-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
373 lines (291 loc) · 15.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
#!/usr/bin/env python3
import torch
from torch.utils.data import DataLoader
import numpy as np
import random
import json
from tqdm import tqdm
import os
import pandas as pd
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import v2
import deepsdf.deep_sdf as deep_sdf
import deepsdf.deep_sdf.workspace as ws
from sdfrenderer.grid import Grid3D
from dataloaders.cameralaser_w_masks import MaskedCameraLaserData
from dataloaders.transforms import Pad, Rotate, RandomHorizontalFlip, RandomVerticalFlip
from networks.models import Encoder, EncoderBig, ERFNetEncoder, EncoderBigPooled, EncoderPooled, DoubleEncoder, PointCloudEncoder, PointCloudEncoderLarge, FoldNetEncoder
import networks.utils as net_utils
from loss import KLDivLoss, SuperLoss, SDFLoss, RegLatentLoss, AttRepLoss
from utils import sdf2mesh_cuda, save_model, tensor_dict_2_float_dict
DEBUG = True
torch.autograd.set_detect_anomaly(True)
from metrics_3d import chamfer_distance
cd = chamfer_distance.ChamferDistance()
from sklearn.metrics import mean_squared_error
def check_direxcist(dir):
if dir is not None:
if not os.path.exists(dir):
os.makedirs(dir) # make new folder
def main_function(decoder, pretrain, cfg, latent_size, trunc_val, overfit, update_decoder):
if DEBUG:
torch.manual_seed(133)
random.seed(133)
np.random.seed(133)
cfg_fname = cfg.split('/')[-1].replace('.json', '') # getting filename
with open(cfg) as json_file:
param = json.load(json_file)
check_direxcist(param["checkpoint_dir"])
device = 'cuda'
shuffle = True
last_rmse = np.inf
# creating variables for 3d grid for diff SDF renderer
grid_density = param['grid_density']
precision = torch.float32
# define encoder
if param['encoder'] == 'big':
encoder = EncoderBig(in_channels=4, out_channels=latent_size, size=param["input_size"]).to(device)
elif param['encoder'] == 'small_pool':
encoder = EncoderPooled(in_channels=4, out_channels=latent_size, size=param["input_size"]).to(device)
elif param['encoder'] == 'erfnet':
encoder = ERFNetEncoder(in_channels=4, out_channels=latent_size, size=param["input_size"]).to(device)
elif param['encoder'] == 'pool':
encoder = EncoderBigPooled(in_channels=4, out_channels=latent_size, size=param["input_size"]).to(device)
elif param['encoder'] == 'double':
encoder = DoubleEncoder(out_channels=latent_size, size=param["input_size"]).to(device)
elif param['encoder'] == 'point_cloud':
encoder = PointCloudEncoder(in_channels=3, out_channels=latent_size).to(device)
elif param['encoder'] == 'point_cloud_large':
encoder = PointCloudEncoderLarge(in_channels=3, out_channels=latent_size).to(device)
elif param['encoder'] == 'foldnet':
encoder = FoldNetEncoder(in_channels=3, out_channels=latent_size).to(device)
else:
encoder = Encoder(in_channels=4, out_channels=latent_size, size=param["input_size"]).to(device)
#############################
# TRAINING LOOP STARTS HERE #
#############################
writer = SummaryWriter(filename_suffix='__'+cfg_fname, log_dir=param["log_dir"])
decoder.to(device)
# transformations
geo_tfs = v2.RandomChoice([Rotate(angle=45), RandomHorizontalFlip(), RandomVerticalFlip()])
color_tfs = [Pad(size=param["input_size"]), v2.ColorJitter(brightness=0.5, hue=(-0.1, 0.1), saturation=0.5), geo_tfs]
color_tf = v2.Compose(color_tfs)
default_tfs = [Pad(size=param["input_size"]), geo_tfs]
default_tf = v2.Compose(default_tfs)
cl_dataset = MaskedCameraLaserData(data_source=param["data_dir"],
tf=default_tf,
color_tf = color_tf,
pretrain=pretrain,
pad_size=param["input_size"],
detection_input=param["detection_input"],
normalize_depth=param["normalize_depth"],
depth_min=param["depth_min"],
depth_max=param["depth_max"],
supervised_3d=param["supervised_3d"],
sdf_loss=param["3D_loss"],
grid_density=param["grid_density"],
split='train',
overfit=overfit,
species=param["species"]
)
dataset = DataLoader(cl_dataset, batch_size=param["batch_size"], shuffle=shuffle, drop_last=True)
if update_decoder:
params = list(encoder.parameters()) + list(decoder.parameters())
else:
params = list(encoder.parameters()) #+ list(decoder.parameters())
optim = torch.optim.Adam(params, lr=param["lr"], weight_decay=1e-6)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optim, gamma=0.97)
print('\ncfg: ', json.dumps(param, indent=4), '\n')
print(encoder)
print(decoder)
# import ipdb; ipdb.set_trace()
n_iter = 0 # used for tensorboard
df = pd.read_csv("./data/3DPotatoTwinDemo/ground_truth.csv")
for e in range(param["epoch"]):
for idx, item in enumerate(iter(dataset)):
# import ipdb;ipdb.set_trace()
n_iter += 1 # for tensorboard
logging_string = 'epoch: {}/{} -- iteration {}/{}'.format(e+1, param["epoch"], idx, len(dataset))
optim.zero_grad()
loss = 0
# unpacking inputs
if param['encoder'] != 'point_cloud' and param['encoder'] != 'point_cloud_large' and param['encoder'] != 'foldnet':
encoder_input = torch.cat((item['rgb'], item['depth']), 1).to(device)
else:
encoder_input = item['partial_pcd'].permute(0, 2, 1).to(device) ## be aware: the current partial pcd is not registered to the target pcd!
# encoding
latent_batch_unnormd = encoder(encoder_input)
norms_batch = torch.linalg.norm(latent_batch_unnormd, dim=1)
latent_batch = latent_batch_unnormd #/ norms_batch.unsqueeze(dim=1)
if param["contrastive"]:
fruit_ids = [list(dataset.dataset.Ks.keys()).index(fid) for fid in item['fruit_id']]
fruit_ids = torch.Tensor(fruit_ids)
att_loss = AttRepLoss(latent_batch, fruit_ids, device)
loss += param['lambda_attraction']*att_loss
# logging
writer.add_scalar('Loss/Train/Att', param['lambda_attraction']*att_loss, n_iter)
logging_string += ' -- loss att: {}'.format(param['lambda_attraction']*att_loss.item())
if param["kl_divergence"]:
loss_kl, determinant = KLDivLoss(latent_batch, cl_dataset, device)
loss += param['lambda_kl']*loss_kl
# logging
writer.add_scalar('Loss/Train/KLDiv', param['lambda_kl']*loss_kl, n_iter)
logging_string += ' -- loss kl: {}'.format(param['lambda_kl']*loss_kl.item())
logging_string += ' -- det: {}'.format(determinant.item())
writer.add_scalar('Debug/Train/BatchCovDet', determinant, n_iter)
if param['supervised_3d']:
loss_super = SuperLoss(latent_batch, item['latent'])
loss += loss_super
# logging
writer.add_scalar('Loss/Train/SuperLoss', loss_super, n_iter)
logging_string += ' -- loss super: {}'.format(loss_super.item())
if param['reg_latent']:
loss_reg = RegLatentLoss(latent_batch, param["lambda_reg_latent"], e)
loss += loss_reg
# logging
writer.add_scalar('Loss/Train/RegLoss',loss_reg, n_iter)
logging_string += ' -- loss reg: {}'.format(loss_reg.item())
# creating a Grid3D for each latent in the batch
current_batch_size = encoder_input.shape[0]
box = tensor_dict_2_float_dict(item['bbox'])
grid_batch = []
for _ in range(current_batch_size):
grid_batch.append(Grid3D(grid_density, device, precision, bbox=box))
deepsdf_input = torch.zeros((current_batch_size, grid_density**3, latent_size+3))
for batch_idx, (latent, grid) in enumerate(zip(latent_batch, grid_batch)):
deepsdf_input[batch_idx] = torch.cat([latent.expand(grid.points.size(0), -1), grid.points], dim=1)
deepsdf_input = deepsdf_input.to(device, latent.dtype)
# decoding
pred_sdf = decoder(deepsdf_input)
if param["3D_loss"]:
loss_sdf = SDFLoss(pred_sdf, item['target_sdf'].to(device), item['target_sdf_weights'].to(device), sdf_trunc=cl_dataset.sdf_trunc, points=grid_batch)
loss += param['lambda_sdf']*loss_sdf
# logging
writer.add_scalar('Loss/Train/SDFLoss', param['lambda_sdf']* loss_sdf, n_iter)
logging_string += ' -- loss sdf: {}'.format( param['lambda_sdf']*loss_sdf.item())
loss.backward()
optim.step()
# tensorboard logging
writer.add_scalar('LRate', scheduler.get_last_lr()[0], n_iter)
writer.add_scalar('Loss/Train/Total', loss, n_iter)
logging_string += ' -- loss: {}'.format(loss.item())
logging_string += ' -- lr: {}'.format(scheduler.get_last_lr()[0])
print(logging_string)
scheduler.step()
# validation step
if (e+1) % param["validation_frequency"] == 0:
with torch.no_grad():
val_tfs = [Pad(size=param["input_size"])]
val_tf = v2.Compose(val_tfs)
val_cl_dataset = MaskedCameraLaserData(data_source=param["data_dir"],
tf=val_tf,
color_tf = None,
pretrain=pretrain,
pad_size=param["input_size"],
detection_input=param["detection_input"],
normalize_depth=param["normalize_depth"],
depth_min=param["depth_min"],
depth_max=param["depth_max"],
supervised_3d=param["supervised_3d"],
sdf_loss=param["3D_loss"],
grid_density=param["grid_density"],
split='val',
overfit=overfit,
species=param["species"]
)
val_dataset = DataLoader(val_cl_dataset, batch_size=1, shuffle=False)
gt_volumes = []
pred_volumes = []
print('\nvalidation...')
for _, item in enumerate(tqdm(iter(val_dataset))):
try:
if param['encoder'] != 'point_cloud' and param['encoder'] != 'point_cloud_large' and param['encoder'] != 'foldnet':
encoder_input = torch.cat((item['rgb'], item['depth']), 1).to(device)
else:
encoder_input = item['partial_pcd'].permute(0, 2, 1).to(device)
# encoding
latent_val = encoder(encoder_input)
grid_val = Grid3D(grid_density, device, precision, bbox=box)
dec_input_val = torch.cat([latent_val.expand(grid.points.size(0), -1), grid_val.points], dim=1)
pred_sdf_val = decoder(dec_input_val)
mesh_val = sdf2mesh_cuda(pred_sdf_val, grid_val.points, t=0.0)
pred_volume = mesh_val.get_volume()
pred_volumes.append(round(pred_volume * 1e6, 1))
gt_volume = df.loc[df['label'] == item['fruit_id'][0], 'volume_metashape'].values[0]
gt_volumes.append(gt_volume)
if args.overfit: break
except:
pass
rmse_volume = mean_squared_error(gt_volumes, pred_volumes, squared=False)
print('RMSE volume: ', round(rmse_volume, 1))
# logging
writer.add_scalar('Val/rmse_volume', rmse_volume, n_iter)
# saving best model
if rmse_volume < last_rmse:
last_rmse = rmse_volume
save_model(encoder, decoder, e, optim, loss, param["checkpoint_dir"]+'_'+cfg_fname+'_best_model.pt')
print('saving best model')
print()
# saving checkpoints
if (e+1) % param["checkpoint_frequency"] == 0:
save_model(encoder, decoder, e, optim, loss, param["checkpoint_dir"]+'_'+cfg_fname+'_checkpoint.pt')
# saving last model
save_model(encoder, decoder, e, optim, loss, param["checkpoint_dir"]+'_'+cfg_fname+'_final_model.pt')
return
if __name__ == "__main__":
import argparse
arg_parser = argparse.ArgumentParser(description="shape completion main file, assume a pretrained deepsdf model")
arg_parser.add_argument(
"--experiment",
"-e",
dest="experiment_directory",
required=True,
help="The experiment directory. This directory should include "
+ "experiment specifications in 'specs.json', and logging will be "
+ "done in this directory as well.",
)
arg_parser.add_argument(
"--cfg",
"-c",
dest="cfg",
required=True,
help="Config file for the outer network.",
)
arg_parser.add_argument(
"--overfit",
dest="overfit",
action='store_true',
help="Overfit the network.",
)
arg_parser.add_argument(
"--checkpoint_decoder",
dest="checkpoint",
default="500",
help="The checkpoint weights to use. This should be a number indicated an epoch",
)
arg_parser.add_argument(
"--decoder",
dest="decoder",
action='store_true',
help="Update decoder network.",
)
deep_sdf.add_common_args(arg_parser)
args = arg_parser.parse_args()
deep_sdf.configure_logging(args)
# loading deepsdf model
specs = ws.load_experiment_specifications(args.experiment_directory)
latent_size = specs["CodeLength"]
arch = __import__("deepsdf.networks." + specs["NetworkArch"], fromlist=["Decoder"])
decoder = arch.Decoder(latent_size, **specs["NetworkSpecs"]).cuda()
path = os.path.join(args.experiment_directory, 'ModelParameters', args.checkpoint) + '.pth'
model_state = net_utils.load_without_parallel(torch.load(path))
decoder.load_state_dict(model_state)
decoder = net_utils.set_require_grad(decoder, True)
pretrain_path = os.path.join(args.experiment_directory, 'Reconstructions', args.checkpoint, 'Codes', 'complete')
main_function(decoder=decoder,
pretrain=pretrain_path,
cfg=args.cfg,
latent_size=latent_size,
trunc_val=specs['ClampingDistance'],
overfit=args.overfit,
update_decoder=args.decoder)