-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom_generate_layout_images.py
276 lines (208 loc) · 8.5 KB
/
random_generate_layout_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import os
import csv
import cv2
import random
import numpy as np
import networkx as nx
from tqdm import tqdm
from utils.utils import makedir, is_overlaped
#Number of images to randomly generate
n_img = 5000
image_size = 512
p_background = 0.25
seed = 23
output_path = 'datasets/random_layout/'
# To avoid the size of the bboxes in the layout images being too different from the actual size,
# we use the length and width of the bounding boxes in the label of the target domain. 'use_wh_from_target_domain = True'
#-----------------------------
# If you want to randomly generate the length and width of bboxes, set use_wh_from_target_domain to False,
# and set the base_w, base_h, w_scale, h_scase
use_wh_from_target_domain = True
ann_Path = 'datasets/gwhd_2021/competition_test.csv'
base_w = 55
base_h = 50
w_scale = (0.15, 2)
h_scale = (0.15, 2)
np.random.seed(seed)
random.seed(seed)
def convert_ann2wh(ann_Path, domain_filter=None):
csvFile = open(ann_Path, "r")
reader = csv.reader(csvFile)
laBel_list = []
for item in reader:
if reader.line_num == 1:
continue
domain = item[2]
if domain_filter is not None and domain not in domain_filter:
continue
laBel_list.append(item[1])
box_wh_lst = []
for laBel in laBel_list:
if 'no_box' not in laBel:
laBel = laBel.split(';')
for box in laBel:
box = np.array(list(map(int,box.split(' ')))).reshape((4))
w = box[2] - box[0]
h = box[3] - box[1]
box_wh = [w, h]
if box_wh not in box_wh_lst:
box_wh_lst.append(box_wh)
return box_wh_lst
def random_select_boxes(box_wh_lst, max_boxes_number=200, image_size=512, orginal_size=1024):
selected_box_wh = random.choices(box_wh_lst, k=max_boxes_number)
selected_box_wh = np.array(selected_box_wh)
box_left_tops = np.random.rand(max_boxes_number, 2) * image_size
box_left_tops = box_left_tops.astype(np.int32)
boxes = np.concatenate((box_left_tops, selected_box_wh), axis=1)
boxes[:, 2] = boxes[:, 0] + boxes[:, 2]
boxes[:, 3] = boxes[:, 1] + boxes[:, 3]
boxes = boxes[np.logical_and(boxes[:,2]<image_size, boxes[:,3]<image_size)]
return boxes
def is_overlaped(array_1, array_2):
x_min, y_min, x_max, y_max = array_2[0]
x_min -= 16
y_min -= 16
x_max += 16
y_max += 16
x_min_n = array_1[:, 0]
y_min_n = array_1[:, 1]
x_max_n = array_1[:, 2]
y_max_n = array_1[:, 3]
intersect = ((x_min <= x_max_n) & (x_max >= x_min_n) & (y_min <= y_max_n) & (y_max >= y_min_n))
return intersect
def calculate_iou(box1, box2):
#Calculate the coordinates of the intersection
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
#Calculate intersection area
intersection_area = max(0, x2 - x1) * max(0, y2 - y1)
#Calculate the area of two boxes
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
iou = intersection_area / min(box1_area, box2_area)
return iou
def remove_boxes_with_high_iou(boxes, threshold=0.4):
boxes_to_keep = []
for i in range(len(boxes)):
keep_box = True
for j in range(len(boxes)):
if i != j:
iou = calculate_iou(boxes[i], boxes[j])
if iou > threshold:
keep_box = False
break
if keep_box:
boxes_to_keep.append(boxes[i])
return np.array(boxes_to_keep)
def draw_control_img(bboxes, min_box_num=2, max_box_num=15, image_size=512):
isolated_boxes = []
overlaped_boxes = []
box_lay_1 = []
box_lay_2 = []
box_lay_3 = []
for bbox in bboxes:
bbox = bbox.reshape(1, 4)
overlap = is_overlaped(bboxes, bbox)
n_box_overlap = np.sum(overlap.astype(int))
bbox = bbox.reshape(4)
if np.sum(n_box_overlap)==1:
isolated_boxes.append(bbox)
else:
overlaped_boxes.append(bbox)
lays = [0]
if len(overlaped_boxes) > 0:
overlaped_boxes = np.array(overlaped_boxes)
overlaped_matrix = None
for bbox in overlaped_boxes:
bbox = bbox.reshape(1, 4)
overlap = is_overlaped(overlaped_boxes, bbox)
overlap = overlap.reshape(1, overlap.size)
if overlaped_matrix is not None:
overlaped_matrix = np.concatenate((overlaped_matrix, overlap), axis=0)
else:
overlaped_matrix = overlap
diagonal_matrix = abs(np.eye(overlap.size) - 1)
diagonal_matrix = diagonal_matrix.astype(bool)
overlaped_matrix *= diagonal_matrix
overlaped_matrix = overlaped_matrix.astype(bool)
G = nx.Graph(overlaped_matrix)
coloring = nx.coloring.greedy_color(G, strategy='largest_first')
for box_id, lay_id in coloring.items():
lays.append(lay_id)
if lay_id == 0:
box_lay_1.append(overlaped_boxes[box_id])
if lay_id == 1:
box_lay_2.append(overlaped_boxes[box_id])
if lay_id == 2:
box_lay_3.append(overlaped_boxes[box_id])
box_lay_1 = box_lay_1 + isolated_boxes
box_lay_2 = random.sample(box_lay_2, len(box_lay_2)//2)
box_lay_3 = random.sample(box_lay_3, len(box_lay_3)//4)
box_all = box_lay_1 + box_lay_2 + box_lay_3
max_box_num = min(len(box_all), max_box_num)
min_box_num = min(len(box_all), min_box_num)
box_num = random.randint(min_box_num, max_box_num)
#Create a dictionary to record which list the elements come from
index_dict = {}
for index, lst in enumerate([box_lay_1, box_lay_2, box_lay_3]):
for element in lst:
index_dict[str(element)] = index
selected_boxes = random.sample(box_all, box_num)
new_lst = [[] for _ in range(3)] # Create three new empty lists
for element in selected_boxes:
index = index_dict[str(element)] # Get the original list index that the element comes from
new_lst[index].append(element) #Put the elements into the corresponding new list
box_lay_1 = np.array(new_lst[0])
box_lay_2 = np.array(new_lst[1])
box_lay_3 = np.array(new_lst[2])
#draw bbox
box_img_lay_1 = np.zeros((image_size, image_size, 1), dtype=np.uint8)
box_img_lay_2 = np.zeros((image_size, image_size, 1), dtype=np.uint8)
box_img_lay_3 = np.zeros((image_size, image_size, 1), dtype=np.uint8)
if box_lay_1.shape[0] > 1:
for bbox in box_lay_1:
cv2.rectangle(box_img_lay_1, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (255), -1)
if box_lay_2.shape[0] > 1:
for bbox in box_lay_2:
cv2.rectangle(box_img_lay_2, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (255), -1)
if box_lay_3.shape[0] > 1:
for bbox in box_lay_3:
cv2.rectangle(box_img_lay_3, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (255), -1)
source_img = np.concatenate((box_img_lay_1, box_img_lay_2, box_img_lay_3), axis=2)
return np.array(selected_boxes), source_img
def generate_random_wh(base_w, base_h, w_scale, h_scale, n):
sizes = []
for _ in range(n):
w = int(random.uniform(*w_scale) * base_w)
h = int(random.uniform(*h_scale) * base_h)
sizes.append([w, h])
return sizes
box_img_path = output_path + 'img/'
makedir(box_img_path)
file = open(output_path + 'bounding_boxes.txt', 'w')
if use_wh_from_target_domain:
box_wh_lst = convert_ann2wh(ann_Path, ['Terraref_1', 'Terraref_2'])
else:
box_wh_lst = generate_random_wh(base_w, base_h, w_scale, h_scale, n=1000)
for i in tqdm(range(n_img)):
if np.random.rand() < p_background:
file_name = box_img_path + str(i) + '.png'
file.write(file_name)
file.write("\n")
image = np.zeros((image_size, image_size, 3), dtype=np.uint8)
cv2.imwrite(box_img_path + f"{i}.png", image)
continue
boxes = random_select_boxes(box_wh_lst)
boxes = remove_boxes_with_high_iou(boxes)
selected_boxes, source_img = draw_control_img(boxes)
#Write bounding boxes coordinates to txt file
if len(selected_boxes) > 0:
file_name = box_img_path + str(i) + '.png'
file.write(file_name)
for box in selected_boxes:
box = np.clip(box, 0, image_size-1)
file.write(f" {box[0]},{box[1]},{box[2]},{box[3]},0")
file.write("\n")
cv2.imwrite(box_img_path + f"{i}.png", source_img)