-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPdV_kernel.f90
183 lines (150 loc) · 9.15 KB
/
PdV_kernel.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
!Crown Copyright 2012 AWE.
!
! This file is part of CloverLeaf.
!
! CloverLeaf is free software: you can redistribute it and/or modify it under
! the terms of the GNU General Public License as published by the
! Free Software Foundation, either version 3 of the License, or (at your option)
! any later version.
!
! CloverLeaf is distributed in the hope that it will be useful, but
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
! FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
! details.
!
! You should have received a copy of the GNU General Public License along with
! CloverLeaf. If not, see http://www.gnu.org/licenses/.
!> @brief Fortran PdV kernel.
!> @author Wayne Gaudin
!> @details Calculates the change in energy and density in a cell using the
!> change on cell volume due to the velocity gradients in a cell. The time
!> level of the velocity data depends on whether it is invoked as the
!> predictor or corrector.
! Notes
! Again, fluxes need updating for 3d
MODULE PdV_kernel_module
CONTAINS
SUBROUTINE PdV_kernel(predict, &
x_min,x_max,y_min,y_max,z_min,z_max,dt, &
xarea,yarea,zarea,volume, &
density0, &
density1, &
energy0, &
energy1, &
pressure, &
viscosity, &
xvel0, &
xvel1, &
yvel0, &
yvel1, &
zvel0, &
zvel1, &
volume_change )
IMPLICIT NONE
LOGICAL :: predict
INTEGER :: x_min,x_max,y_min,y_max,z_min,z_max
REAL(KIND=8) :: dt
REAL(KIND=8), DIMENSION(x_min-2:x_max+3,y_min-2:y_max+2,z_min-2:z_max+2) :: xarea
REAL(KIND=8), DIMENSION(x_min-2:x_max+2,y_min-2:y_max+3,z_min-2:z_max+2) :: yarea
REAL(KIND=8), DIMENSION(x_min-2:x_max+2,y_min-2:y_max+2,z_min-2:z_max+3) :: zarea
REAL(KIND=8), DIMENSION(x_min-2:x_max+2,y_min-2:y_max+2,z_min-2:z_max+2) :: volume
REAL(KIND=8), DIMENSION(x_min-2:x_max+2,y_min-2:y_max+2,z_min-2:z_max+2) :: density0,energy0
REAL(KIND=8), DIMENSION(x_min-2:x_max+2,y_min-2:y_max+2,z_min-2:z_max+2) :: pressure
REAL(KIND=8), DIMENSION(x_min-2:x_max+2,y_min-2:y_max+2,z_min-2:z_max+2) :: density1,energy1
REAL(KIND=8), DIMENSION(x_min-2:x_max+2,y_min-2:y_max+2,z_min-2:z_max+2) :: viscosity
REAL(KIND=8), DIMENSION(x_min-2:x_max+3,y_min-2:y_max+3,z_min-2:z_max+3) :: xvel0,yvel0,zvel0
REAL(KIND=8), DIMENSION(x_min-2:x_max+3,y_min-2:y_max+3,z_min-2:z_max+3) :: xvel1,yvel1,zvel1
REAL(KIND=8), DIMENSION(x_min-2:x_max+3,y_min-2:y_max+3,z_min-2:z_max+3) :: volume_change
INTEGER :: j,k,l
REAL(KIND=8) :: recip_volume,energy_change,min_cell_volume
REAL(KIND=8) :: right_flux,left_flux,top_flux,bottom_flux,back_flux,front_flux,total_flux
!$ACC DATA &
!$ACC PCOPY(density0,energy0,pressure,viscosity,volume,xarea,zarea) &
!$ACC PCOPY(xvel0,yarea,yvel0,zvel0) &
!$ACC PCOPY(density1,energy1) &
!$ACC PCOPY(xvel1,yvel1,zvel1) &
!$ACC PCOPY(volume_change)
IF(predict)THEN
!$ACC KERNELS
!$ACC LOOP INDEPENDENT
DO l=z_min,z_max
!$ACC LOOP INDEPENDENT
DO k=y_min,y_max
!$ACC LOOP INDEPENDENT PRIVATE(right_flux,left_flux,top_flux,bottom_flux,total_flux,front_flux,back_flux,min_cell_volume,energy_change,recip_volume)
DO j=x_min,x_max
left_flux= (xarea(j ,k ,l )*(xvel0(j ,k ,l )+xvel0(j ,k+1,l )+xvel0(j ,k ,l+1)+xvel0(j ,k+1,l+1) &
+xvel0(j ,k ,l )+xvel0(j ,k+1,l )+xvel0(j ,k ,l+1)+xvel0(j ,k+1,l+1))) &
*0.125_8*dt*0.5
right_flux= (xarea(j+1,k ,l )*(xvel0(j+1,k ,l )+xvel0(j+1,k+1,l )+xvel0(j+1,k ,l+1)+xvel0(j+1,k+1,l+1) &
+xvel0(j+1,k ,l )+xvel0(j+1,k+1,l )+xvel0(j+1,k ,l+1)+xvel0(j+1,k+1,l+1))) &
*0.125_8*dt*0.5
bottom_flux=(yarea(j ,k ,l )*(yvel0(j ,k ,l )+yvel0(j+1,k ,l )+yvel0(j ,k ,l+1)+yvel0(j+1,k ,l+1) &
+yvel0(j ,k ,l )+yvel0(j+1,k ,l )+yvel0(j ,k ,l+1)+yvel0(j+1,k ,l+1))) &
*0.125_8*dt*0.5
top_flux= (yarea(j ,k+1,l )*(yvel0(j ,k+1,l )+yvel0(j+1,k+1,l )+yvel0(j ,k+1,l+1)+yvel0(j+1,k+1,l+1) &
+yvel0(j ,k+1,l )+yvel0(j+1,k+1,l )+yvel0(j ,k+1,l+1)+yvel0(j+1,k+1,l+1))) &
*0.125_8*dt*0.5
back_flux= (zarea(j ,k ,l )*(zvel0(j ,k ,l )+zvel0(j+1,k ,l )+zvel0(j ,k+1,l )+zvel0(j+1,k+1,l ) &
+zvel0(j ,k ,l )+zvel0(j+1,k ,l )+zvel0(j ,k+1,l )+zvel0(j+1,k+1,l ))) &
*0.125_8*dt*0.5
front_flux= (zarea(j ,k ,l+1)*(zvel0(j ,k ,l+1)+zvel0(j+1,k ,l+1)+zvel0(j ,k+1,l+1)+zvel0(j+1,k+1,l+1) &
+zvel0(j ,k ,l+1)+zvel0(j+1,k ,l+1)+zvel0(j ,k+1,l+1)+zvel0(j+1,k+1,l+1))) &
*0.125_8*dt*0.5
total_flux=right_flux-left_flux+top_flux-bottom_flux+front_flux-back_flux
volume_change(j,k,l)=volume(j,k,l)/(volume(j,k,l)+total_flux)
min_cell_volume=MIN(volume(j,k,l)+right_flux-left_flux+top_flux-bottom_flux+front_flux-back_flux &
,volume(j,k,l)+right_flux-left_flux+top_flux-bottom_flux &
,volume(j,k,l)+right_flux-left_flux &
,volume(j,k,l)+top_flux-bottom_flux)
recip_volume=1.0/volume(j,k,l)
energy_change=(pressure(j,k,l)/density0(j,k,l)+viscosity(j,k,l)/density0(j,k,l))*total_flux*recip_volume
energy1(j,k,l)=energy0(j,k,l)-energy_change
density1(j,k,l)=density0(j,k,l)*volume_change(j,k,l)
ENDDO
ENDDO
ENDDO
!$ACC END KERNELS
ELSE
!$ACC KERNELS
!$ACC LOOP INDEPENDENT
DO l=z_min,z_max
!$ACC LOOP INDEPENDENT
DO k=y_min,y_max
!$ACC LOOP INDEPENDENT PRIVATE(right_flux,left_flux,top_flux,bottom_flux,total_flux,front_flux,back_flux,min_cell_volume,energy_change,recip_volume)
DO j=x_min,x_max
left_flux= (xarea(j ,k ,l )*(xvel0(j ,k ,l )+xvel0(j ,k+1,l )+xvel0(j ,k ,l+1)+xvel0(j ,k+1,l+1) &
+xvel1(j ,k ,l )+xvel1(j ,k+1,l )+xvel1(j ,k ,l+1)+xvel1(j ,k+1,l+1))) &
*0.125_8*dt
right_flux= (xarea(j+1,k ,l )*(xvel0(j+1,k ,l )+xvel0(j+1,k+1,l )+xvel0(j+1,k ,l+1)+xvel0(j+1,k+1,l+1) &
+xvel1(j+1,k ,l )+xvel1(j+1,k+1,l )+xvel1(j+1,k ,l+1)+xvel1(j+1,k+1,l+1))) &
*0.125_8*dt
bottom_flux=(yarea(j ,k ,l )*(yvel0(j ,k ,l )+yvel0(j+1,k ,l )+yvel0(j ,k ,l+1)+yvel0(j+1,k ,l+1) &
+yvel1(j ,k ,l )+yvel1(j+1,k ,l )+yvel1(j ,k ,l+1)+yvel1(j+1,k ,l+1))) &
*0.125_8*dt
top_flux= (yarea(j ,k+1,l )*(yvel0(j ,k+1,l )+yvel0(j+1,k+1,l )+yvel0(j ,k+1,l+1)+yvel0(j+1,k+1,l+1) &
+yvel1(j ,k+1,l )+yvel1(j+1,k+1,l )+yvel1(j ,k+1,l+1)+yvel1(j+1,k+1,l+1))) &
*0.125_8*dt
back_flux= (zarea(j ,k ,l )*(zvel0(j ,k ,l )+zvel0(j+1,k ,l )+zvel0(j ,k+1,l )+zvel0(j+1,k+1,l ) &
+zvel1(j ,k ,l )+zvel1(j+1,k ,l )+zvel1(j ,k+1,l )+zvel1(j+1,k+1,l ))) &
*0.125_8*dt
front_flux= (zarea(j ,k ,l+1)*(zvel0(j ,k ,l+1)+zvel0(j+1,k ,l+1)+zvel0(j ,k+1,l+1)+zvel0(j+1,k+1,l+1) &
+zvel1(j ,k ,l+1)+zvel1(j+1,k ,l+1)+zvel1(j ,k+1,l+1)+zvel1(j+1,k+1,l+1))) &
*0.125_8*dt
total_flux=right_flux-left_flux+top_flux-bottom_flux+front_flux-back_flux
volume_change(j,k,l)=volume(j,k,l)/(volume(j,k,l)+total_flux)
min_cell_volume=MIN(volume(j,k,l)+right_flux-left_flux+top_flux-bottom_flux+front_flux-back_flux &
,volume(j,k,l)+right_flux-left_flux+top_flux-bottom_flux &
,volume(j,k,l)+right_flux-left_flux &
,volume(j,k,l)+top_flux-bottom_flux)
recip_volume=1.0/volume(j,k,l)
energy_change=(pressure(j,k,l)/density0(j,k,l)+viscosity(j,k,l)/density0(j,k,l))*total_flux*recip_volume
energy1(j,k,l)=energy0(j,k,l)-energy_change
density1(j,k,l)=density0(j,k,l)*volume_change(j,k,l)
ENDDO
ENDDO
ENDDO
!$ACC END KERNELS
ENDIF
!$ACC END DATA
END SUBROUTINE PdV_kernel
END MODULE PdV_kernel_module