Emacs or Vi

9 things your editor says about you!
You won’t believe number 7!

Discourses and Dialogs
on Debugging

Perry Kivolowitz

On tap tonight:

Part 1 Discourses
Rules, that if followed, will change your life
Part 2 Dialogs

Real world applications of the discourses
Every dialog actually happened*

As we talk, something you might think about:

How does this relate to each method, maxim,
corollary or dialog?

A (Partial) Bug Taxonomy

Algorithmic / Honest Dumb S*A!
Data Structure Mistakes Mistakes

Part 1 - Discourses

Motivation

We all write buggy code

Few of us are
taught how to debug

Some say debugging CANNOT
be taught

“Debugging is an art”
“Either you get it or you don’t”

The thesis of this talk is:

debugging is based in
science

(and science can be taught)

The Science of Debugging

The
Scientific
Method

and also...

Kivolowitz Corollary
Kivolowitz’s Maxim 1
Maxwell Cohen’s Law
Kivolowitz’s Maxim 2
Conan Doyle’s Law
Kivolowitz’s Maxim 3
Kivolowitz’s Maxim 4

Most Common Debugging Algorithm

Program doesn’t
work

A 4

Make a change

Does
program
work?

The Scientific Method

|

Observe / Formulate Test

Gather Data hypothesis hypothesis

Debugging should be methodical
not knee-jerk or reactionary

Kivolowitz Corollary

“A fix is not a fix until you
completely understand
why it is a fix”

What else is wrong with this?

Program doesn’t
work

A 4

Make change

Does
program
work?

Kivolowitz Maxim #1

“Debugging is about the
elimination of unknowns,

not their introduction”

Kivolowitz Maxim #1

If you make a Else, you are
change with no chasing a
beneficial moving target

result, back it
*unless you are certain you’re

k
OUt fixing a different bug

Maxwell (Mickey) Cohen’s Law

“Where there is one,
there are likely many”

Always be mindful that you may be seeing a

cascade of errors

(Note to self: Describe how debugging is like a train wreck)

(Note to self: Describe how debugging is different from looking for your phone)

Kivolowitz’s Maxim #2

“Bugs want to be found”
They often announce themselves clearly

if you make the effort to listen

v

Observe / Formulate '
> —>
Gather Data hypothesis Test hypothesis

Conan Doyle’s Law

“When you have eliminated the
impossible, whatever remains,

however improbable, must be
the truth.”

The Sign of Four, 1890

Kivolowitz Maxim #3

”\Nrite in small unitS.
Test in sman units.”

Kivolowitz Maxim #4

“Always play defense”

“Extra work™ is finite.
Debugging time, not so much.

Part 2 - Dia\ogs (all actually happened)

disneyscreencaps.com

http://images6.fanpop.com/image/photos/33100000/Kung-Fu-Panda-3-random-33170400-1920-810.jpg
3/29/2016 Discourses and Dialogs on Debugging - Kivolowitz

Kivolowitz Corollary Example

Student: My code crashed. | added a
print out. Now it doesn’t crash.
| fixed it, right?

Master: Sigh

No understanding of the “fix”

Kivolowitz's Maxim #2 Example

Student: | get “Seg fault. Core dumped.”
Can you help me?

Master: What do you think the problem is?
Student: How should | know? That’s all it says.
Master: Sigh.

“Bugs want to be found”

They often announce themselves clearly
if you make the effort to listen

Kivolowitz's Maxim #2 Example

Student: | have an error. Can you fix it?
Master: What does the error say?
Student: | didn’t read it. | just clicked “OK”
Master: Sigh

“Bugs want to be found”

They often announce themselves clearly
if you make the effort to listen

Kivolowitz's Maxim #2 Example

Student: My code crashes. Can you fix it?
Master: You get compiler warnings.
Student: They’re just warnings.

Master: Sigh

“Bugs want to be found”

They often announce themselves clearly
if you make the effort to listen

Kivolowitz's Maxim #2 Example

Student: It’s like this code isn’t executed!

Master: Have you proved it is executed?
Student: No
Master: Sigh

“Bugs want to be found”

They often announce themselves clearly
if you make the effort to listen

Kivolowitz's Maxim #2 Example

Student: It crashes after running for a while.
Master: Do you have a memory leak?
Student: A what now?

Master: Sigh

“Bugs want to be found”
Use leak detection tools.

Leave code running for if warranted

Kivolowitz's Maxim #2 Example

Student: After a while my code stops
responding to me.

Master: Do you have an infinite loop?
Student: A what now?
Master: Sigh

“Bugs want to be found”

Not responding? Check CPU utilization.
First code to write in a loop is how it exits.

Kivolowitz's Maxim #2 Example

Student: My code works great except on
this input.
Master: Have you single-stepped that input?
Student: Single... what?
Master: Sigh

“Bugs want to be found”
Your environment should be your friend.

Get to know it — USE IT!

Debugging tools and techniques

* Single step * Value inspection
* Breakpoints * Value modification
* Always * Console output

e Conditional
* In debugger
* |n code

e Call stack
* Re-execution of code

* Binary search
* Entry / exit

¢ asse rt () [discuss later]

* Immediate modes

Conan Doyle’s Law Example

Student: | looked everywhere.
Master: Did you check here?

Student: The bug can’t possibly be there.
Master: Sigh

“When you have eliminated the
impossible, whatever remains, however
improbable, must be the truth.”

Kivolowitz Maxim #3 Example

Student: It worked yesterday. Then |
wrote 5000 lines of code. Now
it doesn’t work. Can you fix it?

Master: Sigh

“Write in small units.
Test in small units.”

Kivolowitz Maxim #3 Example

Student: | must have a compiler / OS bug.

Master: Have you written a minimal test
narness that manifests the bug?

Student: No.
Master: Sigh

A minimal test harness saves time (and face).
“Write in small units. Test in small units”

Kivolowitz Maxim #3 - Role of testing

Testing can only prove the presence
of bugs, not their absence.

Edsger W. Dijkstra

Beware of bugs in the above code; | have
only proved it correct, not tried it.
Donald Knuth

Maxim #4 - Defensive programming example

Student: | commented like you told me.
// Increment j
Master: Sigh

Commentyour thought process.
Not minutia.

Maxim #4 - Defensive programming example

Student: | commented like you told me.
// Increment j
Master: Sigh

When commenting, think of the next

person to read your code.
It might be you.

Maxim #4 - Defensive programming example

Student: My code doesn’t work.

Master: And there is no way it ever would.
Did you test it before you wrote it?

Student: Wait... What?

Master: Sigh

Writing comments before you write your code is
like a one-person code review.

Maxim #4 and Scientific Method

Student: My code doesn’t work.

Master: Did you try approach?

Student: | don’t remember.
Master: Sigh.

Comment what didn’t work
so you don’t try it again.
Scientific method learns from history. Preserve it.

Maxim #4 - Defensive programming example

Student: My code doesn’t work.
Master: What does variable 1needsleep

do?
Student: |don’t remember. | was tired.
Master: Sigh

descriptive variable names really help
Keystrokes are finite. Debugging time isn’t.

Maxim #4 - Defensive programming example

Student: s
Master: What’s that in the middle?
Student: Where?

Master: Sigh

—

—_—))

Newlines are free. Resist temptation for
multiple statements on one line.

Maxim #4 - Defensive programming example

Student: _ += _ ? (= --__ ,) : = _
Master: What’s that in the middle?

Student: Where?

Master: Sigh

Use side effects with caution
(Do this and be despised by your peers)

Cohen’s Law, Defensive programming and
Doyle’s Law

Student: |looked everywhere.
Master: Did you check here?

Student: The bug can’t possibly be there.
Master: Sigh.

If you “know” a condition to be true, assert() it!
Stops a cascade in its tracks
Eliminates the impossible and identifies the improbable

Cohen’s Law, Defensive programming and
Doyle’s Law

#include <assert.h>

assert(condition I know to be true);

assert enforces “contracts”

Defensive programming and Doyle’s Law

Student: It can’t be there. | pasted that code from
over there.

Master: Really? This is different from that.
Student: Oh yeeaahhhh, | fixed a bug over there.
Master: Sigh.

Code abstraction is actually a defensive technique
Code in one place, test in one place, fix in one place

Defensive programming and Doyle’s Law

Student: fo00 has to be one of these values.
Master: And ifitisn’t?

Student: That’s impossible.

Master: Sigh.

Always code the “default” case

Always code the “impossible else”
(tell Ben Liblit’s story)

Maxim #4 and Scientific Method

Student: My code doesn’t work.

Master: Wouldn’t approach be more likely
to work?
Student: | tried that, it didn’t. | deleted it.

Master: Sigh.

#tifdef and source code control
Scientific method learns from history. Preserve it.

Maxim #4 - Defensive programming example

Student: My code doesn’t work.
Can you fix it?
Master: Are you checking return values?
Student: No.
Master: Sigh.

Return values are meant to be checked

Maxim #4 - Defensive programming example

Student: My code doesn’t work.

Can you fix it?
Master: Are you checking return values?
Student: That makes my code look ugly.
Master: Sigh.

Use exceptions
(when performance requirements allow)

Maxim #4 - Defensive programming example

Student: | wrote my own .
Master: Why didn’t you use or STL?

Student: | wanted to write my own.
Master: Sigh.

A framework vetted by thousands of
programmers is probably better than yours

One last dialog

Student: My code crashes every time
it gets here!
Master: May you always be so fortunate.

Student: Wait. What?

summary

Debugging as art: Skill grows over time.

Debugging as science: Every bug can be
found.

We all write buggy code.
No! to desperation. Yes! to challenges.
Enjoy the craft.

