
Emacs or Vi
9 things your editor says about you!

You won’t believe number 7!



Discourses and Dialogs 
on Debugging

Perry Kivolowitz
University of Wisconsin – Madison

Computer Sciences Department



On tap tonight:

Part 1 Discourses

Rules, that if followed, will change your life

Part 2 Dialogs

Real world applications of the discourses

Every dialog actually happened*

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 3



As we talk, something you might think about:

How does this relate to each method, maxim, 
corollary or dialog? 

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 4

A (Partial) Bug Taxonomy

Algorithmic / 
Data Structure

Honest 
Mistakes

Dumb S*^! 
Mistakes



Part 1 - Discourses



Motivation

We all write buggy code

Few of us are

taught how to debug

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 6



Some say debugging cannot
be taught

“Debugging is an art”
“Either you get it or you don’t”

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 7



The thesis of this talk is:

debugging is based in 

science
(and science can be taught)

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 8



The Science of Debugging

The 
Scientific 
Method

and also…

Kivolowitz Corollary

Kivolowitz’s Maxim 1

Maxwell Cohen’s Law

Kivolowitz’s Maxim 2

Conan Doyle’s Law

Kivolowitz’s Maxim 3

Kivolowitz’s Maxim 4

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 9



Most Common Debugging Algorithm

Program doesn’t 
work

Make a change

Does 
program 

work?

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 10



The Scientific Method

Observe /
Gather Data

Formulate 
hypothesis

Test 
hypothesis

Debugging should be methodical

not knee-jerk or reactionary
3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 11



Kivolowitz Corollary

“A fix is not a fix until you 

completely understand 
why it is a fix”

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 12



What else is wrong with this?

Program doesn’t 
work

Make change

Does 
program 

work?

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 13



Kivolowitz Maxim #1

“Debugging is about the 
elimination of unknowns, 

not their introduction”

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 14



Kivolowitz Maxim #1

Else, you are 
chasing a 

moving target

*unless you are certain you’re 
fixing a different bug

If you make a 
change with no 

beneficial 
result, back it 

out*
3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 15



Maxwell (Mickey) Cohen’s Law

“Where there is one, 
there are likely many”

Always be mindful that you may be seeing a 

cascade of errors
(Note to self: Describe how debugging is like a train wreck)

(Note to self: Describe how debugging is different from looking for your phone)

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 16



Kivolowitz’s Maxim #2

“Bugs want to be found”

They often announce themselves clearly 

if you make the effort to listen

Observe /
Gather Data

Formulate 
hypothesis

Test hypothesis

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 17



Conan Doyle’s Law

“When you have eliminated the 

impossible, whatever remains, 

however improbable, must be 

the truth.”

The Sign of Four, 1890

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 18



Kivolowitz Maxim #3

“Write in small units. 
Test in small units.”

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 19



Kivolowitz Maxim #4

“Always play defense”

“Extra work” is finite.
Debugging time, not so much. 

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 20



Part 2 - Dialogs (all actually happened)

http://images6.fanpop.com/image/photos/33100000/Kung-Fu-Panda-3-random-33170400-1920-810.jpg

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 21



Kivolowitz Corollary Example

Student: My code crashed. I added a 
print out. Now it doesn’t crash.
I fixed it, right?

Master: Sigh

No understanding of the “fix”

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 22



Kivolowitz’s Maxim #2 Example
Student: I get “Seg fault. Core dumped.” 

Can you help me?

Master: What do you think the problem is?

Student: How should I know? That’s all it says.

Master: Sigh.

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 23

“Bugs want to be found”

They often announce themselves clearly 

if you make the effort to listen



Kivolowitz’s Maxim #2 Example
Student: I have an error. Can you fix it?

Master: What does the error say?

Student: I didn’t read it. I just clicked “OK”

Master: Sigh

“Bugs want to be found”

They often announce themselves clearly 

if you make the effort to listen

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 24



Kivolowitz’s Maxim #2 Example
Student: My code crashes. Can you fix it?

Master: You get compiler warnings.

Student: They’re just warnings.

Master: Sigh

“Bugs want to be found”

They often announce themselves clearly 

if you make the effort to listen

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 25



Kivolowitz’s Maxim #2 Example
Student: It’s like this code isn’t executed!

Master: Have you proved it is executed?

Student: No

Master: Sigh

“Bugs want to be found”

They often announce themselves clearly 

if you make the effort to listen

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 26



Kivolowitz’s Maxim #2 Example
Student: It crashes after running for a while.

Master: Do you have a memory leak?

Student: A what now?

Master: Sigh

“Bugs want to be found”

Use leak detection tools.
Leave code running for ____ if warranted

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 27



Kivolowitz’s Maxim #2 Example
Student: After a while my code stops 

responding to me.
Master: Do you have an infinite loop?
Student: A what now?
Master: Sigh

“Bugs want to be found”

Not responding? Check CPU utilization.

First code to write in a loop is how it exits.

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 28



Kivolowitz’s Maxim #2 Example
Student: My code works great except on

this input.
Master: Have you single-stepped that input?
Student: Single… what?
Master: Sigh

“Bugs want to be found”

Your environment should be your friend.
Get to know it – USE IT!

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 29



Debugging tools and techniques

• Single step

• Breakpoints
• Always

• Conditional
• In debugger

• In code

• Call stack

• Re-execution of code

• Immediate modes

• Value inspection

• Value modification

• Console output
• Binary search

• Entry / exit

• assert() [discuss later]

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 30



Conan Doyle’s Law Example
Student: I looked everywhere.

Master: Did you check here?

Student: The bug can’t possibly be there.

Master: Sigh

“When you have eliminated the 
impossible, whatever remains, however 

improbable, must be the truth.”
3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 31



Kivolowitz Maxim #3 Example

“Write in small units. 
Test in small units.”

Student: It worked yesterday. Then I 
wrote 5000 lines of code. Now 
it doesn’t work. Can you fix it?

Master: Sigh

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 32



Kivolowitz Maxim #3 Example

Student: I must have a compiler / OS bug. 

Master: Have you written a minimal test
harness that manifests the bug?

Student: No.

Master: Sigh

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 33

A minimal test harness saves time (and face).

“Write in small units. Test in small units”



Kivolowitz Maxim #3 - Role of testing

Testing can only prove the presence 
of bugs, not their absence.

Edsger W. Dijkstra

Beware of bugs in the above code; I have

only proved it correct, not tried it.

Donald Knuth

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 34



Maxim #4 - Defensive programming example

Student: I commented like you told me.

// Increment j

Master: Sigh

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 35

Comment your thought process.
Not minutia.



Student: I commented like you told me.

// Increment j

Master: Sigh

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 36

When commenting, think of the next
person to read your code.

It might be you.

Maxim #4 - Defensive programming example



Student: My code doesn’t work.

Master: And there is no way it ever would.

Did you test it before you wrote it?

Student: Wait… What?

Master: Sigh

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 37

Writing comments before you write your code is 

like a one-person code review.

Maxim #4 - Defensive programming example



Student: My code doesn’t work.

Master: Did you try ____ approach?

Student: I don’t remember.

Master: Sigh.

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 38

Comment what didn’t work
so you don’t try it again.

Scientific method learns from history. Preserve it.

Maxim #4 and Scientific Method



Student: My code doesn’t work.

Master: What does variable ineedsleep
do?

Student: I don’t remember. I was tired.

Master: Sigh

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 39

descriptive_variable_names_really_help
Keystrokes are finite. Debugging time isn’t.

Maxim #4 - Defensive programming example



Newlines are free. Resist temptation for 
multiple statements on one line.

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 40

Student: ____; ____; ____; ____;

Master: What’s that in the middle?

Student: Where?

Master: Sigh

Maxim #4 - Defensive programming example



Use side effects with caution
(Do this and be despised by your peers)

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 41

Student: __ += __ ? (__ = --__ , __) : __ = __;

Master: What’s that in the middle?

Student: Where?

Master: Sigh

Maxim #4 - Defensive programming example



Cohen’s Law, Defensive programming and
Doyle’s Law

If you “know” a condition to be true, assert() it!

Stops a cascade in its tracks

Eliminates the impossible and identifies the improbable

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 42

Student: I looked everywhere.

Master: Did you check here?

Student: The bug can’t possibly be there.

Master: Sigh.



Cohen’s Law, Defensive programming and
Doyle’s Law

assert enforces “contracts”

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 43

#include <assert.h>

assert(condition I know to be true);



Defensive programming and Doyle’s Law

Code abstraction is actually a defensive technique

Code in one place, test in one place, fix in one place

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 44

Student: It can’t be there. I pasted that code from 
over there.

Master: Really? This is different from that.
Student: Oh yeeaahhhh, I fixed a bug over there.
Master: Sigh.



Defensive programming and Doyle’s Law

Always code the “default” case
Always code the “impossible else”

(tell Ben Liblit’s story)

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 45

Student: foo has to be one of these values.

Master: And if it isn’t?

Student: That’s impossible.

Master: Sigh.



Student: My code doesn’t work.

Master: Wouldn’t ____ approach be more likely 
to work?

Student: I tried that, it didn’t. I deleted it.

Master: Sigh.

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 46

#ifdef and source code control
Scientific method learns from history. Preserve it.

Maxim #4 and Scientific Method



Maxim #4 - Defensive programming example

Return values are meant to be checked

Student: My code doesn’t work.
Can you fix it? 

Master: Are you checking return values?
Student: No.
Master: Sigh.

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 47



Maxim #4 - Defensive programming example

Use exceptions
(when performance requirements allow)

Student: My code doesn’t work.
Can you fix it? 

Master: Are you checking return values?
Student: That makes my code look ugly.
Master: Sigh.

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 48



A framework vetted by thousands of 
programmers is probably better than yours

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 49

Student: I wrote my own ________.

Master: Why didn’t you use _____ or STL?

Student: I wanted to write my own.

Master: Sigh.

Maxim #4 - Defensive programming example



One last dialog

Student: My code crashes every time 
it gets here!

Master: May you always be so fortunate.

Student: Wait. What?

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 50



Summary

Debugging as art: Skill grows over time.
Debugging as science: Every bug can be 

found.

We all write buggy code.
No! to desperation. Yes! to challenges.

Enjoy the craft.

3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz 51


