 0.0), MakeVec(0, 0, 1), 0.04, 0.1)
end
local projHandler = ProjectionHandler(dom:subset_handler())
dom:set_refinement_projector(projHandler)
projHandler:set_projector("Inner", falloffProjector)
projHandler:set_projector("CylinderWall", falloffProjector)
if dim == 3 then
projHandler:set_projector("BackWall", falloffProjector)
projHandler:set_projector("FrontWall", falloffProjector)
end
-- Create a refiner instance. This is a factory method
-- which automatically creates a parallel refiner if required.
local refiner = GlobalDomainRefiner(dom)
write("Pre-Refining("..numPreRefs.."): ")
for i=1,numPreRefs do write(i .. " "); refiner:refine(); end
write("done. Distributing...")
if util.DistributeDomain(dom, distributionMethod, verticalInterfaces, numTargetProcs, distributionLevel, wFct) == false then
print("Error while Distributing Grid. Aborting.")
exit();
end
write(" done. Post-Refining("..(numRefs-numPreRefs).."): ")
for i=numPreRefs+1,numRefs do refiner:refine(); write(i-numPreRefs .. " "); end
write("done.\n")
--SaveGridHierarchyTransformed(dom:grid(), dom:subset_handler(), "grid_p"..ProcRank()..".ugx", 0.5)
return dom
end
function CreateApproxSpace(dom, discType, vorder, porder)
local approxSpace = util.ns.CreateApproxSpace(dom, discType, vorder, porder)
-- print statistic on the distributed dofs
--approxSpace:init_levels()
approxSpace:init_top_surface()
approxSpace:print_statistic()
--approxSpace:print_local_dof_statistic(2)
return approxSpace
end
--------------------------------------------------------------------------------
-- Discretization
--------------------------------------------------------------------------------
globalNSDisc = nil
function CreateDomainDisc(approxSpace, discType, vorder, porder)
local FctCmp = approxSpace:names()
NavierStokesDisc = NavierStokes(FctCmp, {"Inner"}, discType)
NavierStokesDisc:set_exact_jacobian(bExactJac)
NavierStokesDisc:set_stokes(bStokes)
NavierStokesDisc:set_laplace( not(bNoLaplace) )
NavierStokesDisc:set_kinematic_viscosity( Viscosity );
globalNSDisc = NavierStokesDisc
local porder = approxSpace:lfeid(dim):order()
local vorder = approxSpace:lfeid(0):order()
--upwind if available
if discType == "fv1" or discType == "fvcr" then
NavierStokesDisc:set_upwind(upwind)
NavierStokesDisc:set_peclet_blend(bPecletBlend)
end
-- fv1 must be stablilized
if discType == "fv1" then
NavierStokesDisc:set_stabilization(stab, diffLength)
NavierStokesDisc:set_pac_upwind(true)
end
-- fe must be stabilized for (Pk, Pk) space
if discType == "fe" and porder == vorder then
NavierStokesDisc:set_stabilization(3)
end
if discType == "fe" then
NavierStokesDisc:set_quad_order(math.pow(vorder, dim)+2)
end
if discType == "fv" then
NavierStokesDisc:set_quad_order(math.pow(vorder, dim)+2)
end
-- setup Outlet
--OutletDisc = NavierStokesNoNormalStressOutflow(NavierStokesDisc)
--OutletDisc:add("Outlet")
-- setup Inlet
function inletVel2d(x, y, t)
return 4 * Um * y * (H-y) / (H*H), 0.0
end
function inletVel3d(x, y, z, t)
return 16 * Um * y * z * (H-y) * (H-z) / (H*H*H*H), 0.0, 0.0
end
InletDisc = NavierStokesInflow(NavierStokesDisc)
InletDisc:add("inletVel"..dim.."d", "Inlet, Outlet")
--setup Walles
WallDisc = NavierStokesWall(NavierStokesDisc)
if dim == 2 then
WallDisc:add("UpperWall,LowerWall,CylinderWall")
elseif dim == 3 then
WallDisc:add("UpperWall,LowerWall,CylinderWall,FrontWall,BackWall")
end
-- Finally we create the discretization object which combines all the
-- separate discretizations into one domain discretization.
domainDisc = DomainDiscretization(approxSpace)
domainDisc:add(NavierStokesDisc)
domainDisc:add(InletDisc)
domainDisc:add(WallDisc)
--domainDisc:add(OutletDisc)
return domainDisc
end
--------------------------------------------------------------------------------
-- Solution of the Problem
--------------------------------------------------------------------------------
function CreateSolver(approxSpace, discType, p)
local base = LU()
local smoother = nil
if discType == "fvcr" or discType == "fecr" then
smoother = ComponentGaussSeidel(0.1, {"p"}, {1,2}, {1})
elseif discType == "fv1" then
smoother = ILU()
smoother:set_damp(0.7)
elseif discType == "fe" and porder == vorder then
smoother = ILU()
smoother:set_damp(0.7)
else
smoother = ComponentGaussSeidel(0.1, {"p"}, {0}, {1})
end
local smooth = util.smooth.parseParams()
smoother = util.smooth.create(smooth)
local numPreSmooth, numPostSmooth, baseLev, cycle, bRAP = util.gmg.parseParams()
local gmg = util.gmg.create(approxSpace, smoother, numPreSmooth, numPostSmooth,
cycle, base, baseLev, bRAP)
gmg:add_prolongation_post_process(AverageComponent("p"))
-- transfer = StdTransfer()
-- transfer:enable_p1_lagrange_optimization(false)
-- gmg:set_transfer(transfer)
local sol = util.solver.parseParams()
local solver = util.solver.create(sol, gmg)
if bStokes then
solver:set_convergence_check(ConvCheck(10000, 5e-12, 1e-99, true))
else
solver:set_convergence_check(ConvCheck(10000, 5e-12, 1e-2, true))
end
local convCheck = ConvCheck(500, 1e-11, 1e-99, true)
local newtonSolver = NewtonSolver()
newtonSolver:set_linear_solver(solver)
newtonSolver:set_convergence_check(convCheck)
newtonSolver:set_line_search(StandardLineSearch(10, 1.0, 0.9, true, true))
--newtonSolver:set_debug(GridFunctionDebugWriter(approxSpace))
return newtonSolver
end
function ComputeNonLinearSolution(u, domainDisc, solver)
util.rates.static.StdComputeNonLinearSolution(u, domainDisc, solver)
AdjustMeanValue(u, "p")
end
--------------------------------------------------------------------------------
-- Run Problem
--------------------------------------------------------------------------------
local p = vorder
local dom = CreateDomain()
local approxSpace = CreateApproxSpace(dom, discType, vorder, porder)
local domainDisc = CreateDomainDisc(approxSpace, discType, p)
local solver = CreateSolver(approxSpace, discType, p)
--solver:set_debug(GridFunctionDebugWriter(approxSpace))
print(solver:config_string())
local u = GridFunction(approxSpace)
u:set(0)
-- ComputeNonLinearSolution(u, CreateDomainDisc(approxSpace, "fe", p), solver)
ComputeNonLinearSolution(u, domainDisc, solver)
local FctCmp = approxSpace:names()
local VelCmp = {}
for d = 1,#FctCmp-1 do VelCmp[d] = FctCmp[d] end
vtkWriter = VTKOutput()
vtkWriter:select(VelCmp, "velocity")
vtkWriter:select("p", "pressure")
vtkWriter:print("navier_stokes_"..dim.."d", u)
if dim == 2 then
local DL = DragLift(u, "u,v,p", "CylinderWall", "Inner", Viscosity, 1.0, p+3)
local C_D = 2*DL[1]/(Umean2*L)
local C_L = 2*DL[2]/(Umean2*L)
local PEval = GlobalGridFunctionNumberData(u, "p")
local Delta_P = PEval:evaluate_global({0.15, 0.2}) - PEval:evaluate_global( {0.25, 0.2} )
print("p1: "..PEval:evaluate_global({0.15, 0.2}))
print("p2: "..PEval:evaluate_global({0.25, 0.2}))
print("C_D - ref.CD: "..string.format("%.3e", C_D - ref.CD))
print("C_L - ref.CL: "..string.format("%.3e", C_L - ref.CL))
print("Delta_P - ref.DeltaP: "..string.format("%.3e", Delta_P - ref.DeltaP))
end