-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathotter_simple.m
218 lines (186 loc) · 7.27 KB
/
otter_simple.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
function xdot = otter_simple(x,n)
% [xdot,U] = otter(x,n,mp,rp,V_c,beta_c) returns the speed U in m/s (optionally)
% and the time derivative of the state vector:
% x = [ u v w p q r x y z phi theta psi ]'
% for the Maritime Robotics Otter USV, see www.maritimerobotics.com.
% The length of the USV is L = 2.0 m, while the state vector is defined as:
%
% u: surge velocity (m/s)
% v: sway velocity (m/s)
% w: heave velocity (m/s)
% p: roll velocity (rad/s)
% q: pitch velocity (rad/s)
% r: yaw velocity (rad/s)
% x: position in x direction (m)
% y: position in y direction (m)
% z: position in z direction (m)
% phi: roll angle (rad)
% theta: pitch angle (rad)
% psi: yaw angle (rad)
%
% The other inputs are:
%
% n = [ n(1) n(2) ]' where
% n(1): propeller shaft speed, left (rad/s)
% n(2): propeller shaft speed, right (rad/s)
%
% mp = payload mass (kg), maximum 45 kg
% rp = [xp, yp, zp]' (m) is the location of the payload w.r.t. the CO
% V_c: current speed (m/s)
% beta_c: current direction (rad)
%
% See, ExOtter.m and demoOtterUSVHeadingControl.slx
%
% Author: Thor I. Fossen
% Date: 2019-07-17
% Revisions: 2021-04-25 added call to new function crossFlowDrag.m
% 2021-06-21 Munk moment in yaw is neglected
% 2021-07-22 Added a new state for the trim moment
% 2021-12-17 New method Xudot = -addedMassSurge(m,L,rho)
% 2023-03-28 Trim state is replaced by payload mp and rp
% Check of input and state dimensions
if (length(x) ~= 12),error('x vector must have dimension 12!'); end
if (length(n) ~= 2),error('n vector must have dimension 2!'); end
mp = 0;
rp = [0,0,0]';
V_c = 0;
beta_c = 0;
% Main data
g = 9.81; % acceleration of gravity (m/s^2)
rho = 1025; % density of water
L = 2.0; % length (m)
B = 1.08; % beam (m)
m = 55.0; % mass (kg)
rg = [0.2 0 -0.2]'; % CG for hull only (m)
R44 = 0.4 * B; % radii of gyrations (m)
R55 = 0.25 * L;
R66 = 0.25 * L;
T_yaw = 1; % time constant in yaw (s)
Umax = 6 * 0.5144; % max forward speed (m/s)
% Data for one pontoon
B_pont = 0.25; % beam of one pontoon (m)
y_pont = 0.395; % distance from centerline to waterline area center (m)
Cw_pont = 0.75; % waterline area coefficient (-)
Cb_pont = 0.4; % block coefficient, computed from m = 55 kg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% State and current variables
nu = x(1:6); nu1 = x(1:3); nu2 = x(4:6); % velocities
eta = x(7:12); % positions
U = sqrt(nu(1)^2 + nu(2)^2 + nu(3)^2); % speed
u_c = V_c * cos(beta_c - eta(6)); % current surge velocity
v_c = V_c * sin(beta_c - eta(6)); % current sway velocity
nu_r = nu - [u_c v_c 0 0 0 0]'; % relative velocity vector
% Inertia dyadic, volume displacement and draft
nabla = (m+mp)/rho; % volume
T = nabla / (2 * Cb_pont * B_pont*L); % draft
Ig_CG = m * diag([R44^2, R55^2, R66^2]); % only hull in CG
rg = (m*rg + mp*rp)/(m+mp); % CG location corrected for payload
Ig = Ig_CG - m * Smtrx(rg)^2 - mp * Smtrx(rp)^2; % hull + payload in CO
% Experimental propeller data including lever arms
l1 = -y_pont; % lever arm, left propeller (m)
l2 = y_pont; % lever arm, right propeller (m)
k_pos = 0.02216/2; % Positive Bollard, one propeller
k_neg = 0.01289/2; % Negative Bollard, one propeller
n_max = sqrt((0.5*24.4 * g)/k_pos); % maximum propeller rev. (rad/s)
n_min = -sqrt((0.5*13.6 * g)/k_neg); % minimum propeller rev. (rad/s)
% MRB and CRB (Fossen 2021)
I3 = eye(3);
O3 = zeros(3,3);
MRB_CG = [ (m+mp) * I3 O3
O3 Ig ];
CRB_CG = [ (m+mp) * Smtrx(nu2) O3
O3 -Smtrx(Ig*nu2) ];
H = Hmtrx(rg); % Transform MRB and CRB from the CG to the CO
MRB = H' * MRB_CG * H;
CRB = H' * CRB_CG * H;
% Hydrodynamic added mass (best practise)
Xudot = -addedMassSurge(m,L,rho);
Yvdot = -1.5 * m;
Zwdot = -1.0 * m;
Kpdot = -0.2 * Ig(1,1);
Mqdot = -0.8 * Ig(2,2);
Nrdot = -1.7 * Ig(3,3);
MA = -diag([Xudot, Yvdot, Zwdot, Kpdot, Mqdot, Nrdot]);
CA = m2c(MA, nu_r); %% stabilization point nu_r = 0.03
CA(6,1) = 0; % Assume that the Munk moment in yaw can be neglected
CA(6,2) = 0; % These terms, if nonzero, must be balanced by adding nonlinear damping
CA(1,6) = 0;
CA(2,6) = 0;
% System mass and Coriolis-centripetal matrices
M = MRB + MA;
C = CRB + CA;
% Hydrostatic quantities (Fossen 2021)
Aw_pont = Cw_pont * L * B_pont; % waterline area, one pontoon
I_T = 2 * (1/12)*L*B_pont^3 * (6*Cw_pont^3/((1+Cw_pont)*(1+2*Cw_pont)))...
+ 2 * Aw_pont * y_pont^2;
I_L = 0.8 * 2 * (1/12) * B_pont * L^3;
KB = (1/3)*(5*T/2 - 0.5*nabla/(L*B_pont) );
BM_T = I_T/nabla; % BM values
BM_L = I_L/nabla;
KM_T = KB + BM_T; % KM values
KM_L = KB + BM_L;
KG = T - rg(3);
GM_T = KM_T - KG; % GM values
GM_L = KM_L - KG;
G33 = rho * g * (2 * Aw_pont); % spring stiffness
G44 = rho * g *nabla * GM_T;
G55 = rho * g *nabla * GM_L;
% G_CF = diag([0 0 G33 G44 G55 0]); % spring stiffness matrix in the CF
% LCF = -0.2;
% H = Hmtrx([LCF 0 0]); % transform G_CF from the CF to the CO
% G = H' * G_CF * H;
% Natural frequencies
w3 = sqrt( G33/M(3,3) );
w4 = sqrt( G44/M(4,4) );
w5 = sqrt( G55/M(5,5) );
% Linear damping terms (hydrodynamic derivatives)
Xu = -24.4 * g / Umax; % specified using the maximum speed
Yv = 0;
Zw = -2 * 0.3 *w3 * M(3,3); % specified using relative damping factors
Kp = -2 * 0.2 *w4 * M(4,4);
Mq = -2 * 0.4 *w5 * M(5,5);
Nr = -M(6,6) / T_yaw; % specified using the time constant in T_yaw
% Control forces and moments - with propeller revolution saturation
%
% Thrust = zeros(2,1);
% for i = 1:1:2
% if n(i) > n_max % saturation, physical limits
% n(i) = n_max;
% elseif n(i) < n_min
% n(i) = n_min;
% end
% if n(i) > 0
% Thrust(i) = k_pos * n(i)*abs(n(i)); % positive thrust (N)
% else
% Thrust(i) = k_neg * n(i)*abs(n(i)); % negative thrust (N)
% end
% end
% Thrust(1) = n(1); % positive thrust (N)
% Thrust(2) = n(2); % positive thrust (N)
% Control forces and moments
tau = [n(1) + n(2) 0 0 0 0 -l1 * n(1) - l2 * n(2) ]';
% Linear damping using relative velocities + nonlinear yaw damping
Xh = Xu * nu_r(1);
Yh = Yv * nu_r(2);
Zh = Zw * nu_r(3);
Kh = Kp * nu_r(4);
Mh = Mq * nu_r(5);
Nh = Nr * (1 + 10 * abs(nu_r(6))) * nu_r(6);
% Nh = Nr * 1.3 * nu_r(6); %% stabilizaiton point at r= 0.03 rad/s
tau_damp = [Xh Yh Zh Kh Mh Nh]';
% Strip theory: cross-flow drag integrals for Yh and Nh
% tau_crossflow = crossFlowDrag(L,B_pont,T,nu_r);
% Payload
% fp = Rzyx(eta(4),eta(5),eta(6))' * [ 0 0 mp*g ]'; % force due to payload
% mp = Smtrx(rp) * fp; % moment due to payload
% g_0 = [ fp
% mp ];
% Kinematics
J = eulerang(eta(4),eta(5),eta(6));
% [tau]
% [tau_damp]
% [tau_crossflow]
% Time derivative of the state vector - numerical integration; see ExOtter.m
xdot = [ M \ ( tau + tau_damp - C * nu_r)
J * nu ];
end