From 7f184be2999617aad64f672a3badb83666bc3c73 Mon Sep 17 00:00:00 2001 From: vanithakattumuri Date: Fri, 31 May 2024 17:41:49 +0900 Subject: [PATCH] #2 updated the readtheDocs and CoMinePlus.py documentation --- PAMI/correlatedPattern/basic/CoMine.py | 36 ++++++- PAMI/correlatedPattern/basic/CoMinePlus.py | 101 +++++++++++------- .../PAMI.correlatedPattern.basic.doctree | Bin 119992 -> 129444 bytes .../correlatedPatternBasicCoMine.doctree | Bin 60904 -> 64226 bytes .../correlatedPatternBasicCoMinePlus.doctree | Bin 58575 -> 64674 bytes .../_build/doctrees/environment.pickle | Bin 8173996 -> 8176185 bytes .../html/PAMI.correlatedPattern.basic.html | 94 ++++++++++------ .../PAMI/correlatedPattern/basic/CoMine.html | 36 ++++++- .../correlatedPattern/basic/CoMinePlus.html | 101 +++++++++++------- .../html/correlatedPatternBasicCoMine.html | 16 ++- .../correlatedPatternBasicCoMinePlus.html | 78 ++++++++------ finalSphinxDocs/_build/html/searchindex.js | 2 +- 12 files changed, 317 insertions(+), 147 deletions(-) diff --git a/PAMI/correlatedPattern/basic/CoMine.py b/PAMI/correlatedPattern/basic/CoMine.py index 7d7023c7..d4085b59 100644 --- a/PAMI/correlatedPattern/basic/CoMine.py +++ b/PAMI/correlatedPattern/basic/CoMine.py @@ -300,13 +300,43 @@ def startMine(self) -> None: self.mine() def _maxSup(self, itemSet, item): + """ + Calculate the maximum support value for a given itemSet and item. + + :param itemSet: A set of items to compare. + :type itemSet: list or set + :param item: An individual item to compare. + :type item: Any + :return: The maximum support value from the itemSet and the individual item. + :rtype: float or int + """ sups = [self._mapSupport[i] for i in itemSet] + [self._mapSupport[item]] return max(sups) def _allConf(self, itemSet): + """ + Calculate the all-confidence value for a given itemSet. + + :param itemSet: A set of items for which to calculate the all-confidence. + :type itemSet: list or set + :return: The all-confidence value for the itemSet. + :rtype: float + """ return self._finalPatterns[itemSet] / max([self._mapSupport[i] for i in itemSet]) def recursive(self, item, nodes, root): + """ + Recursively build the tree structure for itemsets and find patterns that meet + the minimum support and all-confidence thresholds. + + :param item: The current item being processed. + :type item: Any + :param nodes: The list of nodes to be processed. + :type nodes: list of _Node + :param root: The root node of the current tree. + :type root: _Node + :return: None + """ if root.item is None: newRoot = _Node([item], 0, None) @@ -327,7 +357,7 @@ def recursive(self, item, nodes, root): itemCounts = {k:v for k, v in itemCounts.items() if v >= self._minSup} if len(itemCounts) == 0: return - + itemNodes = {} for transaction, count in transactions: transaction = [i for i in transaction if i in itemCounts] @@ -340,8 +370,8 @@ def recursive(self, item, nodes, root): itemNodes[item][0].add(node) itemNodes[item][1] += count - itemNodes = {k:v for k, v in sorted(itemNodes.items(), key=lambda x: x[1][1], reverse=True)} - + itemNodes = {k:v for k, v in sorted(itemNodes.items(), key=lambda x: x[1][1], reverse=True)} + for item in itemCounts: conf = itemNodes[item][1] / self._maxSup(newRoot.item, item) diff --git a/PAMI/correlatedPattern/basic/CoMinePlus.py b/PAMI/correlatedPattern/basic/CoMinePlus.py index ef5bb10d..2cf0af86 100644 --- a/PAMI/correlatedPattern/basic/CoMinePlus.py +++ b/PAMI/correlatedPattern/basic/CoMinePlus.py @@ -1,9 +1,8 @@ -# CoMine is one of the fundamental algorithm to discover correlated patterns in a transactional database. +# CoMinePlus is one of the fundamental algorithm to discover correlated patterns in a transactional database. # # **Importing this algorithm into a python program** -# -------------------------------------------------------- # -# from PAMI.correlatedPattern.basic import CoMine as alg +# from PAMI.correlatedPattern.basic import CoMinePlus as alg # # iFile = 'sampleTDB.txt' # @@ -11,13 +10,13 @@ # # minAllConf = 0.2 # can be specified between 0 and 1 # -# obj = alg.CoMine(iFile, minSup, minAllConf, sep) +# obj = alg.CoMinePlus(iFile, minSup, minAllConf, sep) # # obj.mine() # -# Rules = obj.getPatterns() +# frequentPatterns = obj.getPatterns() # -# print("Total number of Patterns:", len(Patterns)) +# print("Total number of Patterns:", len(frequentPatterns)) # # obj.save(oFile) # @@ -119,30 +118,30 @@ class CoMine(_ab._correlatedPatterns): About this algorithm ==================== - :**Description**: CoMine is one of the fundamental algorithm to discover correlated patterns in a transactional database. It is based on the traditional FP-Growth algorithm. This algorithm uses depth-first search technique to find all correlated patterns in a transactional database. + :**Description**: CoMinePlus is one of the fundamental algorithm to discover correlated patterns in a transactional database. It is based on the traditional FP-Growth algorithm. This algorithm uses depth-first search technique to find all correlated patterns in a transactional database. :**Reference**: Lee, Y.K., Kim, W.Y., Cao, D., Han, J. (2003). CoMine: efficient mining of correlated patterns. In ICDM (pp. 581–584). - :**parameters**: **iFile** (*str*) -- **Name of the Input file to mine complete set of correlated patterns** - **oFile** (*str*) -- **Name of the output file to store complete set of correlated patterns** - **minSup** (*int or float or str*) -- **The user can specify minSup either in count or proportion of database size. If the program detects the data type of minSup is integer, then it treats minSup is expressed in count.** - **minAllConf** (*float*) -- **The user can specify minAllConf values within the range (0, 1).** - **sep** (*str*) -- **This variable is used to distinguish items from one another in a transaction. The default seperator is tab space. However, the users can override their default separator.** - - :**Attributes**: **memoryUSS** (*float*) -- **To store the total amount of USS memory consumed by the program** - **memoryRSS** (*float*) -- **To store the total amount of RSS memory consumed by the program** - **startTime** (*float*) -- **To record the start time of the mining process** - **endTime** (*float*) -- **To record the completion time of the mining process** - **minSup** (*int*) -- **The user given minSup** - **minAllConf** (*float*) -- **The user given minimum all confidence Ratio(should be in range of 0 to 1)** - **Database** (*list*) -- **To store the transactions of a database in list** - **mapSupport** (*Dictionary*) -- **To maintain the information of item and their frequency** - **lno** (*int*) -- **it represents the total no of transactions** - **tree** (*class*) -- **it represents the Tree class** - **itemSetCount** (*int*) -- **it represents the total no of patterns** - **finalPatterns** (*dict*) -- **it represents to store the patterns** - **itemSetBuffer** (*list*) -- **it represents the store the items in mining** - **maxPatternLength** (*int*) -- **it represents the constraint for pattern length** + :**parameters**: - **iFile** (*str*) -- *Name of the Input file to mine complete set of correlated patterns.* + - **oFile** (*str*) -- *Name of the output file to store complete set of correlated patterns.* + - **minSup** (*int or float or str*) -- *The user can specify minSup either in count or proportion of database size. If the program detects the data type of minSup is integer, then it treats minSup is expressed in count.* + - **minAllConf** (*float*) -- *The user can specify minAllConf values within the range (0, 1).* + - **sep** (*str*) -- *This variable is used to distinguish items from one another in a transaction. The default seperator is tab space. However, the users can override their default separator.* + + :**Attributes**: - **memoryUSS** (*float*) -- *To store the total amount of USS memory consumed by the program.* + - **memoryRSS** (*float*) -- *To store the total amount of RSS memory consumed by the program.* + - **startTime** (*float*) -- *To record the start time of the mining process.* + - **endTime** (*float*) -- *To record the completion time of the mining process.* + - **minSup** (*int*) -- *The user given minSup.* + - **minAllConf** (*float*) -- *The user given minimum all confidence Ratio(should be in range of 0 to 1).* + - **Database** (*list*) -- *To store the transactions of a database in list.* + - **mapSupport** (*Dictionary*) -- *To maintain the information of item and their frequency.* + - **lno** (*int*) -- *it represents the total no of transactions.* + - **tree** (*class*) -- *it represents the Tree class.* + - **itemSetCount** (*int*) -- *it represents the total no of patterns.* + - **finalPatterns** (*dict*) -- *it represents to store the patterns.* + - **itemSetBuffer** (*list*) -- *it represents the store the items in mining.* + - **maxPatternLength** (*int*) -- *it represents the constraint for pattern length.* Execution methods ================= @@ -153,11 +152,11 @@ class CoMine(_ab._correlatedPatterns): Format: - (.venv) $ python3 CoMine.py + (.venv) $ python3 CoMinePlus.py Example Usage: - (.venv) $ python3 CoMine.py sampleTDB.txt output.txt 0.25 0.2 + (.venv) $ python3 CoMinePlus.py sampleTDB.txt output.txt 0.25 0.2 .. note:: minSup can be specified in support count or a value between 0 and 1. @@ -165,7 +164,7 @@ class CoMine(_ab._correlatedPatterns): .. code-block:: python - from PAMI.correlatedPattern.basic import CoMine as alg + from PAMI.correlatedPattern.basic import CoMinePlus as alg iFile = 'sampleTDB.txt' @@ -173,13 +172,13 @@ class CoMine(_ab._correlatedPatterns): minAllConf = 0.2 # can be specified between 0 and 1 - obj = alg.CoMine(iFile, minSup, minAllConf,sep) + obj = alg.CoMinePlus(iFile, minSup, minAllConf,sep) obj.mine() - patterns = obj.getPatterns() + frequentPatterns = obj.getPatterns() - print("Total number of Patterns:", len(patterns)) + print("Total number of Patterns:", len(frequentPatterns)) obj.savePatterns(oFile) @@ -200,7 +199,7 @@ class CoMine(_ab._correlatedPatterns): Credits ======= - The complete program was written by B.Sai Chitra under the supervision of Professor Rage Uday Kiran. + The complete program was written by B.Sai Chitra and revised by Tarun Sreepads under the supervision of Professor Rage Uday Kiran. """ @@ -294,20 +293,46 @@ def _convert(self, value: Union[int, float, str]) -> None: @deprecated("It is recommended to use 'mine()' instead of 'startMine()' for mining process. Starting from January 2025, 'startMine()' will be completely terminated.") def startMine(self) -> None: - """ - main method to start - """ self.mine() def _maxSup(self, itemSet, item): + """ + Calculate the maximum support value for a given itemSet and item. + + :param itemSet: A set of items to compare. + :type itemSet: list or set + :param item: An individual item to compare. + :type item: Any + :return: The maximum support value from the itemSet and the individual item. + :rtype: float or int + """ sups = [self._mapSupport[i] for i in itemSet] + [self._mapSupport[item]] return max(sups) def _allConf(self, itemSet): + """ + Calculate the all-confidence value for a given itemSet. + + :param itemSet: A set of items for which to calculate the all-confidence. + :type itemSet: list or set + :return: The all-confidence value for the itemSet. + :rtype: float + """ return self._finalPatterns[itemSet] / max([self._mapSupport[i] for i in itemSet]) def recursive(self, item, nodes, root): - + """ + Recursively build the tree structure for itemsets and find patterns that meet + the minimum support and all-confidence thresholds. + + :param item: The current item being processed. + :type item: Any + :param nodes: The list of nodes to be processed. + :type nodes: list of _Node + :param root: The root node of the current tree. + :type root: _Node + :return: None + """ newRoot = _Node(root.item + [item], 0, None) diff --git a/finalSphinxDocs/_build/doctrees/PAMI.correlatedPattern.basic.doctree b/finalSphinxDocs/_build/doctrees/PAMI.correlatedPattern.basic.doctree index 330a6927361a67135a44769c3f4008ee0e0be46b..ce1538c832410602b0d6e5f0f5a7405977fb63ea 100644 GIT binary patch delta 13676 zcmeHOd3;nww&oOpPKXIG?6e^XS=a=^BAaB` zDo`q-vWE-yRx}>hoT~k?$ElTQaGu-aF z4%Bu=d1d*G`Wd#``s(VcnmYM>Nkv6=X;tO)@-la2DZ+bd+_j#nin4~1f6B~T_VnXr?>pIfvncp2ZL9^<#?7(X?q(KMl19r=Ra8 z{?Vz_fhGb?^tAOP6?&|N@~M<-dgG7MiO<~LnXhX!u^=+c&LeV7A%Lj$)4aWd`1(cG zVSOsA%G|X!M@4yUovmuR?T$jc_vxmWs)y>TP&+^2q#_RQ4G74SjyYhmzkU;xeiKkX zdp~a~KI2r8ZPys4!%8w;*H)#5!ZZC9u9OP%br-{edLyPNXojr5wfO7WQcu9Au9SKL zNj-?_T1jmusdY<#K>))@bXV7U{4Z$TuUk!3Rh`WdD6uRfcv7GGuAZyZ|5eXa5{rgy zkijEP<>(o@Ln*w26wV1$xLts<+MQwSL4QSGxSFCbUzegguBzw`sVLQ5P0?%kYZ!^{ z>56XkDGIz6v&S+iLGB;3qcq#7N5CJVID!6^#2KoX0L z#9mT7j9Ljeb|CWu9Gl3(~fk9i`+`mNw%W%8P_ zVMWjlMTnt<@s{$IkA|{)BYDZIoGq7+q;uO#!D0T-M2eQ@U;wXv?MD9iOTpsAZm<$j z%gQ)5Dw3byb!*&Hh=@aqX90R!O6XQOU=~L5sk>d`@jdV`I}j-c)6MU#V$Wk+Z5(aU zlzN*QQCl2Go&4haUD~Nm-Ov)lN1wE?&m*}xv$LLerz2@(WTzv=+9$vsL|vPoJ(s6r$OnD49InqO|6|EFgtuZqExVBvs__OUgXG zJ%&X@Q9eXRAg;=XD*7e!p(;u|^$L-Wn&G}O!z$y-3B=ZyV64|mSzWc~>zVM@A zVav!O1t}0~g@t!{wJZEi8f7boUgE?qu=8~vC$eo(lsGCI0$Lf_aK|TEgiVRi5G51g z7{cp`Ac#sO!jdRVgoI5SVI(Fvsk3e$M29Ul9(XT`zx-)-*pdM23J%>E{SB5VPtVgY z>FIf&r|sK%7e}Em7IC5gBE;y2pgmu6x?l8VU#p*dt$vEyd-`-f;2ituKb*WDGqv@0 zu<$W|eV*av@|ksf^Jn|;r%0IyF23;dv#h^`d(U)*VSMpFxzztdGT~>m&=m`HMX8%DT7bwXS>pi;J)b>#TfHLNuFi;h)B3 zz#1ypa6#U$+mrzh;(d3j-1FsFXhw^N@Z;uuKL4u%w#UL>{wf1r)m!Yb2$%u!Jp9Lw z(1K6SW``~Od~6&&xHT*TJ~JNV1pTdq)>}1yZDA0N-G4AY5kA7NY4tZ5%o5GF#^k{s z^xXyXH3edV=Af_qOvl?HkDvd(JL?inF0camFx?>w8y(HToJV&(&Er@JF^uP*m|Z%< zlxXsT)vHERqLmL1b?TV7G+I|utvO0O$s5;w-$woupN@gSVv!e8{BY1oCUhK0zEhDa z)C3+eKZ5PmeKhkYSEROT{boSx_xxK+UD;oZ)?E_(xk;t(e624`jpUzv6HQ*XoXOy} zKLoKk7Vi9R60^j}!Pp!lrAmzy>X%WdF>^JlBYt!=>^-VvAAgQ{*RuXK;8sIPq{ zBMA7hw5ag#R>kdrf0J&yqPQc#IE5TB*A!N$sDp6m8BKmTS>ITkG%`CTdHt&LV}&^h z2d_V6W$Hr)v|Y@g99wN0=hjyFI3PoT0v8lg3jg#T`qXofPT;)noT&s zZ_1hiIsE>t+aYJ~cUdOJ-yLFyiM$|d0^e0)VZTS{B8ylN0jc6f2lQb3u>fasyyQ-? z@&Vlv#8C$VEE;Qq{bI2b;#E~53=vz+Feo&~r7zY8iIy-J2svVa69&*z6e3NGV6^yI zaz?&ySe`~J<@<);8^C0~C2OLz=|^SL&Q6fZ+Qf;H7@XrTE3@#TnZ-KA@s=C&;IcAG zRwUxoP>?&s&!!*}qU(8@ zP`ZOcm*t6j?fvcocF|X1px=P#|KX30Vp{o{3X6ZhpHSKRAcoGrV^A)r?7dY$56ms> zsUfy_|1MEma50GG$4gBX4$Wfy<5d>ighdzuyl9#f#ZwYc0coPj`Pvc5yz5XWKRawR zD>WW4tPe*Edc|vT2*#PZW%yFopwoqj-43v`do<3)iW4sy=OzV-1;nY!kyEf;MuoxE z5xExlbG_$!DB`qQ-Ys%eTs@%A@St1 zaT>)KMS+*xDZQCn!QdU?%fdu{XzU<1+o&+`J0bokfBenk)-W#pklo`xjbo$Yz>DU_ z9)*SlM5D_2^zo0e14e~G6NxnI{b_dpW+pqOXmW3LvOjAyA1E5UAPs-{&SdtDg2NKx z(JG22%w~`%b)*V|CklDq_ve{<+hUfKsP*@v%$}%1lZ@pU8oUtM+KE}LyTZg0 zBGW1ylUA^yMukCUL9&EIzt{|$Je^HbWUoz5W_M~lWr_zc6rZ^Y3h#(R7AEpjQ)aN$ zMuou@bKe0I11k;AIOOb- z-;G9jw_D? zIBXCdR77|oE#EP4u!KltMItY`Yc_lqSZRWjGX}Fbt0*4`=`6vjdPs~_31+OoY}ke#uCcJjr}#IODM7Tj;}KQU)Q`iJ z*>Lsp3{f!{LRgMfJaQE5;@n8MLF^n13HlUfm&oEj2SX(rU=@9bz-?@x6?Z*w8$hl8 zI^z@l$fDH95S+fq5WJ{&`NCKcJ`_f&9&4KY(IFO?|5Dgv?F$}s%yTwB{ z!vo5LhWhM~={4?|^|)I-h8NWiG4A$_84d~X@3o5pacCs^Ut##4k)}D;)z24Pr!B-K zxW15YTq2Thf!rke+)(45RgSymwrO*1#U(ZMm9}xXKUrN;Rx3u|0zHDYF9_G$pg)^0 z)s57Q81H8UKfJb&SbZCG;5+BK#EG2{DxTT|`QlI^zC8rT(iTA<5jz@2v4^d+?H0V* zsv;qZ?tt~;p<-w+`j3G=VR|_(zn?(16~ov8tN)8#3cYg@cl5pa z{Z?ZSCIE|Go$eOavG`)M*(%?gHd*n#sW_G1m(-inX|zdyb9#d8Q*Tc9S;Z$~;YV?C z1|-uqj74-Th6mV}h_a^y2eg9O;1uf?L1;*uWNai2r#-nR7u^j}vX*y!JQU0VX5p@4 zn`F6nb=k_-?<;~_zt%av*0%kVU?|nNdH*$$@n_K%s0QxKR93Q&A zKT3Ae&e(mL;L1MQ87oefJ7dL2tM-fL(J#4QG%s21j8QKyIX;L2+oVNt1#mI53X(W( z(*&<2i?KUV5Cwm0d7m)71X;Es{EA`l6#3DE9|}*QZ3Npj!uL42kt}R0p<^JHFMMWE zI|X-z*Cxvt-kaPihVP?EdJMOcc`AmD$rQsrxa>?2TgE|m(R@41gwrZI>)s0$5yh}3 zZ2Y)!Os)yVcFINVjl&p>$!*>010gUG(fqKy>UMzTu{YN$CycDPMOb~w_i z$X3!X8QDr(KxB`X!3Hg|F7aD8Jj7PmCV@uhk(RvB_<#{WiIQ^N5YMtrB=>Qv`cMg5VZcu$Wp7_Ui=tz#k}{8v)U7 zoLO#kT?Y_tLS52FS5yRBx$v9nEf+_zLALdI^1;n zHifz@3$?3G7i^cE4zm`!tC(L8qgkR|_SHDM?5n|c*`wOw1^a4mty#~2W)ZWYD=V~% z!%LuyZ{F4^;qPeEReS6R0#!YBn8NSr!}s-AG?9AjqJU0CJ$ABP_Snftu6pbe`Xzhp z5_>?8b3q9(Lc&cG+WvU4+~Xr^5s}pnB|XM8zKa&F^ku`|VoRjJQ^4pS2q^ zXaJUq*r5f`iwV1o*amy6h<$|I`sllx>`)PFvSY*^W@qg(SW_EdJ3E627_6T))i2S* zNnSL#`ms$cB9-CGG?4U>$|% z!cOQWo?3>9w>DLVXmzUSyByvRTTQkr>@5h2i=4+(^-g^~v*a!^UYjKYuw;mM`QFZK zbt**&mJ8Sc*+;1|N;B^T!9GM3jMBH7=I5zF zk{4~J8LqijJ=0W=qSeg@2zu3M zb(5fS?bO8&-vhWNgap_vr2m1LezRtni*Jn4ZS{{|zu3YnLF$&h)|0=m^tYvCS> z-`Dd-h^~|HlS$P&{4%!d#WHqJnvC6|w7@!1xB+eoTSRUt$_>b+J`S?2X&BAf*IMgr z(VU{SP5_STXjx5=!H|`{70yd*)zRKWUOkK($OaY01!?+ML-r1ugKt9fjmi^g@{8eu z0F&v9;aMzE@_b3Zq�Lc|znHQ<8Unn#kP*@9F~&-+p*91c{Uv)IyN8Nf$>2oC<4` z?vtZax-JK#(1T7q|B)zO-UWHr8i110eFM-9{($1db1V+E{jhWxblvr&p)p6HmvesWV~^AS?}9?srQMJg%u-t<;E=*%#LK0+;((9fll z(Eooz&UaWZ;DlU{3>sZ=f5==6_lSmvAv9RY)-3}wPaTyTk)g)SVJI+W-4V(<-%+_f zzxJq{|B0_TM>Ci^!~bANNrv1mE6I=tLtFu8zW$pNbn_I5c5Y;L1}3~ZH&QSkjrKn` zl1ul#uZ7q#^_SNYN}nrE(V;zfbYvh^s!aU%j?p2Eeh}$)GEN<%n}#ha!3tR{}{ex0ECqU_I9H@)Tl>Ih<6Ca}A9%0(3|gzMR3nQ|TVXr^38*`CD@)OnA>o$QrNIUBu{NwdC-y&$hN9fdtg zR;%ggc?_1excVfM7FX9=MEps@sQ1nQ9JNF~`%VT!OK5GiEwk0U*4|;vYtNGjYJlF6 zDHjm(XkI4=j^cHKoZxZqhq8_i-{76;P?D!13QCTK(^~n;^LaNp{DaFJ;izuiIb(FMVLt` z4wXr(HMds!yQL0jKIo8{biZo1Qg3Hu5~@R)v?Cy#v^<}V-eD$9C)4Fw&DZId%%s;H z0hx5^X|)u>HP0FmzZVv=kMUFn9^d@XLF*t{7QxqibYs|uWS~l#a|o{`%_Yb6B+b9j zS^WTC01hS1?~qF-%zKVj31fE}33HClhte-8;ZUcPP+!8IbOapxGllh{ z!$C?ZJb+hlC{aAVAL66O`Jjq@P{j%=z5_MUPPV%}$#m#HWlEF7n`znC;dzJ#R!Syk znLPAWeX3IwzW~oMyoSCA8{02HxW>*r{4Yu3)fZtOTkZGkN~dT(0NZa^iO(pT8mnlD zlrO|V7|wP&_kDU0&M@|&bKj9e@Rzm?&yj7<(9?rF1H2~M!w;fAQ>c6*{aHqTme8Lk z=+7SfQ{Na;Su(?2H@DhdOaEiRODL;6gH}m^RkHCa*>II?w5r~dLXSzF8$1I%*^2+(ue_M}k(zK*NjM6d zVebN`v^R)c7v>jXak7lGiW-_pGJ7eC-kkyMcB*!|pGI)=+abV8=RWsaa4)bbmmEtf zTq5BF%wY>$^zAR3;r;QWFp+s(qU1Qlv}ee4mrIy8v zuP{RXCX)pZl?iwky7nWB8r#=a)z_4|o8+0a#-Iv3`qng(DP)wi)dx!~v0`m2*Q2te zWacd8x;;xu7Gln#+`JAtO^{!pyF#J9iY`A(DKt`}%MYN-`(^Jm-L9k)W$!}qe*v}e BtGxgK delta 11847 zcmds7d3cmX(oZ#koI}o;Tr-oI91}9+f&>wGfP`?!DTpkfpb5%4&T@oHK)E7Se?Wh-iY9-r_;rEr@?CYGA1a9M1qcP`Tp8S-7hG^VRW=` zn4FQZJmzsdUw5W}6~^-NzjMf!9D}Dqlpo#thBc(2{)r^G!b^^fNE{g(6g17z)-hYk zL6PSE;7D=)$ZLDdaP2I$8dm)=W94ppGL1EZ*6reCv zY|a+*>rr=Oy;&q3hIF<9fo0`{Ehmx`=aN{yVz{0yi52aRft4>gW)Wq_z{Gc+$P0Z* zk!+B-x6Ok{VVMZ|ZJe9%z4Mpwpr9w58(ZLQIX!Q}JI7my+8F^#G9U7>9+q&+C+R4j zN1ZPuEeGC1+dY92(|N^~5H=mv&(CI4@lt2wQJd4*Syva%kaB58>;j+rm5Kcj%MTnZ zgi9XgGalvxpJtOCCT%Fx{pjO@+6@WpE$r}av*9g5DLrkB!#n9|W8C(}ug?M8!fQ{N zM8Q@tv-WX(;|B}*;(zziwMROaH+#mpy$M5k{h1nedz>iW4Vm1sH#Aa9$JaH?;D7tJ zEy+QLvYa@6>6PJ0Gf|Y=qdiHi@@RgXutq`(uQ=YC54hMB79fsX9z8Qem**vVG)}BN z4Y|5}A2=oZI~rEw8`Y&XbSJyCCJqO0atmi(9IxG==M`TY_^R)^88&%HH+x7o6KULb zxReF38#U*IIHGV!)Wz{pO>Z!~gk7oPFMnT$x7*8phzIsf9DnF?0bE8}GcVH{@P#-K z4z^bFkqsqGz07jsWmvK7c;1*~ zV_o9;`h-G!5-=ZZtS_>~&?DdZ(;e*Yc#NlEydfr=Kk;)38y+uypNm8lif4E{Z-~rh zbK-gZufuqLij_@3`fEu@$Jgs@tlCYcM6Xk#v2oq6`D_buEz@x1uePzb-5k8BERJve z%|N(hzw5Eznen{fw=&k?>cDB$fs2agw5tQxloo8P{Cy~Et#@_6?$#8pSA9s+%YNhI zwgni^1$yd)C|C%dUW6kB_M)eUP#WkCy)+Q=4F+h-$`s$=i4el)%rbhlNZzTwypOth zrQNC|tJZF)k*x57o6BPb?3~65qFXTB&ED24Kkn5_KOR*~d-clLpG#Gtd-WI%V;m<% z?Q_tDT?!2L8$BPA702hL7+|m19}Zce%GyCeygaEd#Pb!u6|raosev?6+XCoGs(}J* zQv(#+pH1!xJ>-l1`jKu+bThbxdzeOPn8fX2kPS|JV-hRFz~mvC;U*pz6iy8SH3tW^Fsp1_SB(oz1(V&B($Q{@ZnYI*xs0-gYAbiN*N1Ez=@_%_p6c-jG=Ok ztey=Ql!D^*VNoWhrui!aud>_4bMa_AQ-Yewk`oXCQSpk+`Z}W?IIw&vIMT)03I(?n z<*jf;41U$Xk`r)7$?^)OW+`|$8{m@JS1YsSh}{gkP}0@_c5&1QJzCi9;i4=N47{XW zZ-)2#5+RFQb6&@LzGbKhZ z>2WPbyzzf8n%Qf3)1WxW?tMrg-uQ1^&MqH(_Kl{ zd#J~9T{6gF9)!cTM{rP(d#Eh!jYg-QBWioWaJEnhwGk6WsbMLE*DR<}<0{4JFG`e{ zp&ff#@uYZon5B)23GGjBr||stIc$>_mc?I|FRa__`OmOh4ucPL~> z{OJO~c)G&?*3b+Xb#`(-59xS_eeW;+dKluPVoYhliPA5BYL2G91_I$xw95UEY}N zo8TLh)GT8%mtQTmL#0?31w~7O5p(Q3Dkop3)d>7f@TU7(0a`Jf?)r-wn_Q_ME?h~r0wb(GJ0{*uhAN(-dO=-xPY zwCfGG%BTGWm_#beQ+e(^k&^ThcB`^HjxX;SE}x(4X~O3$c^`g%s#xC+GUP*UuT)7` z=18JvQU4c|RMksIFRPsTd;uFc(4_CR`(dC(2yJ6Gi1M(3Nde z0}J0`BC>Gu@gF9lQoD3^1PXS9jIP1d(_NGlL3dG^0>w7sy*?lLOXL;36Zq7=X(G-D zd3@b~kQ5J}&(Np0Q#b|TnPwrR0jLGYSM=+y)8xk{SHO9+YU5HW9m6{f=)_tisTAR% z`vY|PB$*;^%6{$b6cQSAdHmb{c|5f;f@S%u3jpitpbo5)Kiwa|>fa1l9qlqOHMj}| zbcI3*Y_z|^0Kh1cFLt1c=>!q zX}%WTfBdyx5076M*#%-mbSEhK(`cP{S7(-)_CHLmTY(KI95I?-PfGuwZ zL<>Qbv!BL@#2sp}Dn+M!T_A8yyv z27rkX4DE=th~3nrk*}PLD;EvYw!%6L+G>%O2GD*zQl9DT1H%H41^|lAh6kDf6jO~_ zO=)oEuN(pST9`9Ex@GUnvfbaGt#Qq{JdwUX*&JMaKJKLEeN=89nx85{KCd4S1 zzz(H|kkK#_K2UP8&gWh*=OER4QbqhnVYoyh(e9NJe*B7)qoE%=lfu_eY7dQGRG(dk zDo?U*FP?lfm|d1g@_6y|y|0H`2{tUk!Ct>t{`7t5Vc5A$3$ zSsNlgc?kP~U1-G{=C)+BQSzp8cuKXGZ4L>mCJ`nlc8aRiTjxCjFR8|=r6FtsSuvYc z8)dC~IbQ09z~8;h`#sE-U3bGtYLFI@_4d+~S=j8Z&`8kk3j1-RXnGN=g!M}Pevf=A zha*NRhucZE+L1tTR1QCnhR1UFd6Fv2;gKf1leObW6BdNy(WxS47LHl@My>s zD~7wBYc+YC8^zyW*hObWF)mGoCh6NAL>|DmmK*rCn`j(?*-q}1_(*m8Hb(q36^n9K zlXS4r6v)92gyVK_Awg3PHk&*Sj^PEpQ^bF!!HY1JkmBf9o_>Z+LdodhMd~#5hnjfE!Z>G^m;PuF>+?C?k-PamcRji-|beXm`L`_1?!E%x4l``yP+R3n|bsv2G-up zFY&f8!Xs|@%?cT(6(S4g@UTaUN-I=Bzp*%~b7P!qAz`f@R%_p=3iBrQiuOPdcSB^d zm@yxsv2^NVi|iY#RAxA=)qrM5;ki#o!zqt6T%|66w40T7Q7cW^J-w@mpo$meO4`-wIe`Tp>|F%8 zOmCJ6AR0%GDxPaI{H#=O0?49~s}ex0StWpti{Su!B9*pL#o8tCG+Tf@*;LNfU{!~< zP*)*420RXQ3iwIuZf9Fk<^JPl(QYbcr~RX$B`7;MEBD#81~Dk1mRML`)GM>l2m~@fTBN#9t&0 zGUDSc?ud`KXd=E;T&RLq+$nzV3aEx$Q9Bz8nAsMwtQyWnW+S63_p-l)e<3RzY&|3?vKa%%h~k4*&3~+T&40K18^aHWWpY z7L~LSCb{seMY`}T$(1e)wYpsxYV~p9q}5QRT-aW8SOd2+tCjXxBTdMlWG-DM+C2b| zi#g9jxEPIFZaQz9Gv7*cHS1<=RvdS>dY4~5!pNsDGZRX~&F@5OAb;MEz})`KCy>gY z$yOPde87%pS%p=`<<<2d*m#tMak;>%;_^}AFcEBwOEG){EN3gN6qt-#2ru;I+h4q4r?Seh~pTLQZ79jjVi9Z+(&dE}Dc5EaER&)?Sh^Y3kfUlutkC+`=q;ql`0~?xb;Mr_rd6ke@v!DTbHr?k29j=3RsC z+ybLur7}`=8ZAFh>Z-lMU+@}fd-II6RbwO{fyzkl*W%`BwKCF^0gdztqHr7O1wy2Z zv|Jj=&X>OXIGiH`714*p0x@w5v<_7yXHo2?6p^(9dciM*I+xRO^G6b5a$=Wg_QBIH z5FwhL$42^|2u-Jf4nK<8C&A7xr_nbW-}*)fLt!*1m;2a+3|^G(Hh2fRlLqgQ?vqBA z?Sy5nnSe)qFbY4+P@n5Vu3x&yJAn(Mid`@f#!`cs_T^c5It?y68=cPKa8Im2d0J+w zmeA3t4r}(uc-4t`(PB4b;YX8)XoVtz(PGj|xZ#Wks3Q9zy(^wZiT#w^yT6IM!Tr+Z z2~XoS8=I$WovMiIZVY@c*BLS09`bbU0U(>Yn?D85m{u%7OuRqB1MqWeI`D1PKl z!)pVB>{oJu@u<$N=t zoRZ-Q^-AtkXKPBk zsL=XJ8p8{nJwv^8_KZ!nhz1XymElDlJj0@lr&kBHy^_)QDK)kaPH~=8><2yU zG#Q|ADDJ-S@iI*YFJ{Qe;6(y1CxhTjypsbhIMXNmp8HsaUmeC-B!F2o?QjJjB#Xv6 zST6RQfN1{do{qX?6yXYyoJ`MH>Ovgev2>#~Sw~T}8*FrX%~zgEco=h`;_4|pV33?C z11~-^P~ep#5_jO`5Gpm85;A?KhVcZgJ)X!gcxjxOYHmpI=?n$sWB5kdY60CzTP={b z3Ukd3hD@Aj>111i?wrp7vl6U;?ENm;Q0)=HJtDX=cU_$L{4+4H<8gIY@d~&cL~yQy zZ)-C}@fmoX;q}Ke@D$sVDV82Ec?e}?|vp}zz4_YM913;(7q z4VzFte(cnl6=SE+aULg0S>z~PBn2#z%!?%BBFVI9n!`$DQct9#*pVxhIC?uo;sxl% z%537^3-Ed76*}TdXH=azgn`a2DhzdWcbxvpZT#r!q!#!fj(!6cVqN!dSUi^~Xw+fR z@C%}&qkYacR70Ygp3^9c3-lLF#RaMqI5TMNN(+8xA}xVvndpqfsmV#}5a*NhN0Y6y z7lw_K62G&N{wTFM(v@Y_M$qjZ`f~$B=Mcc)GPJw+?F>|=Vp(!6Qn*l(9i0d1 z?@KM)mx?Wv*c_&%6S?*K&SL&q=-d+74`$X4xd@8^wuth5a!*r%lv1!8mr_B>c;!j~(5X`Q4v$9kV zZdJUYSy|L`=dbb*mT0&HG2NZVXz;e0GI84E`^MJDBUwv>$2~YbPjHoPV=AYyv|0ml+Kx1%0`P_I%i&|v*=IyIrNWoiorj_ Go&N<}=wGP- diff --git a/finalSphinxDocs/_build/doctrees/correlatedPatternBasicCoMine.doctree b/finalSphinxDocs/_build/doctrees/correlatedPatternBasicCoMine.doctree index 3e1c9611df85e69e1ae7f9440ae62eb4768fc732..db0ecac07bead9f3f798159ed2b38a358efd8c08 100644 GIT binary patch delta 2599 zcmc(hZA?>F7{|G%bOnJZy)BLb{+|`wWDv5&X z7ezr){ecQK;1`7|pI>mRqDK)`MR0j5g(^4x)VNet^m`Rt;Zg;UD5~S=T94c7_5?hF z5~!*1`BfJ0s;p%}ncirU(i;DlOwuE%U?y9e8k*j1 zvP&6qYbu<-IUQOr)$x8EP?Ka^%HdoK&V5}B>$)7IGZh*Nror{6O^GK{yi?CP&iO7kB^74gSL`6USFlC2=;2Xq6)q$ zVf`}fk0R7ZwIJ1p7^4_6G~kdCH&OYu&iCHfXmt3^^E_ z45n_Uj<{AsTuTupu(MaE7 zNVy&;J(UfGh4BfA@wh>T9Ae%U8j`q^`V=g$GsSmMW6rhb!N>=>+;713%uMX2DTRxN z1A2Rt;GbSIH-tEf3>oqulwEv=beo~|*&M3Cbuhi=<|Kl(NJ}LH?wrmwp!cBQTU#2n zpnL~!xoqa~=dRXjD?RfvN2cMSlB46`*DIUghwl^M);YFG%kFfN!voj8 zI(-|;(L%EVk2{-6Yc(|w#o9CI7YRS^0$vJIGFKhO6xtxN*4J9-vF90#;iG z40jb6wfny3>@?EO!gMzt<5}s%$KjC8$m|IHp~>XD78Sm~XX#Og(OHF%4Z*w1WWYsbU$R` z{7jN=VIm0@U4-mIM28%dRM-p2c_^#DG`N0sqCp4J#LZ3ys_2-U;VTV3NKH9d*97USxYlwbzk;as13MxFw_zLxbSeKV+q-02^)wx z;(;aSuIwkMNv*KT!mO|#C3P!!sJv!{HK@{F#kHV(ku^(R9ho^4&H<+93ovrpl(Hr~ zfKI@q`mfGP`w>U9^L5e|GkzyM-%|!u!VoKzU0a#fH5wKg4GYmQzOCQqKnsB z+8Y1Z!jX+ubo30OSfONS6WL;g6GQp5H!}1Z*3CN0_$?2QaPXOwqa(KrP+(@Zu*DC-KgScRab&}oIEw-%5dO#yqc3M(QC@abR6 F{{u#RnQs69 delta 1115 zcmY*YTS!z<6!n~OykluJbH_m&yXWAsLc(q7hw z%RYPf6%?cZaGx2gTdLrC8HF?bg=`2T9n089csmxdceJLN>r}huBM~)GHK4hiKaOtDkp?UhGs-ppe@yzNUcXq{%Tw(SWnOGLyGb)mW~ zBuVN@4x@{@sIWFWy5HPoYv_h_?71ajeamT4pGk+TvY_W)CdRv*EH4BJq)Mh-k`qb@ zzF2^1K^H!DE4bZ11HS$^wqL-aiv+~36FE{;B>Cy$Fh9C#Qr z9XBqy)@T)Utoi8i&THic3RjAK1w|@E@xhQDHBzYBs+qI4vesLBx^})eMZxnFamlxV z4Dku{ErR>H#CKb;b>kc;sS?k%pmF&eJpbP8RD39Sio8|Lo=| z?4CPLPVW-v%ZTZkWEC9#cn%9(_Z1sN>7j`j6;Ws+MlE6@ni4-$Gae&{N5Ukd{%IA8 z2eV>LG8Lj5KT8(IbEgb%>qVYQ@JWtO#RQdQK|f3xy)BQ3LT!0u+-$e=NEylgI0PIs z>Gz02>2Rj4B8>Ki(O$Xf@$f0m8|0>SUk40n7e(eAEuQM=l7a(8Wyed4JY=gT5*Iw` zY;u_L$oZaa`b9@-Qgs>D-YbLo$6j-%_}j$zQ^T~F zC03M-rE}U{8(V?o-*dTQ#g`JBl*5k{Y7Q%UPCD@DXBNwy;ALBD#)^5qPRkawl|0Le mUE}eRLeHuFqbrl?nXGd8Q@Jj5MRSAHqZ))7XHnhS8Ob+SOQVS$28Dq97cb&A~rDx^YyWtU{3SgP3X zKacLyuXDTa%vj?Tu9Bzk>GSx{|9|H{|M}0~=R7d}$Z!7iGWK7v-Rs&;d$DRZ8tqQQ z@&>`CMyK9yS#5vt@L=z+4DKIPg2|qF(d+bkb!!k@h8%UQLvH)3#1D``&aacdoOz|HSRb?%F@^w9V!z#^1x8y0^dH>GiCp>06BxAj|5t?=U^59`(Q4 z^U$wrkFM{}*_Q?5PP<_(Dy-sMw4a53*v|%|uE)RU;@=+p+e>`{TY3)bNhKKTnoe&J z>~D1%{igL2g9xgo2&m2x1=WazK~Uu-_7yE)PaO9LX5W6ky-#7xTeOT}+({9$pAoY^ zBBt71ItU4S=v8~c=*$=Ggy;{kavfM%;*Fm zaxtVhiyJov#dV~(EI^P4xtA|bBypx{J%^EGIeX8G0mUPrg>ran+-mIkWq;3JHo%GA?TlWt-R}5iLRSPgoW13G9}3{0v4?Sd&uz2D zEwX<#uWQ!PjWCO`=eFB`f2Lk`1>>y5KMq2&+bskgzMDJz06Br{B^Lq*@-6sIbv#nNE8UtnV(t6hQ(e8qA&> zI&o31Y6V@Xb^11E3a$Soq4A|crcj6oX;(gL9nNwav?Rkbdan5<21s* z0gititocmHnssMGQJz&g_!CVBzntPY36iS)rmQyP+y+c?QMK--b(dYHsX2#r_WxG+ zCT6l2=U6KmhS@(Zz=+w95wi-#(|U^Yc`*#s?(_9EXX84X%aftrP$<7yUw;8!yU#!s zF-Gs!SVTI+77_rrR&1CV=ag<7(|03R00}$ei4*>yxji@}$ zmJL9nGIah-UwHwhq%{C*qO7XTU`MvL{VP4iT6PSD>euy^XG1lY*W+xBr*Qip_0^BW zZPCc8@%v|bnwQ7#t?RXueMx>NEQ#Iv%17e%NM=L^wzDU){d$UZyiUwfy6GU1RpCSa zbhZ=IQ`|$5n!%=`EOHi8lcJgIn7)_Uq~C=?MP{Dw=M>Cli zvCLtcR?sP>@p^ruium&8t+a|BRcTygQiywUY@NVH!P<5&?)pk0Z38k$h_UAgTkqF1 zE1T5cX1!8ZJlR&#SDuY6QF(+drk`?34d{l0R5?s{|jOBIx}{+hnk=lk#r3|4c=8yG1)S zv0;SSQdB+}OgL?}x1+eh#>lfQJHvlO{n@2$jl6~PX20pzE||@}74KVch1c(PJ3YVV zwalLX+J1-jkRF74!M&1dm0d2Z9foK809Iha{VN=kAcAkt!5?0|;8+*y*rOW++vQ`; zY}f6WWQT1Msh*evHSTHg_;%Is4H@i}!CT`r2KK|j1fH-tGYE`Sxx}^>xwhRK8P8<* zxIbRu$UP=)XJLO1?l|oGk>eDOBWxrNVlLcZqO@;_O&s<_uxY;EY%<@X{V@56PTAAM z5io=&UE`jH^a$P%0a;ipz+opub zAt@be2|J29;cAUo_60tf7sx0PtYSDKa;`Kykj*RwZvWpS4wREpS@QQ6}=KglkWfRGc$*= zchYmZv{5)SBUSxoB~^jly9G7&G}kftkfGiTDEDsnA^Nj+WI>CBkd!9yAiTjM5G40AoMisv39s)CfH{&=hM1SsRYXc;|_IFYk3O`gYV{)i`aVNJKy% zy3uG@UEkg}?;yy*@GP@ew+-K_+imByeTzs$v_u1CnktEfD4b%Da8E;s(sg;?wx4q; zAxAN8e$JT`!WHfDaZ&^klc$9b-TGV|+Nei~l%$&p=hpq9t73s~%Fiq+A7e%$DwC3ljP)Hs6?S5Eo ze(4^|nl)ZkJzAYLjykPbRyW23Kka4Qn1d zfev&SMV^SjpU6fEl@=6J+qmn{;bTUn+pQWey6FYqeBj|1-Son})eLDBLbwb8VcnZFMRI2B~D)=WV zl#B2C{u~S6ea6fT3s0DtF)A~#=x6pC`;d4XldznV?`n7ZK4!Njo8^FM3o~4++eAzU z=0TsbWx;!9iYo6=)Rw05PTyB+_pr<_Q$46bY!|B^dn!h!$0N7sA?nO&7#5hpVLO;@ zgKyO@iKsBcf`NfIFd*ukKChvR5J)VWG5t{2q#a>+&g;mS;C2e~U%Y%lVr`;h-$?S4PL!^$WPmI?&V_` zi!8_wP9Q+D(_T=CnGA`M`ZgISe>jV^;ELPnM#l(C486r5|!vzD$h?4G_lvfe5V8|GFnxl+*uTn210OTMRbzv%Apld za0)+PIyx&9A5tP7T3M|M18Nf_x&uuOo5QwoUT!BegoRG})P}Gz9Co^QeJl*U@$;v-^ z8WOLF`b(pWx{R8cf|~hVhGRXJG-~D?8(^ztre_TFza!S92RfFM>T*HiAUpcwJEhnw z2K?VMMx_QkCFc+LjWc}JBI!v*R{S(kTrUVQs6$fHgIZ6{?YV=x=)y^MQVji&jP%gglkx```fxowJ)9d-aF0EGXjT;3>CpvS zMxkwiLaQ)T>X8#uX!#8U6WozB2-fXmAs>@8HHH3DT6~WeP@iIZgq*MC9LUr_NeA-n z;m6^M135}mMDn&$A`uScH&daI0q9O_gXF$ff*a)HZCR~OZ|TgbQ)w?{2X0vM=)#K! zFCyF3ZE-*AynzA+FACpl+ruaO4P$PJWfksK=>}!>pDbHH3KXl~! z$LLvbZo>tN4zPTNkBrha4vUL6ctCC)4qQPlK2j@CnQ)<#mw9N7@pWv{1H9l|fMc2G zksK@FI1Yk6GDL}xGnt0aBUwTe{kqSrcat^Z=K1W z9IcYPnCPRed2IL38)oEIN6l195^i?k&nNdgtM9PGH#>VvQLXfqo{xV_Bu;z2(`&I0 zAE{pQ@f!FToZi7}Jm0ghH{Y%=iQ1d(4yzUwi2C4;?^)~<=C<(SbCk9_OvDP=q6#?g zc~@DuPi`%zk%H}_J z3JOMgF69n!%$rGzuhmmNoQTs<vwz5bUcm6J~(@8^jt7*clyCCIak8Q<(ehQp^=#{}$_e%FjT_ z%K-b26UFsn5MU2UNrPQa&JeH{F-;_6^Uz-o-M=-2vo2hsj9KLk)88otatD6+i}f&l5A!;N7gWELn~- zwb*JzVP&@zD+O>{j43IlOv%dt?wb?E^-LGQ4M|A@S5MB16TmIF1e2_MVH~~1N-KOH zjNaKY5Z(z0J4{-7ZfYQ0WqS!qV3k~b*_SsKLaathsM~r7Fgi>-o zLWi#5wrq?S*ULnpG$bXBQaw5MWT13;!T~?-P9uBNI+f9I?dXgtGa9bIX!s$Mte*3l z(Qp(W2(6S8Ed%fei4keQZ&6#7Q`{y=h{DL1mSUs;`zyW4@ zO(E*tiHh_B5wH%4O2b-D*g=BzXfAZwjhjZTLFx2INAGkQm|q2$-_PWy=c)$gFPoWJ z-nKyomj8l!pT;tF?O9Wj(Hrnf;n|l;@l2riKeOJa&`Zhr=+)ZAf14<(=d8eMNJbj3 zdQ$eyq<16ow`e5io?oJn!r||Y-nBBQ+yzvAj>$#OI}IvdG&3{8PE-aICpTq6ag(fH za&(NEQ&_c)%9V}I-i$&SRskieb;YBzH_q^_Hc3hHh-BAD6xTCV05T*c4M;sX&&mL# zy4xqooK8bf$)<4fhSA9{1G;AbbQ>A}_59I*?g&0oS^hR=1_+N63)1>? z3M)^QVx`cKCm2&w8j_OpL8;Y{R-&k$;R28$8EHW3N!gnLNL52dJHL{Bd(zO%ETC}q z;^4KjxuroUwzgI-{2~LXe?y$eL~5d0iHohVbcLs1FU3=V)F&BtQb?s_9a6PR z|NoUJtmnNzYDh>Lsd{3nNu=5o`z6EJh*_}+7|F)j1Y)(N6fUoujB}<$=gJ`W7l7Qa zG1=%F&>$B9eybGeqXyXoCs)21CZj}<^p#o7NMY_sc2p7A^`!(RhQ+f`D8u%pVCYLKyngxUoh&mrc4KhtW)jkKF*Z2z z8*qI@Ke&Agfxv+&@i=0N1bVnYaD<2>rWo9Eam3U>6i1v-B$4)S>4=Ek;SpH!_>}k; z5*R3_tsZu4aI6w`JzEH{6ye6Pk9ytLldLfDK=ggIPn8N45eQf zc$2|aaU5K2uGy)dS3h(A{7~Lh`?zC?dr@GMXUbxN4xW%Ev zFz8H++l*WI_q5^%kH1A~w6ldD_*&++si`B2CY_gIobk*Bt3WFr%YORs9aVo3hgz^B zGT7sR>J2Y4@IN`So_>ULcRob(8xW|cIS`MIK@P?d9Ev;J9t<`$ae74`+@qV%5IfqT zi>N*#rhdMduHa4*~F=)3;akBQw$x7il;MDGF8QABj!wNODlTgbESGM z^v0(PbT!VPs?uxp^&wOs!+-CyabylV_e6JYqT#eCfL+lXhRF_-o0?)r?a*anu@Sy! zioViBC>i&P5|Q*iN}JkKe2&?@42SMa{EN zUwfyfP^bz5tqPt+NWCw@y*<=MuW>PsOrcy|TzKbKt~<@X_-OZAb2wrL;rWKlbMU%Z ziuJA}YuhVY^UMpD%v)gxL*PYYKHb>u9_?7No8G8h1YFZsB_U16WN>(jDE@}NYd`@a zhZp5_P*7!}4kT&nz*}Ag9#BQE-;TsT}!FMBU*6mpr96Fr}?@pUEFwQj0B^>RC4SGI-!*E>-q(l?_ z-+`H4LjphJw{u-Lu!<}IMOF+W3fRO^|{xB9-TEU zSmQpM=+5Sj`$FX-Gmhc>lfu;lyhlF)Ke!@eU<|@j@!2utw4Az;dk7-5CXc>%e+DJR zPrrBXL}vHp_+Je5?op%^zYLKdc>l0_j4C@u%;l%u3ox;hzSjv1z(Btj*(6ToM}o20 z#tVtciMEQzHl)siC%AuzOZ#*e9idbxizaxgVOEGK!DlksZQ=w@I zI*jnx$L}0z@s;q6T(=Q`3PVhyXQZ-G58qU(hYS+C-8Z0+PI1xj7hXtWMjzDkZ;?cS8O9!c?jA5Wg@YFw^D zNI9MX1?~d`S9T)^O-7F+X_!of_#Z2fRfwN>SxWqcyv}muOFgD9bes=Msrf_E!cd79 zthk>6xwvVCS)R%JSHzW)JkLh>E;!%6O-0xx*UImW?GDcLw-(v0Ired8i3^vQxSe4I z%xd@_V2?iaW;NPfNwb=Fqkvh>+D)3(lo*Zo4VwY!T>qxtto|7U$;+;>DUbDgIc9a# zGj}I3i0X2$LwBY119y3|WBOc~7BHj@Et}Pw=T!x^dWQ5hphu^>5{7gpKh}aFO_I(v zq$8?RhV)M$%T+U^?> z<-MXe5anta(hH>+CJeC#6`B@0>nKKe8AH0T?4=2*7}CYdMvz!6)k9%P^-)NtxD-R0 zn2|JCR831+*{vzNU6W;9QA7HXQoR%M`wc2oN`58hp~nhSrOrbm8q)4xK;sGf`8XO* z*v}tE(lAj9seiCQR$)IA3rk5oZqX(IBBD0rfG=e~ONAdwG{b)WQ;?f&KfB)n_gs4K z{v$p84|@7;`1CzI(G8O;Ybzg#?JkaPDjzKGftH()%dnKq$j>Hg)rY-VVVKm5v9w6v{Rjda z)ztoBST=a)8u4ID4lmDv9d*nd-;!x*-z87{>tj^4vM9QeD9K$EsVYL%lB%_C z|B$`Gu{yxVAlR(n55I7KqzD|S54%H>MmRYec7P;o6MQCIfUG+!;fALOWEDN>*>^UJ z%F~P)XJbUE{>A$03tXa{;LH}m8Q##UvgU3*?Il^0IKtvSedPrhllDikCRT_gTytU9 zb=^5doJ~E|T9znKoDHEkt5p8FWmG=&`tY~wE6=|0Iv3|-r1url->t8`fHV^@mkNNj zvqB=xRsfIbN!N-rLjkZkP~ps<>Z>o$8L0qxL#xV~ujpwn$(n=$cv4?^0miJZ0>~bt z-`7*EWy#Pn`cr-7CC6y$I)kaL%blgu92bqO5Dc@G?zMWlwLDjpZg%Cft6BNM(JRki zWhGpVnFiq{a5Y|@UQ6VA8Y7}pp2qLPa$hx17FieJJpwMd0RjA11*)Uh}n?a*gjSt{W%Bv&NmpcK`@ZS)`t4f8Mw zw-I%)pxda=vaYDJ@MEQVCuH(rDpX1){Hx@g;IHH-%bzYxle!2l>nh}}s-D6*w43l0 zK7piRaug!}RDrBQO6(?o_h-a4?QtY zA$wXKPvHs0@fG_tV05S9kXL)MV6v8ek6Z7hdnT~V|8cS`k6NbJ2-sFcLEbQ=j9AY)32XNn~7hlOce zj+q^AT{X8~f%X&T_9u`uOuhmNA1{zqK!NyL3JQhHZ8`3xKGPQxfvr+Yhhok!w?7MV zb>=p`=jQge>4}-!>}hq(?ZdDn!_QksH?eOnZ(@s9mtj_46V2^W7jnZ_r=p(92~SOm zM$XT`_xxR2y>0ye!m`0T)`)E!@_9Ldt5Lt)t=lv0;gSJE*HA6X+6rG;C;Qc)N2i+- z=4~cFE`fQwGc^SAP1=a&lu7%40ozqGY40G`3X_(DhgnuX7DJ_oNqYzfOw{`@V#%x} zr!YV4F!~;>$G^}weDgg2)HvUBydrf)+TwU&Ad~sRrnl)es2i9_j*7mlqL;W{ie18V zdJPqt7MiD!v3qM|>@EW;%d8~=iC?PM!UlRR3h7jmVh$673fe&DSk@IahaW1{J0a6| zP@z&XEjhz{xG+`AF@Ob8s^xn(8ctZgk0NQ9D23GDUm&Zne2Imnq^>t&g`-(2fl`*Q zROX>XGc4af2Dv)Rm)>*B_epwUmM?o+9n1GNejd)~Ht&rkZC+|G*V+x+zJJdCN5vDq+$9Qf0J2Czv(un^A5$D@~dL#P>Vc9juwMWA^%2LNI zL_KoX?*L=c?&h(O#Th;T{xV|jPO4*B#&sghj5jcn-*_u%(W$iCE5SJDL{;$#;Vp+Prw%5`z}%LreG z3gauXdEM_4an~|BUna`ya6u)7TSayYlS?={;!|0LZx3gFFU-Gpcr}{jlgn9pVv`Gd z%9&gQxtPXA|2~)p`c2<^D!&g_+s&PDIAC?h?#QhZwK~368R{Zc-EUFzNhHM+ zBLw+c1nJd(H!Qn0J`axfdpTZ~sAuk*sgui`1|A9-#f6=}C!<=xn$HcEF%A4WXweP# z#59n}iAyjI$P;#AGS2-lIHEc=9h^u1S8Y1@6fsv!2OKy|&9;R6GpB<}d_K5Yo`pk` z0qZUEv-FtuO2p;~9}Er$t>Yv%Inxl%R~X>o%>{T55HMC6DHxtCt%4z)xs-zhDTE9i+?BJ3&05)l)1Rjw?Coh^pz zqUoe7Z$PWDyMsfx=DXkXoC`RUixJUa@RuUrn9V}!^gl}aL5$#O(AdZWGkV4V$(8kcD_Nw&$E0SKaOuG5YnZDarw6CV-0WlQ*yhj)o&T{#Cyt*Q{DIBNa}f~ zVYTbnHnU;S*_~#?3s1|v^n^s?;X{Ifa!xK}{jE72%&_oigoU)}R~c^mO`R|)1{mRb zp@FR?MLc_=6wibO_$ewhEyj7C1voVpol7N8<=mc1i!USg6IzYR?d>I;&%4h!O@~7F z5r5eB8IExfr}8b2)!-y_pk8>j-6e> zdZVIzgG$M&QIPVqUKZ?-WLmARZF)}Z5Zn#uHrM~V0`?q9>HCSQ^~nA%C-WZ|nfY1O zReQEStnM%{zl7NxMuqM*qq`4k$6QMsN_0p^<+q4`-=FuNO& zne8@Mi`}MEcYGXYu@R?R@Pi$nu?}yQBb41+k$ni5Lq5g8oMKZ3m^1QRM_`sb%aMP? zu4Dy;(EO|+>?)7u8_4)HDsd3AH0lB2n~Vslt;rA(+BptltwGxZ)hg`r#jQZN&AOV> z#+0nqmDI*@2#>RVN$84Skqmw{QJJ1F0ok`Q!t%2&2eJ>M?jev3`4WR{iY*zC&B((b zJ4D(MyOI?Yg6#Pr>`FmaUn{$EZMXZy0%~12ipZ)d=qUPQmUXxpR=@@Kl~T|W2H2OV z&@cn+G>*#+Cy%jk(*+}i|A^%E^-?ql7u=Ht5B4Jh=CiHxn{tiqLcdqdHTF7Us&I{Qz%X~n)k5w?Tw_NLb?B;1AC9p6 z(?aC69>j$PK3>E6%WR8#HsK}1-I8L{Y=vrzhUdQ#U6Hd^T%{$P-!kBPO+@zz1;zyO zmPjD0>!14VQtT4u(Qi?qX`ylQ{8KUWs3P>RQ6b^8MS2_lGr6qc7qEu7sKnPap%RuG ztx~B+QvYPBZivPCAD~di;+&GzNm0MD84IZMiS6 z`U2`!*EMgZ-*LZE$d%Z-CdHJDbxlT|T{%*YSd=WJw=#uo{IMY{qP2{$jR~s-ZR1B+ z))iTG{0vp87|NF>kt&AOPpMF;VWnMl?6|TF4T7^xkn>l_y^K}IlOR_Y-%juOs^ezxfUi2()9S1`4tW&Pd5m59`qXXwhmGd0Ki0;k zxk4wi=r!T)zaTaw!y=j>$jLC1v_F)TNGF}rjvW26=-#mG+T`SjA@EVRT$6gZ%!Nib zM31lG(n3_JG5cOdJ&=F-4r)DS6zM+L=lQqoW7Y$~00k5VBX zQUCt1$NG|DI+F~-bQTV__&hi~qW(XiNj{xDK~Kzy#-4JfGeK@@;!LiXIEnTNZr#{# zV45J4xbb?^MEq&|qDpqV!52c>z8KQRo|3fLTO`M$7Ap2F!4$4C#?0Am_No5saV9D> zMl98|_aJrexdGvC%HC~n5CqRcBsL#Q=C$~J7^JKY-i*FsSbRqo~~R?}iBwTq5#*O=%)GFlV`NR}*N zOV8?ddVZ~m+d7+rqw9ky+iZqE$Ag{LqT|=l8^7<#Oyj|L!)GYrqe*KK``0(=l9*T&vWp6P5foe>h(IknvF=Brqu(V ziBz2EA8hCANu`!?R?8rmPP|D};r%w7*Dr}J`IAc zO|!kw$4%Jacmu!JTkSz`1wsNly+*BJb%75wL*byug9#Q1L_C^w8nrI=Q=LVaX~8zL z?{{iZQn20usJ1rxt!^y@9vI6K;A+7UQf8AX+|E+K-L^;KkCM8c)o*lai!FlG4s7Cf zJgcUbWGJcoHM-ZELv(ws;dtg;lRAQUC8Bbp91!+wumzp*Fa&S}0PbrAYDBggEr==B zHP}T@XvDL6ln1h*+8Pk~=AL;m{0WHeq)`Rrv=;!xrqjaq^06Izf^A)^TLV)pgsUL1 z9gS?ElsOZ$)8GiMwtc_r9o)Yk$zGM;mR{}j7WNN~gdP<3^f1a!!gViL+p0|2c$MWY{8yNQcZNJq-W0Sr)hf&n_E-y5<(sfc6du|-(0NO&Vt>;zGOmJh9pIvTh`V{ktdUM!Wo z3@jP7&4)iGXb3e}`bJ9R&+cE-ob#9XpBGG0GDR&=Cidb%&wlp(g9>|(+2X@;YTWxX4Xz!`?V-I}^J<3G8!E>VKhiw&(s zwCv60Tgh@U_AZcy>_jN6ILm^4gq|!q%d>OTr5Cb*3!eTh36~ieE(BSgW8kK60spHLIGP46VJMDV2-ypkV Sfo#XA1{uu4w&W97_5TBnJ~hq& delta 9038 zcmd^FdtB627Uy0Vm>C$D!N-Wa-!d?OjS7M(-~%;9GnyzQ@P)U>|wQK#nRczrPQ^BY?;wW_+Z>uN#(gA)n;^?LPK2y=hd zur6crh=9Qdxu2iKQZ=D!aizr)H^fr6e3>OJ&T5UbKzZ8O2#ZB;vDEZ6J3VW>KhA>I zk_wrY-*FUQpB{~31U#ObY8Hxhm9;k+&D)n{(YM%x=Cw#O{r&vX*0-!_8DiJW`ThSM z2)DGrfsD~C45r(xIzxb;pFL921wc>n0H%W?>o}GuX5y8Zoh1=*I(mq*``e>S>@g+v z6;db;C{Z*`5Ze}Pv4{xm1DlGVETah4><(tb$yS!ri=SV81 zwxMi|4^a2pCb4E;p&qbMw!z@xZ?Sgop=onQvMwK>?a8sSH+_XRmY|93XBKG4oyksl z4{$(!I{U;2fJE~*z5?8j$(gqgdPf~*1}Mz8Y86_cbLdd0AN?8>k2?h=n`LwcPF~r9||RtbJ&YM!hNGpxJLJ_yv0JLrb3#z zb8;q>ZV6`Zd5jNOr^rm=Dj%VSn}pWU_El|X6l^bwQUfjZ0qFblZ{-!f0HqCG?iEnv-ElNf zflYz+cf`CE&LOfH=XnGQpG$y~j|IZ#ncBcmyz-3JK>WTmZq?vSD(p|zLCm7XVd{&ZRH}tt zi<0>aH&Z2A*fG;-3X&J6vu9xX;&{kfQUT`{Tiu>g;FTph%{^K?)4=-kv2bb0a9*i} z*y{WFS}i>JUry(StytqJCj zxIqJVX!B~rLKmWza1?P+EaMn*wWBF1OcIw@AOhr!_70_H?NdC402=1b!H>$J~~UQI(R2*KNEk>zaZq z7S}9TG=FJ*&GO0?Xi>m5-2>hALm_U3&8*k=afWZY+cBTd6loZIxI)j5I5%(>x;i9p z;6ZIy#J#nQf1-u;zs}jQuNe5_20v z^$S`U`ZQiDS9h~KbYz3o4>Ti?z#uW3ql2Z7m$PX&W2H-*ZVEXi1F&?=05Cq^A9@}P zhP`WR*d;Cy8#VAd{F$ zc9B5#J~TI!MWpIo{K@78L+5o4{!DOX^EBADdJz7e%WUY+iv1)A);zF_XX^!x6LD~u zZaf-73co;VofJ0U_Z(8djpeiTqVbH^W8+EVMS3T3D};L8P3lD2R-7Z!#>PueV(bq{ z>yS1n3)gxOxLGgS6FJ%>JF0U!T6!RjpgL$vKHtZFdeXKF;x|MjO2=@iw2Qp`iKN3M zz3Y^YqXbJg%;>uEP#I&V5vt7FU-j@{^C|ORDI%G-zmur&cJKDJ?3#!xt~CovcI5G^ zdYEEN!S8mx8?nb3%`|YL#SGu?Ffp?{I4}wJyb=a??HsGDPWN1W#2Cg#I#!Q>HIL*4 zTt&A~Ye-gB$^%z|li1IdA+okUB863nfp1L?->K|ghb7r>achy{cdJ^JQ2x+rV!PZ{ z-?dWV$eFfjTb+oS@8bVE4%NeZkL}{)LPTYhiNWoAf^~Dz09MD}v0@z6F>?1bw#1>N!&WARi29ftBI;vy zh_gQMj)RuT$mW}jyt~KB_Tc<*$ZpGtQ;F%zYe! z%4hIn&4Pd9u_R>SC#t+z6IlAxW?#BqvK7US7-C-w>nB zQgG1hn_Js&2t`(2}ujKQ~p>Xx>k^<%teuGTu^izvY(EEwl_ne@zq;d60i>Hhrxz-g@3Um9{*hRnKk6N z3LNzAGsCpkqU1)BkEZ2tN0B7L6_O*|ej16)LFYrGyDq*K#gJQeFrQBk!;{iBC_5Yq zXO4_APe)xx@C!&(2fqw)72>;eGOLCi9jVH3*G+Eb3Z zvTYGqNtj5_?SI_No^S-N$0P6k0@8Z;ofb7YnGLzeM1or3Ex- zjArjR4CpXrk0M5Fd0T?{OJUSu@Gn7Pz#0H_7)7g&mTf3e#|&FPyG7p6FL7Aj(0`L8 zHdIK?{HZ!Rka2@iTo`mlc=fICc#;v?%{CSXS6@$oQgeX66lH|ycgFEi@ zj|%%U(DAqa@WDH&e5SmlR9PZ)>5aQRGB{My;c^Evkw)C+r#QOA?Zx}Y)jyO)tRicU z%S0qCl`j*4M%>*n10$GrPNOkK1{&i9RNX*HHp$V#*vaI#Z_fLKYZK z#=!M+iF}k;sLP{8kZ3W;j=zc)GAzX6}Wozh=vqG~1BeQXmv z|7jvWZxR`B3d;Xf7LgS0$^hA}$bhpZk?D>m%Cp1iD~aKZa4Z&B!>NNB&Z<$ls=XMk z%7IQKNdzh+SNkMe5Ox+Xjh9EpiNo70r_yYvl8}z;x>jCZ$N7EXT{k|z;Ga65rpxe0 zU6Zc5d`TtUTkG&&AS9Z2u+AQjH(#6w|7(-^v2d7n?cwqsydsNF3DWy?ZKC_AbOH~T z5*@mwi*#6|L!5Mqjv#bAkd9${m*^!VO`(QGeOU^iTBg<^wb2hMF6k7;A)PmMP593y z#;=D{-sr9&4*ai%g<8;FU#bc0N1var{xeZ0KFvf**TP}mjSS9So+6U*!Wd3OMuP`;`*wKMQgI{qhD8QvOR6b_Cwn_JgOf=e>*5C2Ai1l jqdsEXeca~sG12K`#W%NV=6d>=sPYlbzYK>_-!A+wPgnkv diff --git a/finalSphinxDocs/_build/doctrees/environment.pickle b/finalSphinxDocs/_build/doctrees/environment.pickle index cd25b9934cec06cb13857e59d79a68324f300ff8..5b54ff92ba63c7e54af6615c7bf499acb8a6bc9b 100644 GIT binary patch delta 680324 zcmeF4c|cWl`u{uUuIIwN_gpSq1X=E7z3i7&5roSkYNLXgI!&dhNp{jeE1R+cEpcWt zMGx>yH3e{^@naBhHdW?n%hv>bCLuxou_-jx|XV&?cbCJ5g6->e|9AR(+; zn`?)<>!w-7@4|zX1(j=k!Rb4}S5dh(P_%}4!}xD=Id-iX;=jr^GnLT1FeengKb{dS zmQK>ZeIHKq7vCReXF`F|<_3sqmvZ<|+mVT(_|cMCRP?X68+v3e2wSeZ;0n9%>I}_=$%S$B1lvB$EseUzL%J zzrYvTiu3&7k!v%8z?qcKDb|J-fK93K2j{mL8vHsNJ2b6ers~;rK5(eu}jb zMd0{6!!F)#_Y>_={+i1t=T@#AT_iGzW=&Sfvg?YMT_1rwJQ-*VF;X!tTeLOdE0AU+?RAiftCCMKput5w(CaLvNsZ_Ef6`A~o0y(R>( zYXihLF7VsqvFIz^J3jJONy_#dGW#<@y>x+l;P55+RWt*F?SeUHFZygCMlX4=ZuMgiZn(T-Fh;qGlC>Wcofl)kL^-DIP9W40GKHfoGwS}HGQBzlVur&fG4D+(&cPOvG~+VjNsqQaPXkxvMM zA8wvzh3|ed!N#r)hpf8EcIp4eTPB7>+tc|rW-XYWHriZsL7zRrO)SU=VG_mnfD*~gebtLvLsjwDaV~S1aQ=X<5B#2Zja{T*BcG*l}z+w*G7sDCwf8i z)k>rIX^Ql0g29$FA&8Byg!~_KL!kAaxe?;QWQ~{@I!atR&KKVI%MWGOdcpJvr!^vuf+RWzdy$dY&TE!fwJG{dMnmC@_=c}h*jW4_-t>MA6V5|Pkc=8 z`A#s4*%1MZ%{BGKxGZ;YZkZO(;)H)V*MIcPSrc-mWZ~~N6=Y4F9J}!MH!YiYW9*GL z&AaJFu{b^uKKmxuAEMJH#EIWe3Ss=km3bXwLN~@x6+78myd^41d@#)i*lRNUs}m<{ zwUuj?(r>DSjDQINinX>$Fg;G?)43{yxW*^kzcAMg-fz5ql=$CJgBw@0Y~j+I7v69a zKFyUkW#cUJfvinAqoi+YfvlEHi|eUPU+5JAC9maZaA;ZGG9BV)b_eUb0BU#T_~0D# zUI14A2^}Ae`#d93njhchT4BTAb6f);KH5(j_(pc^C}94X;Vr(F!$G4h(R>thV!f5MB#_rLW^7s$6S>&*Ggy zVoQ1;8$J^@m`s5k3rMUZRcwli1dr#OvDHVX_)G6>dawmYiV8mVm4hej2#2>7i5O8Yhz$TrNZ^7RpRTx2G_`dx}3?{z{<6H*C4ym^|lu*tX%7M(x9t^ zio~2moT^>FRa;PyH#awLMkTamW(Jy19i!JSn^&?(tcb=3mlnW8N%L8r;hgw{Y4z7aEq!L@bbL_aYwHGl~dKTEW_R?M zrJXhy-YdQ|1PX7QisO0|m=rmq#A(4cX*~(SO>-*TE9M5{iu$S3SA08hw6uBSAcQrG zbM;U+ZCbpzKgTNCa8X@##WWvr84k(p^f3IZE2raM{W%Sn&nnyG0383pdGPRb#c0>i z!CQWAd~OUl+NOHDwnD~JwB>k;LZl5>bJx0L#?j;&uAZi>>!6qj5wG3%r1 z`9J@Dft#?t%lcP|5G7l;{%M|Yr)=G3s}b($vYwbHjFGJsu{(vxF6;3rLW*qN9==Uj z+-3dczrr`AvU!L1Uxb1#>yJ}}U9xp&*rP&Fm-YCM!Yi^>>i>$+^;=4-B7`;awK9(= z;qET0a<6cOY^_ZDT=+X%+WGBQ{^P&GA^GB}RmH*`vUT^e>x2*3&QGo`Y!+s8Ui)QK z=)Z)$vgKnOE$o!70>#Zjk!($eJ;IZ+wd%eYp+Rv;X~)C=<>#M*1Z(HT<(Y&|@-RS1=>7k>^D-jc1ik8BqHuk*H#@51(#g%wn}*U#Ki@dj1HMC0Eqo+fYktZR4#?IYIF>l4MoBy zC*IQnCikN`!b9>$^9^}_$k)^!uJ1fy&T-+w54 zE&rA~zuqdmbmCg+0;Vi%w(xiPqhd_Da9Fk~*L)*&lP*A^fBBcb2kOe^(;-$rm^A^M$3d^+d{@!jGLFWq19- zOGuEfy^}Cim@8Yy_GAd7W$QoN(}k}(e@+qZm@j-PTVvmI7ryNLq@wgvkr)0do5B&B zFkiMxQ+^hf$W}$`?ZVfxwQ<>g;a1st?1$e8ZL+oLn$LvEot9D)bcZlgw!H1v3-`&E zPw9Pogxh5^X6|RgcGS@Y0NJ|NSn3c0Wpmw&9|~2n^@wSYutT;U-SUR;H`#iepC(kx)~8LE33FuY z^INiohh^)38%zSzX{km}epMJJThaeqR4V+l^E;_x$0rDN^2Is03j9O1p2l@YOi~46Jlj+)a9|l8?qJgLYd$$TT#w(q4W>3`J1o56TD<=T5yVx zCtGu$*eC3ht$DL=6ApLYwz>o!5k8i$Et~8o=wxfv{9S@cwjTETLHJ1ix#yy13I8sY z&F5D)3GK4=!Wxyp%0Kwxx|aoC+4}2!|4;Zy{$zdG5n;D{?WKD`SR`97-!V<_k*!zN z_Y29gwJrQ!VY%YO{LHXOaAHPjF&}nJhvVSjpFI(=I2#K<_Jt{~u5C1Ia<%=E%z7al`Eob&o;VaqtP0k*nS+=H>9u-8{S^_14 zMYf7Rxlt&Vt&+V@3%`}ERc~{`KV_?QUFL6uPh}IH=YwpuOgg{iXjAN&$+osX1bC%-8qbzbA#D;^bA%9cf3Bs?u!-p`lj3G-yr z<|_(+maU-b6v0!rqJ5o$LAJ&`6DIslwz6-H7u;lP>asfFh`#TaW$TaS&kHxm)}J2#tFT}GxqHOD!e#Qc z>IWwaWwQ0CyH$vht;eohCzSq6HXncZYT;Y?*KGPvfKVb|d+~o>5He(IN6cj5c;_c| zoZB2>dgnEr?!|3Fp=^03)e8>U3aGzZ_)h-0@RipJjivI%2&DHG*^0jZUg3Y`kH)c^ zg^lvHH2v+uZL&2%^cOysKRNBeH-*n-Yj#<&pprjX_7Q&lD!e)=de5kSSYtW*-!uldY9sJ|K*jt+hTr!cqCpSJgivd?;V5epM%2FI)H9 zjlwgEOA1`)zXiI--WG*&`Qqb8J{7`b>$xzi@O#;Mer$p8plrSVRi1EEwzeO6NBrXI zH0BP`IwyerfEAf*{lum@VUV~e*epI>7b3ng=X%Xv{QUY#bV80nk5R>oIu6?2R(Oln zN74V_^o+sJq;nOnW32qC!UWb$Y*=6utLMguW0s7CmT)Epte+Y2XHyKJP#(uv@DGJU z;1f!Rc(5=Q3KuXr_*;rj{#z&img?1Pn3#V}_kYuqCw|k)H`o{`yF%->aXmV)64*ef zjbbd&)SwE+yBjMO7Ws>ZpE~>R&R-ZIs^_0{r)nn?31Rh0>2@1VyIt2W*8@LVb<#t^ zKW-QADB@u5{cMQzleuEi(%4g<0fa}gQDR&ZCmKtFJHM-#d60)PPj(cn8RHQH#nmR8 zxc)kS(NW&Xz@&M!+GNCyzvba261npC%3ude48=_wkMk`qO;CZ%zHUaEO?FIc%uoHzs|;q>-PAc;en{1Ob`q9a$;Ng zD0!GhLj5PKG*%zD@TXJYjx(!ulyQ95Wa{SA5x2fR7MiwcII(!?X$ufs`n-V$XFbkq z>+K#vuE8%HS5nT)BFnR$Kn>k!&W;4iG|B3-=V;sb9;*-9e3d;-BG2)@8BOq@MlOk$2pL;7C zsKt6ny%FJp-w13fFocWiUy6q{H}Gd)rh4;kc0Hp+2z-Y1gw46CE~f9(E%m%_DIgN@ zs)I4RsN{l{FgO;%=Jnw^w)#Bps(6=2x_taFT!)X)Pk|XDpP6xicv9s(B;Q&2&iqsP ze+a&}tA^rxtG^60E%-W?6YExwhLV}ArDq&F9A4m!C%r&CiQ3@?mBw}SKb0eXHUHXv zR@q>E7AD^~o>ZN-W{QVaCBd=X2#lv4&ScO#%L-Z&jz{U5Mt#Vs2engox3jIF=X|S; zm25T?gfmvCILc(5^E5X|-zu~i5ajuH9R8;s5YGdMubp_mE@#xK?-YUR#5!7Br%Z=( zUuL>^;6r5l1Ik2EeK=P-OHYOTIp~Q>d4Wk4ANn8`>Oyf}ES#^L23NT=`QoOHc92&s zD7ao9FL^Cs{|n3n*D3c5+l0#@R&hI{aeWs!d=E1d#!knt*6^dk%QXUj;n1pBz(%{a zV{jI@<2}WU@)g(pFd3YM3JwlUXA&Ue#?Di{>>YC))^TFZT_;YYUGMz6)%ZhOqnS)` zQ;i+=r?E+3e3D5AwVj;-#s?K)V6ie2C7%)xg%;Ilv8B}N^4B%LXSiDIJh5~PYsv3( z+s_=o@dGnBA9D+b+I+^>soWy>*-$B$r9Y2_aT`*tqv8Ff*=c4gR6^?U+j3 zc{KBdc0J?fa@ExzjE7qm;`efSN2Cb|a~EiMXfrUEcFZ!#r3j6)*=$iQM!^2P+5)j? zU5a#&ah(`5<4q}WV4Y$Le0ne2Jp z%L|4usF{Ska&U^<2`7##3ek&g_oNYtOJVCUTnf=a!9jk20*iq5YA&4jXn>yZ(RTv` z`+tDmG*kv?${u9<<$qv8&wmW*ivjxJchVq_Py|E1l0Exc+IW<6z@S=CVfh+Gv@1>F zBAi~3Uwoi$3ZsUG4;XilJPA&*jfR@t2224qE=rVC9HOrSINByZ`8bMtS$JVW^DqRLGyl+Qj;&I!^K3 zAL*E5gboT1%(3bIn9rdx-x0Jqo2$u%9<;Le#4mLLD|WFm^|)(0wuTRZ4y#gV?96=7dtj?wZ-iuend6;S>Kdf2a><<=+Bh;z*iF@F^Y?bB5;uK1QK zB5|gp0L_oZAsy+<)}Jh)Q1_TOC)R#-YUo3(ioaZcZ4lbKUJJ7GZrNdd)DP3HT9s`juSF zV*bksCv8YHuPm^4TPST%CkG(9rqqs~xG-p#&FBG>kwUsElZKj8;Nnj%J6Dx>33G|` zf8ukuCicbl1!-TX@dW=i7b&*=4@TVn&6@k01yA42iYxIBGFRf>j6uJi?`sD}_`ZgW zpaaJ-&IUC$O%RLXu90nb<)hHrpCzOh{ z&*<$qef|~B$4auY*DxL_)xko)ux6i3LQqGe8?IyndjXN9vu}m_9@2(D%j-%#EcZY^ z&Dmm3=Q!u((tM=(_^UMPGskH!U_Tr>^KtooN)&XMimnppKGr^nX66$kd}fAiWiz0l zUOTj>r_~cjR@3duWT;=n1)r(9;k5kAfjmDBhgquEWX!Pe!dJWCj!8TuK z-Kugz;bUqYG;e1kx}T;`leRDXJ#hA|b%wsnkC;H}1k_w=0*ltsP5K z%dSudL%}|^9=;i6#;W}g%#R&FFY{?TcyoZl2xap%ksDj1UCw zPSgzKDtq^@yd(dNi zfLT|m(mF-CX_@GGzKhhfPHqu#Ho>7jclh@VB#IB{v!MAnYSI->Roi-`0w~qp5mH3J zi1ImTs6VpecI*OsX(#LzBGxyLCLJe9&ek}$> z$C6WPw9b?U)GupDVK54hZ50)fz%x81+?8Ugu3TU|SkEj2vZP4;axXTPz_IHzso=a) z?*`33qXup_TpedvT@EjH$6sPrU65Gu2*Z>xopSt1@?#^}{Xy%@386GeM7{sf<=H`i zF0{_{U3t&BQKnDUnIc&Kk}?727Hd%(-OTv8I!$%ywhxkI4Aii9hvt>axD#6NSF*lh z(;8G|KBXF+Naq|honNWxByB^55aXy}%IAqu5eBS7q+Zx%mDF8waN)rCq!L z69Ljl1f*FamIdw5t4|b;ohyb7Eq~Qy!mhWmH*bR$HONlUwjLN@G7>O#bhJ7zF!g?= zN`NjIl##qhNsauV=4Fi?tY2dI(P7udceUf{$AZY`l25 z^-_0mD|4SR1DZErG_x)xr;(yoq>bfM2wZbHkP)YEbR z{Qj`wnZd(wm_?6?G#nQss!O6TJS`Od(`597y04Xit`e5h5=8sgtp@8SaB)y~ohk?# z0Q-ct-HR&na<8f0SJiigE=T72H>OaR)uC*8PRuKQ427I)L{$iMBY1G^zZR&DX8d|w zn%}+H0j-7?5COgDZaHOlpzqLYdQYg`qzQ(AeePP=k%Lw31LCC{bSosxTF52Hc@~bd zY7Cun{5|Jl8NpS#cP4R|rf4R1TQBfTGDNg&_WiQiI76KPab+GH6c(`>aD1s>L#t>X zw5>V2jOkGG3$A#4)Oq}ZgL455i&Z58l12C z-r*9y_-LB4UKK8u@5~2UUA<&bKB1CHcuIKM*)Y2&E>GBGQahkUkIrR7~q}D$sfyCf-obi8YHuPU?<(p=FE%n~E@PE4GA* z`&b3a3T^K0V}Dx-{0K8lu}4V9ZNHzvT> z;hYhr8kLb}?5xlwYcUws=OC^surqUHdLT-PouQ`uf)d0oUZ4(2Qn`5P3}%6btJQXJ ztajtT`jsL2tTmi{1<|xy|sj`6&mj zTeLZ#Ud+Tmxi2$aJn$h8bqAD*qWW+ygw-qYf4*WeVEH6$nKh*nliTy>;73zlU{b}0 zK8S@gRq~%LM_5Y4fW~t5M5x$q2nMG{B9R*6`);aFZbKO=WMCR~l2XCZHfvjY44_Yz$<^|GKXC{0n);aWgICXRno` zg`5`h`b8YUc>cl&QT=4XNsaI>Bu#Jl`cnFCA=hBucHy@=e`uMC{>YN4ti2cOI;Km{ z?Q{Ri#iI1WW9Z9nU8#xhj~FJc@FQ@A_jP*dpkkLH9%|RJ8B(QFpVw4hAg@>KQ>Q`g zPNe;k5QBdoML37G^Zd1JRLnIVF(ty+Z*n}eykH1}nn_Fo9Gv3DL+wJwANn_0d+;v( zqiN~y=-_(p+C*CVY3Zk>zq4!Y5Q>|QsHMN?YE2B3{K#>rc4rs`Ei<%wIImv^`Twgv zPg*4Y?}N&ofzDxc=c=MQb3vY4sLX`3$|jxg*IOXdph<+bAP-J7&JVcYH1kuv_Yn3s zZ4!Lv^x~n-lNr_j!B`0RGajE?r)uLQ5X3yexgou%4WffW19l8vlaFOB=Sx*@RvGb3 z^|>|zoay>7D0@k3fZL077^wRz8wxKKVjrzR<}&KPZRF=?ys(h(V{CE-Q`zR1S+_n~|9;;1;z+eNv z@kSGzCgw^$tS%qcAUe5N4!Vz(N(OXL5UM~q+zTtB9j0fP%{QYi$J|Aj(6mMoERI<+ z76xt9W9S`bXxr(bpX{%F87%4Vz32FYdMlJ@v|iAvRi;Yi8E4c9@5*rPv)DQ9Lg>l3 z6y=Rw{+K#vuq%N@am7mXLllHFR=_SIk;MGi_SE&0ZMdn^rJa70{WrGW}yF4tgT+bb9)8 z*+SF?aP?~`eos5L+E1Z7cQ^Q7XT;GyHmLWphE#n#WUlfV3+rA&$5^Qc8*)-vWKZ)R zzNQ_GcC>n}4jjig8`S*Fgh|ahIXE;Oiw*9)jrDQbQMAj;Gq`* z)AuUneYCgf!Rmu0eFblth{1;ELNB4YZWI z`NJ)%vExhHc^hZa#wRP>^z-PO<1b+ z1Xci^we$G7N(8DMUN$JZ#?9+OG_YNcQ`$It-E()Kl{tP@KHcR<9T^*^H5o;1N}n=C zUqFA!J}ZqI;*ms5knx}d87zUqg^z=+q9PJ_hUdUpih3oqj~>Om?79F|6lzADrHfC8 zdblh)+u!@>eYB5Ggj0+0=m1Iw&tE$kA%7lggXQ-r$HG}9#zw5OcROvaot+W;=BP@W>xI>Z(B|6R^J>hs zs8G;4*)64)D$hgQ4NL_k7uN&a-EDRkgWGY#ca~6yJBBriB^y}BNt&J)al@^9%$tL< zTz4z9ZPVzX<}TJBisfFx1L-7&@u?`Mb#x442S*qaEy9sNsEtDJb+cNH?CGZ%1&3bK zdqV9dO%U{HoR!YCq>cl$^$z~67rodV6k6RzLD@Eq2h?ol!l5>w@rC7|Fu~&1*T+Kf zW7rwIMpR+<>4|JACP4GJbUed)!m%E=RHg&(usZP4PTZa5LB}qv*8^?Go^b6fH#wBij5VjTDYN9%A zUx_C4%kJ#ps>XKa(0qR*lhX}hyMf9n?u(G_#XBO?J{<*(L#)NcK*f6L#N4G#)M|5& zg^HEt95}E}F$H>B&J%pXZN1XlJp<;xs;2|=$^F86nr1~icCTcP`en!NwgBx2+ox;a za!&$dAvOxSaDO&!*0folt%3Ro+^kDeF}-R3HRcRBZbe_xnW~EVXxpx!ZMz@Jb7|YA zZCeorjYl~Lgz1#yp}#Vw``~zeF}Ll;-Jao6pp6IX!#;jcXU96q(lj;&8fU1{r&H#E zp7tVE1CB5CYpSEMo6F&+P*8-@z}B}j$*?`ygf6ckQ0Yq>ct397cU|-iyu86J2I?-u za%0NMj+0uFbh*oupgz|t2A0%g$ncPlGM>EW!(E4Ckoe4p@TMNN(>(?XG+HY-UN?JP zgjSs-Z*^hvRGM zRfHKRb0aY_hn;Lf~?h4>-yhSITG>IG$ATP*BZSKsVQ>gH_({<1bFw zoR04&w`Lur$Mynr zxkK43Z5+%kK4b54I?_7}74FcyQWkj+V0{F(Sd+S8iTN)lz?Mu+Bx#|T zJNBEpDU2E#K431eV-X$cyL+T>)*~-8ZL`F{oIn=4#XO0d$-Tw|P&=g_H|N^-u}y6t z9q#FHUv?a~@sjJYlDOT3Em+PV07{#`#tN>M?!zXdj<3TeQx%I*l-$^6&V%On41@t` zP`eWs(~=N_zetj3o=C(67g<`AFknD1plYaK!1hPII4J(v5(Rm4m=qY+>T2W&P?HMV zQA;xPdqlrKS)lqGOv`B=jTJt%Yq1z|Orb6d>KAdr;QFIAFKg_QDr>Lm*?XD8H?rda z`D^jvdLIuUrK?Mie6~|3s=EJmNlT zV7qD!r;Gq{8j#ZDV4e&<`MJ?6#hn_(Esf> z2^9KRVJDrd3hh+E`Rt!;0u)5z!DuLU?X-Soj0NM9OggCT>j{V( zh#R_m8xk0_cBdPj+&IHc2+EA$x--WgA9zmXlwm)KJV%(ohF_5?N%MZZASj&-}l#q3}{66AN)RM=AT zb214#@Kj+uVoHRsNlN*mCTlX}?HJnmo8!Y#ZXwXaD*>K;j3d8?8JlM9&Uc^_19EG&_tGFs7Hf`PPZAyiLd0s-FsYVP;=4TjJr8|+}BbpANUhD-*JrB(? zk->^2d3X7YgD+?59Z9&#FE=E2ChY> z-n4^>1C5`VuP#z1Ld8)GsMQ6iqB_E2*kvvX&MP!EC@M+D4GTDd3eGDUN@~!3zN5yJ zGV&5X2vJ<=D!r;v1u4_I`bTpNl*geE+aL|nj96G{K7j1qP=dQu&AmDc)VpNam>uo6e=#pBquH-{cPfy(w;lV@M1BxUl%SJbRVT>UaGGAaEFm0=( z6@#^|Q2!08XlCxijP2Hyns`jtFeXF!7fcqYXYg_0?LhI8mfa?QSM#Z^+K;M6MXIaT zqeE8uEljCupRS65W4lqg^x2P-| z8(0Ut^d=VpwJL)fqga0%cJ)!PvWuTb1 z(gueYyQe~7Gb%msf5ANdS>K=wv+;WMiA`Go;ze0mu7vr!j;Mt$?ogYeLqhRaL`0zKE zXcFM-aLx$ME0vKQc^s}zm-V~!;cy^;x48uG#ioB*MeCz_slI@#YPMhk?EBheD0v)5 z$7y0z*279(tbN)nZhd_$9FtNR_Pg`5BAqC=;m_JxsZ?wV0PrSmbTZ|Sco6ZKi z{J-E#!q-&y5uTzhN*;Urn3COSMQ=sm7Y(&uZfDILnesM!BV}H#YsoDh7 zl2@Q?Sc$(*4}mLCmOSt8%w)iFxj<<8KxqJ{G-pt-GYs1Q>#2j1NG=iX*oI$c?(2Mf zN3^i<9sEvP?O2gl`;ayk8Y|hf6ZKG+DaLj5n99EcGxlATQJZS)kh09+>L89~YC2^S zFjn%e#pi4y>iAwdJV#Kw9Y=9< zke9J~iLZw=OcSB(V|3^9Ioc4gD4CGc+mF^BW#YwaS4P6-n~llm>PQCV=Y^imA&g6b z1ILKtFfQB8ydemRXXE;VD&}V@%*p#Ju6)kBFm)>KV>Pa!1^CtZr*wgEl2=5MaoZ{? zB0Cl!XQ?V0mQPYALVgaD4VxPDQJ~gqGa-G0R}NTgSTeEv9c~ib`4jrs;&v*=;uyy} zse7NxI7#lR>t-vK;vzTgS@#oS*O;iT1M3#n2CkgTvQ_x_Dr}};IJQ>nfC_Ik3l17G zUF8>0?#oOEou0{su&(_0h4`?FcX_14rUFB_Gy~$K7L?IYun(uz{^?9w zN31&RZnFcNUS1t}_tL}eOs}5@c+-I$31~ZB)L!ap)+=tlpBEkX2SSQMoeUN$GZBhk z!FkiPosE2Q^~T1$1f z&yL0cP;on>ftGSNf4F5enpvoMs@x)@!x+dlHdEmvypQM*m5RpFk_mVScwFbIK?ppt zT$NX+iq9LZOjK8QmM)OE0P5-FG*76o8}(4S61!;i8iHCJ#<8&cXhd|NaaPuFLbR-`VY;dTF!9&G`LDHll3rW9lNM$>&G9*gSH~4%&giEe! ztUmDub-ZdfJpP`^FGS!(o+62zJ3^`CDLS*KC}p)zI_&V4{30{d5rFd&ee^}F1}?hK zi0J8}d6bBrItO3R=qa7(sedA9L{CIdQqPy}hS|vNL~*wMjI)hcdP+Hr;h7zJ^`MEz zkppUwh39(dfck(CY6v1!wI2pxt(6!OZB8}m;g(tyk}LRz9X}$HllsIRmH#`8jAxdZ zF>mWxQ&e|?d6;#8hxZkjZ?m6g)8Q=nOCu_*7vMy{Pv&esx+Bq`)PoJ7w5DN@)7^|LEE_T#@0fX7asHjvB?fS3@mgQ}N^7E6dmh&HtH#|hB}OR9NK z5G{(U(s!ok%$w<+OzG!?H2s`7ZK!eD{(L^YqsZyJS?dIALlM^AAXpnQuvU|a)q1VB z8plCr>|@+8sQn{$8_MiPRfCW>*sBHy0k&bWA7<}l2~#T*O9LR0{_ z$SM%Tb3i=TD`|-n(Np5NehQ)ffq3rMJh#%E19OA0F|H#L>yQd9s?og>-Rjqpfu7~N zk$>*2G8Th1{Vi+?KOUN++=HNbt0C#vdR~LH(4Z$#){*0>D`NRfcy>2}TGKn)$O~8c zBHBAm{foSJXn&$ut0s|xN+0eYhf zBb?okUF{hGc8F}2CZhVKtH;#&wO9!TyM$VYwVRJ%a2Sfc5)4-CQ>RIaxEz#(82o!J z1xqkUFi0@i4MEyGg2A4_V0V=F#r5A|E?k9q93Y%vL}sUZ2wWr})RcN=Nhnv2Vchof<%JE0n`R2Cn7;2L1H%`@$ktl z#(UGHbHKY=b?ov|!v=!Hv$gp=EwoIY#GxB$j&gMo1>;-TOx1Y|JKdhQgXl;PH&>;Y zlAtgc8#Wg1(xS@Y@MtGy3V|z=YGV-!hKUmT=WC)IK4}0SA#ApJ{eTS zCzOtOww9IowU z0wWWkS!L8g#pieqA%Z+dv)AD%M?(a8HiFa!55BCRa|WG;)wXhlzpeCv_=e(b8CG{s}WL+vchqFl(mK zE~-nS#qyo`FvuFJ^?LzyIJEeB@lf}YM^JS-j;N9iZbX$tl{zSiX`=1bD1eHZJfI+QxJEi%MB4+gw$!oEun&q-YZc?f>;859hTjBVqH+#$<8sBFuGIqX-tqEEx+U)Wc~V?co4dyWz%E z%|s|5H)jy+N?^&&*`JM+&*A3$HxcM?Cs2P_|0?Go@GNZh;DG-N=1|T0#xM>Vug84+ z`dn;dKGdpu2t3K_N#LnuLSW>yn(4LIlfcvI<;97{`2isLt;L$V2s~q8@x!`{1fJ~# zo&=s3A-+x?Pxv~VGlKIj_cwVw^(j#IJXRsKJz&G!yI-&}smWh62THU` zJy=&@epCs0JVU@j;CVr{<^-Muo^Jkd%W5_e)UWEJp>-|#TrM7XvXt0K;7QKJIXxnqI%E|+Ka7dcvjPkj^+e3o2q=Ahk#JhiF75Duhv)b4{v)dHoX`hLy?)>2()M-F_&?TiLm z$_EpC`VxE+d=h*Td@_FG;itmnwjT5Qy^}ZPdBQy}p||_cPIFX8>00|$Mn5?88hJel zJUQ4ZDk3`y>71piXrOTW+=W~OP^D4B0^88(`hAW(&z~sVPT)!4N#IG~*)3If66Qo! zp1Z{y3$7C0IGr*H@*arBYL(`OufIaBX|!pHDY5_qP-pMw~_`U_Q(m|2Nqi@@_! zgPS;9z;icwJPAArJPAArJPABWRtX$tmWSpmSzobf4F~HZSmfm|^&C{}v7nN$!%goh zPl0CM5Cp}u(FZp`y(r1!N#NN$oWOI@AO_FN*(we8bcptbx)^n2ryzC!)V;-9pnbY3 z29E7!B2Oge4gMaLBocoOYww62IgZFZ&8gCeDvd~6iDK^L`b5Vt|CBBe^6nzn=iD-{ zAZU8foCedLbtl&+l(w+E*bGTfGuqt_!-_zC1~GxotZG!G5_m$H%3y_-H#s+$dd(=z z4*RV!S{jllRF}vnK;aV9MNG-oBtd(MF$#uApL7CG0#5=@0#5=@0#E9Q38iUlidelk zruyF&4jOD+4%F{mT57vi${GiT`O)^FvcrGXKB=98gB=98g>;`z| zaaC?7w1B|$oM#F+3Q&Es%#$4j6Pr0KmzmA@fpH~ogNkLWm!$K;iO!`ODA=J0gxY&? ztBzaZnNV$J9b*1M?9Q}@u~LmYl^WqFqIi2gpALb`@j+0$eZ;suA1C@G`Xu@!`Xu`7 z27OKhs&S_pcO6HiM&$NH=kRtG+kpfqj8HaT6WO8ike_O_OD$~2cW6M=)OsdCb0so$ z)9vK;bcr{VTyBWqDuhc2JPAArJPAArJPAB0-cIp$inp7xq3CbeGHl0-+DoDFDCZD2 z-_MJV`vW0Gp-u*im6-^|uSnhJ2t46X6N55o+cX|fa~JCmJ2EhNAnqYP6#_SE?QjlN z&r||W0#5=@0#5=@0#5=@0#5?ZAq$>KY!xeM0%Z;UE=K-@orIl)orIl)orIl)orIl) zokJEolff`_+GqZez>~m}z>~m}z>~m}z>~m}z>~n!EfXr%nWA8psB%JGBBz74@m%DI ze_7okp?13#vz&vxY&{ROUryjj;7Q;~;7Q;~;7Q;~;7Q;~;5iWB`2~R|fhU3I2m;SB zT$Q3z6^MDC35T#L{CH@Nau0&$t%juPXhKjzP(n~bP(n~b(1AeETL?i3K?y-e5Q2_{ zV>hy41fDG)sP)kLGIj%N-J;E@N-+_55_l4L5_l4L4g`4qiNKSKZz zC?O~zC?O~zC?O~zC?V*@M$jN=deEFk;90-hJswJ1SYB*~B&ZqfZinVi4Q^t?0vl+& zJnc|o_teAfMY>qX+^6JVeLFLxB$lot@Fegg@Fegg@Fegg@Fegg@Fb7tKzKY4vX@-4 zzS0gWz1=gQmE%%iOf+u?>mT%bXt$yxyY)77WLr~pCa|vLL!rFEEk^QYV+*Ob-5sze z!h?sh2NX%ru4g!CcpjbLMPGYlL*@&N1Ey`owx#PiE(q$sVI?xhzPGI_HSrJ@YfOgn zFPJP)&*0<0+o2r=ExS$ra4dw)gS~m}z>~m}z>~m}z>~m}z;htL^8kS-f#*;I&p56sxHBVY zDPxEb)g{ql`ObVi(5MonlSUG>6{q<_;Z(H^{?laigu1VlfnwfD8ysHjo(hG{coyOR zqK$xA-x$V0>-mU8v%KD`HX`vXX+hN^#TW5MMY#sL4vbX z6%9o{@D5l$Nu3D!IZQTeYS2ePi^Dh;mOpKbfRw|=IM|_AXF~c0uN<)0RGF~+9c~ib z`4h)M+)l+{msISrL_x(;tzN1w$8wHsmKboq z0$t+PEvyY{Hgj2$3K4$JW(tO5Yqbuj@J6%Xpdk~~iI0}%r_@{J%1fB$*i({()ZNZA|kpP~v z2|Nir2|Nir2|Nir2|Nir$>T}!_JN4E+X*}gJPAArJPAArJPAArJPAArJO=_ic>>RY z0?!1lDxx#1=eZ(2SJLv45^&r@;P4fgsB_D9#s+QMG){;>X4&Qa~BIMINtIn|^GO{r%V6z)^#fR9!XeG+{VeG+{VeG+{VeG+{R1bzO6 z=yRaxGZ7wGZa`K23iCJu&yURG!I^}7UH1_)4(2qQkd{}VDo{bBS_fs5kcFpI;??{) zn7v;8q%K7)S{e(@KOrc$%~g@GlCKvJbuW>ylB<<-TMD+4;74PkSg8ja05dmcWz1lfaX}lfaX}^9IhtJW5fJMoKK+0;LblBl7=>g49M|AW~E-Yd- zPQ`gPE0{62_fGnsVkvsR3Nn6kx-|Ll6|t z<{~7OO%8T^?v)C0&#TkK{Ds)w_sIlkRv8hWKgXWEo%rkt6?UT@N>{qYg7Ypfg!Yfs zq^?A=o^^IS1C^$+DPr|VQdhE(?~}ljz>~m}z>~m}z>|XR6m%z#=RkNo|A)Ynz>~m} zz>~m}z>~m}z>~m}z;htLGrVuWGm)!eI+KF3_Uj{{=xdK`$b5luz_hKHfJx=0V;fZ6X}LhnZQ`s7S3& z#{{C14Q>HY_ZDw~_UWn^IJTRKgkLx*&~cR^5ehyx#Y(-$!k}R`mbTfp8#NIS_$>DJ;u)UkljxJ^ljxJ^ljxJ^ljxJ^b0FyR z5G8sNcoKLLcoKLLcoKLLcoKLLcn$=3ena3%;7Q;~;7Q;~;7Q;~;7Q;~;5iWB`7Z)b z0#5=@0?*+Gp6*dRAoWqZqIP2 zdmpn;4}FH+EvcoEdoY+Aubzu3*0hp=j6s%9b-Xb3!ER{}c^2s|$ec(#!5lYF1#`y}7z z@bi6AFHHhZ(v#;%%^NFhWJ;{~x(M zi9U%wi9U%wi9U%wi9U%w`=X^XQAa8;h2 zDMQo4yb>U+UYQGFUoja_^s^-iEJi~ZjCs)%3dbMRTcJdw^@3KdGF57)kpTN&U?#x+ zd_Ellmt#5j+%m5qXnN3`26#g$@aG_gul_=nBxY9PwS`;+6l}x<3s*Y{YZRl0lIzVJ zw3{%Fys5wt4(lgy*pcTlWi%A*Q|n>>bS4ed^T_u(7=54b6M_bmywVPo)2d z?=6gi>T6hghaQgOh2F-GEmH0X@kRy-BY2k*@FZAFWLy0^^IX1G+wVxg8E#PnK(GbjR=$oln9gv zln9gvln8Vn2-KShlnAt+2viShClg8FsZD}sf7YTbWf}@pZvEM4hs`CL1o%3fGlKI< zWu%mFk1{$dcv4s*g{4EU=~JMN6qXF}P`e!`O>>Z!v3iNG2OJ3C6QS&51`m%p+7PfP znGjM~8Vk#xHb#)b5>*+kZ)cLh(C&j9NrBQ)eLrUcYpE_2_|aIsH3$`!))9CTcoKM$ z$CEss9^1#`1AdxX3cFDcr7PWH!FiV#2XP;(gTPUMUMc=5T_EJ$~m}z>~m}z>~m}z>~mpAi&duJe~xe1fB$* z1fB$*1fB$*1fB$*0|B0i1fFLF&up&Bt26Cq-tVw2m!m~%gxY?=xno-sCn0#uVzZVAGwdENI;A8IBiFz5mc>rbKvPIhHWDR+z_0GCr8( zv(r5U4qt(#iMMQLY|yq%qlc}JD6`?X73GB1Ux78yhu*^cqB51i3N3GPZZP$lQTVHV zYmA1{7VMHxn#dy}um!smTd|Xzbv;w%M2}*wm)l%g0R0) zX*EPad|w>Ad2cGm$O2oM>LO(#SW|T-D5-J_h2lya zg_$c+6d*btNARI*%o&i+d&G9+zqxwpwWVM$Jy!{5sR!odwc4;{M#Fkc$IEP2$3V?| zoFw}fvEk4(jHdD5y@(x(4rbm;7Q;KaR&^35O$1 zze6U^EHNXj6L=;_qO2(do>+krx5P7{+RQqz00qa#9>xmyyo3kQLp#k;aHyHXDv7I% zen6T^Hg_z`*+rU4R9r-z+gn&(Y=$JL8SQR|=1&c7V#5L(XuLe_P-6Gg!|g@7*r8cm z^eurWfhT!9Db!A(cJg?V$CEss%nPohtvPomF(pwCN*K8ZewK8ZewK8G-U213&ZN&`5hbZr7pOpmHP%EXJ;uKfS( zy?J;P)z{1wAVKzN@-g&w0=J-Fu(=oSWCzv-l%?*Ire-_Eft* zwfC;w$+T&@v6E}$I4p`^;?>sGd14o;JnEavg=CoDfTw_`fTw_`jCjh3r+}w`XH$UZ3o_y<;3?oK;3?oK;3?oK;3?oK z;Q4O?&m==tqGuJ*x89N6Xhy!SH{IG5JCBrZz=kDd147yxD#srX1Qi4o1Qi4o1Qi4o z1Qi4o1Qi7RHz8;{s=g&6_x}exR||LwcnWw5cnWw5cnWw5cnWw5cs2!iP8aYL@D%VA z@D%VA@D%VA@D%VA@N5e3TrS`#;3?oK;Mp|b8E2^S@hkwEzdP6>KW8Mn%KN9&$jSaD zvW24!)*d%hJMi;U_%$loRo+0gF49+d9g0cb?ibMH4M^4(d7xIBx-CCX`(tMtW9+{{$;X<15?P> zE!aTDH^QK<89ULAafY^Js^hgrFZ;ElxU=3SSIw4iSM6(E=-Rz{WTCeyj~Y^f+E7Dn zNLF>K(5KL+(5KL+(5KL6Q_$yRp--Vtq0j#V`YfPR4F&_He;CqAz;mEJn2MJJdK+2> z#glDu^C*{XjUUzR_HRMkPIzbX+ITQ;4_yZJUTw^#bZ>71)$B0J?n<(|lI*TTwuO=C zNly5-k=>Pa-RXF-sT;-4!0Yx z#8XB*WyDiPJey*~^Gg9w0Z#!>0Z#!>0Z#$XKPz~4HdF<877NASjI_}H9KS*;@$+v+ zrQZa^P~15z)Tulil|q$M{DXPC5o>>TMx{~EP`?0*+p3SJb(;)!s#u`Iaq*#T>DqFC zGgU^zEIAosCEp3UG+Nw3*O#g{hjygI9p3qrcwT3rF~3A*QIs(xkvhK^dJElH8yrVv ze*Tek+21>d7a3*H@fT#+^FMQArO$*ug+7Hog+7Hog+7Ho|E%=ch2mOf)MW*fT-EQ@~TeQ@~TeQ@~TeQ@~S3 zJY~MUDZq1`fTw_`fTw_`fTw_`fTw_`fTw_GQ-Ehj0nh(b@U$7Kl01ulw&(d~U~eA1 znRYC0X6Frh5~<;msv%#SE}5!F>)Vk@XEKoatDsb}9`&}+v5&*^ z$d+X^P~FG6t~8CI?Y#s%1v~{jWyDiPJY~dFMm%N2Q${>x#Iq?zJhuvX3U~^53U~^5 z3V8m3!86oQmF`&_G$k!4iz-fF5ZUDPPoOAoT>@n!W#pXj?w#3 z%~f4T*Vy^Vv}wArlWXKS1C=lFYU}Deu?tlm_06T4eO~w#u!N8pTD;Rcn{1_CLDVqc zJ6#Y|5L6JfDG>BkK~O|-$mvK~UlHHYF4Nj%Y z%kiPZg!KU?s<}%SL#-d>SGv|{M@_T4(p~{i0Z#!>0Z#!>0Z#!>8S#`6PZ{xSiV;r| z@D%VA@D%VA@D%VA@D%VA@D%WD3h?y*p9h|)hN`xng+Co{>Qc0?l5Y>mq>|I29jJ7J zZz9zX#!og}S%IyA%AYZ&QPl8&4EGYC$?^VO$h6fT**-RkogeO`k!}32F;Fs=50yswv?Oz*zmaN=dL_`ctA^pO;|uaA z%8Kux*R2SMqPll=;Z(gburqZo4Y1S3c|La9e=s5m4y5PQ=b@RjW=05hD5?za%DejT zWJpi~ogIovlbO49@pNUUUoh1^DhMhFDhMhFDhMhF+7t--?f*OkO`~fEv1O!t zI~)N|0Z-Z6GcbksWW@`|8`vJzcFov{c8oK$B~u+O5#5dosBYyM{Gl7fG=CbCY@cT8(6j9E2p{} zR!5dS9N3!b-Y`Yc&AvV|%`WRZvRHuZs@!TCU&2DOmzNS1(pFo%6gE~yfjpad$qQGpLXTlqStvDpX{ne(7cm{Tm z5lU?P0x{YW8_0(#@YD0;nw6kV*IN#0UK&Uo&;2;+{U8XpG)urELch zcI<$EGS#;83y{y<$yVwWL=E%3(*;2VK?OmZ0zpFrK?OktK?Ol&>{G@*W$aVHQ@~Te zvnjxHn1H8%r+}w`r+}w`r+}w`r+}w`XH$S@pn#`i{xGY6=a>NgsYooKUv*R0i9&8R$Kvf0Z*%qI2K)wP zdB831weOX4b$-;iI5380E&`?h5jIvjCL^8#o&uf%o&uf%o&uf%o&ugS;@K1T?J=b(-C!70>eHg=&ITa4`~`>ZjY_5}M{soTSmPKt{6vC@nKh8{HUXM=&#_jz@p zxRzmNQa=gbpW|0ZC4TCcA$g)>iJ5D&R>Y?=r}?N`bEWJLAbOGNK)owTlR*x&LFgRXQ#UJq0`kJOw-j zJOw-jJOw;u#8XB*n_|SXpNx14cnWw5cnWw5cnWw5cnWw5cs2!iRtR|hw}U5s5$rF& zE$BI+OQ+hWyd88S&WPV77;0=sr``xg8ht|IsBy0$kot^nW}s6;jHy)Kh)B>&OU;)o$-vFxU0T%AP z8uVQ}LYGF>n**|4W2SVVhMxh-S4R4nY0yApJC|=+s%!DSVoL1bBO5E(y5SYY_(oU? z*<@p-4phG?Fqo`2ebZ>&D7>8=AE!^EV_kLaT;|28RF`Q;qQ>{}+s>C?#%tQ;t^Urc z>`(zu0Z#!>0Z#$XrU1_i0-ge%GU6#Co-*Po;3?oK;3?oK;Mo-5`Hg&GB;YCFDc~vK zDd73P0?#BvRa?)Zpm!F8ccS7$AqE<`HM|2EOEGMm9^jot1-E$RP)V{c9Py#;=xiVV zE|fMl9D~Y5f!Q?Ak(2#RWD7?-tUYe1c3`af za(qw#RlXI{k!p7P8>pd8q_KKpi!l1IwJDP-PU!H9WKRDCit^SaQ1+tc-DppAkb#c% z_ifKVEMcJ1F?v6$xvJ~v8aqFkHcdBna*Z5^1xic2+PXSV>_U}CeRHX1AC@4MC4|J# z;+@{vWGnRwqK5h2>4Knwpn{-HfuLnF_9+M|2r39F2r3Brze3PhOTd%NX9Ix4 zrjRx?c`)|-!7iHy+H*QGhti+-&2<&u)!ya1IfEK}jKJs9_|0AqK1WbxJ7X}F&kyWC zwuO;^_7lEs$Xo&}H$58=O9cy?ccpU!gUwXB0SsU3@{-+^+UQKxXMD0;*422ak=>O( z3;FZxu4EDL6z~-A6z~-A6z~-Alo3xE@sttIrWoyt*; z4(gKWR|8LU+#ZriC8t9>@FYbd)eqJM)0GuCqx>0T8bu8c$Z)UznH-PBN2aY>16Lf{&};Y1UfquKZ7P8xrgEl?K${D8|%g7BlnX*U1-N!!AZQh zEuPGabz!b!7viX4kS>ZYPcY#F?G}+Hs#C(+cwo{(03J<34!@dhXD zI2hEC${Y12R|93yx|TuhsNv7Fr~D%_>M8Ik@G0;q@G0;q@G0;q@Yw|L$-maBGf~|7 z=B@ry!Sg-=PXSK>PXSK>PXSK>PXSK>PXW)Sm~KBI)9nJD0-ge%0-ge%0-ge%0-ge% zO#z;#1v~{j1w8*~;Mv(wmG0RI=-UMm?c^7YWMlbX@zZC=V*Ex>nZI{1#m&L5HI>B# z1XJuB|8y$&KvzUFJ_(McWAA&1knLf;Y%E_o20uVob5$oB%ge^{va!7T2RAC`>inp2 zabOJ1T%^w=-&ccE>A(3KcORK_7X%dq{i7kM{FJ8rqS2K#@z{7#z%$ZVJ+Va?zl3E{ z#R=X5#_69xQQo=)%3jpG8|{e>0-N{uZSVfoWC2f#iubY7i~|Cm0-k?Z@T?W^6z~-A z6!4TucbRmTNq3oamq~Y-bZ?4D_o)J&0-ge%0-ge%0-ge%0-pa4@N^og5nV)|oUH13Rp@x1T8Fc&wU3WTOZ0bg_Gkgp*vLdn# z9a|fo%Rj7?O^>$GnX1qDWVx)X;k(Pwo=P6UICtD?V=Tp`V2}K=d%_KLGZgd48%six zXjOLu_C@dKok}G~eS_(EUm5%S!;XDA1VIHs1wjQt1wjQt1wjQt{~ZXLPl@Ms76DHK zt*eR1qK4IA>SJ@gJ5k;15dmZ>)XNr2TMD5 z^vj@&Nd_a?Zu3s&757*UG{@AQj+^w|DC%U8Y_TL;EXfv2yZsH+&_=dc@=2vJ-Yh^LHr%7~|oc*=;UjCeN1i04N#;wj)M;3?oK;3?oK;Q7A=&mcq9 z5YM8a_;c98XYyd|_k&SL1MN8-nM3K%`{ufe?`rSz-JC%UKE?p5JdMRYHQL~91XZ>( z22=U`zz$?v7-^vN6TWT8T!IgvP0t3zQo+LJUFqDwU^A6&@HJ4a%PW~oI+KBH`>ZYy}h1_h8`LhylbM+s7*z+Et zPoYntPoYntPoYnt&;Kob29x=009FB*LfQy;Qpw2>EBQ{qV*JG|bbYZRKeQty?(mk~ zl_K)USgM!Zm2Qd1r5X9U-gIkM{0Ol6MpZT-q`jeX{Br`H0-ge%0-ge%0-ge%0-iG8 zF7xe8G2gyez*E3ez*E3ez*E3ez*E3ez*E4pDZn#P!1MnSJa0EtrD{ulT-&QG6lD#` zp>-<)qNwg&T{u;54D3vuO9Sk*ah{Kz_8*K$f&+_pPJJGlNo!`{W9G}1;azz{A1wFT z7nDF}hvFl}nY(rIbY-VsFx5Wg?VuZR*jQ-QP-8nf^+qrf>Jt)2je8A&)Ms=vL^Z^i zO683h(l5_6Wl-tFh>n!)@XMl`*~S#w<$%NZ6|Q!1ufarDLUb{->Q#fex|NsqD`X8h zp~2)=9$}}_qu8y;l!~p4${yC6X~*JbcCvK~PNaqpgF-0x4AQ-)k5{s5@*L&(&gF4t~AetRZ6yE>{8S?$t#UE?$M>wTW^M#TooG=UFR0ZQ)7SsVDh!;lBs&M zzMXsBlKHD3`N;hjRO_ZP`N+MdjaMoaw?N}9*z4W-x2?APs>gU|Qe2LF@~1slbj%GIY(t$=4zb)zwg1UzY(f)~+K`@&P`RD%J(Mt!@n6`k4@ zoK1Dl`{12%O?)#d{S|Mh$71|OP?^7XFvZQmqN%c&fMAN9W6eIVM7sGCezdPF*^o*1@5GDf$k$9Asko<4CmN$SS!vrrgdIEJpG>vw`~s-v zN&gPCf3-eW#y(~2Q^r1J?6WDxKGzC(3V6zhr%bxbq`OSI3wR263U~^5HU)TI74Q`B z6z~-A6!82LgJ=5Mpd>?;muFj`?RVj~#ANKV@~Cev4-gxuEFmO@7Vq@VCR?dj5H-yA zP8S3f1Qi7Re~zHEx4k93bSx-zd>sFY=RZmOCzb!y^Pe~P&v)2=e*7X<@9`fe|0&`> zzpz8c>S6xVpZ`3@f4<>AYxvI-)Hm6ZsoOw{k}aQ6yL?Mq>hOUjiJnWb*yy=#FiokJ zyC}$PxrJ<>S~BQxDjcINaHOYM=F-{CP&Hpz(&*(X(Jk27#? zcpbvJWm=|^|Eo|t{jGKi%YtM7R+toIZBI|Kd3_$tM3c26Wpsk6e-P%OaBB+Hv+39a zvozY8O+&L`ZmWQ~E88+m|Gu8?xEm#4?TmcydJMs)@fKe?(ixe0dK=7=JZmZ~>4KB0 zHo~l&2=A3HmI?IwdYEOmT9avW4!p0c{}eW~=4)sIGw>K8_bb1eg@j7vGco8@l0XBkvOH_LSTa3GX= z@kx2Oc)u)|YE%IhM73%YOkCVdiUpS(c{fZoA8}UX7< z4W4sbti^SoEy5wqZ3sif_)_2oTRJ&}{%k?im1NmF(Nzwc+KFS~!gy|xJ+QjSlL{ILXS=82v^83Ns|Q&Y z(Aaxnl}tu8ZyAJUx0aoq23zi>;Wbbdcj3}OqwHqV4Z*3wOA%H#9%*00=EW+QxTUfv zV<^nd55p`j#8oGhBkUN5ZC!}4`bj8@QxDoR>7HQ-%exO@YRejPn&R~XNOW?UQ(=1IGg9fn9!4^qM}4g<#c9o6`3LWn zPv8xjjh-g?4tSSY;Z+N$>?ah^J`M}(hcLAzq>e&MIL94|+UGgF($&lrT&Kj6MjS9%I&bv7(xiK8o7$HM9OtLKExW6`|h`B|hEVQQ%( zhvtmKA*IU^Rx=01nwR8gMs-7qLMY&F+$r6-V?bBrOH1!YFaBwFm?-Zl6!;{Rnu9*` zk%Qyo5z8Ib2vf`3dJl3i{tlRG1OBDbkxqsQIOP602vZyIMwcUw$_JqMH?gDC0Y|_@ z%bj%p?NEq$Dt$swYJ4e^VCGEbb0=A5SMT(Mk2&awao=;RCnJ(5?i)>BPCvRa8TCK4 zuLV!AGN_El;W+fEqdna*1?BS)pU=JBu`dwx9fHWtEy@2!RNMnoVLrx1cqQ41{>ApnLy>NWSPlt!@#XYmO7AkHUTHz&5I}SF|sw}702mCS(2TxCh!xn#4 zuwVJ6S4$vd23r3??zYsDUm54b_X~ZUG44M7+zcdi7o4c7C@P(aN7jK3Fx3WU9_F-C z$61K(S$^!O^HyhhSA_9 za7-Nvv!cclPDj{GegdX>sbw(r;K$LkOA*zAL7qdpJcvV*X2NWJ%6SXbvpJ2^S9RJM zNnIX-S;W2fnulq780L>$w;w%h z89@X4Lk)ez(wB1WP-+B?kKm96Jz*Y*&JU+SE|}M!fm!mtGlGt|ELM7iJKFTsD8>`q zQ>&-#T8-mk`G$(EvJ9e@{2);sTdLq#yU%0BSHm34b^Sm!BCzd%x>1dK$l!)Kn=GSf zdX*)cLLar*bSr858kFXeuKAI)3;}eB?|U^`-D5D@EP;tO(~Rb_xuLVidzH=RnJ@=F z4zhcRA9doyoxxmP$MsUjjrf+mP<}Ni zqf`7~#ku`yz;5L7dJViU_CeUB^$6QC%+2C!?dvdyJ%t3F;M#oX-h4CZ{|ZM& zz2~@DY@WOy=EOzF(N#8|84Ppa1~id!uEUc{;W)nmj?PcP?DaH~X5ojvtjwH`4x2#flM0~J{JyyfjuZUU8TkYvwLSy0Ctp13Nz|6Y=29oj zL+kRR$h;Y5b8gA%xf|Iu^5gM|T3jvRS(rWe!L;OAB*SqhRLBd6wAmIo-ea`7MLaRh^n5=XKXNi+jftp zuDf7H@vXXc7m{{hCe-9aT;rD4;JBS{H<&)O;x)@#v|u|fxjdzN1TEhU@0K)p)xyy4 zf%(~so&?Qe(~B$SlRc=SceX$cthbcXOZiadyzb5DN<9vVp9}N6rF$!y{5ni~C7Sq` ztbS#%?y=W0n%>|p>DXS>#OM58q+V_KJ{)pq3e5U_Nb?}_IC{JRM=jq=Ti(ERXFcRe zP?t9?eakoSu)@1$-CxG9Vs(*K3acMk&12=$5o#H$Fjk#e#j;9fmC7ocRSv5OtO{6t z&8k1E5>}^wLcCz|_M@rsib&A72 zV0AyM)2!ZS?`2l%5XvvCjTA3+{}SyR_ZuS9xHVerzfkY*gKe& zjn!yY>Tt{yR=052JXY%P&N5a%a1tJ6^$B~QW;LGG^Q_dtpFON@S95%r<-P3wnAI*; zXITwm^&P9fvieIVR4%JvR+m||U^R_Z604V4WwBDnmF%pJbJ(q{zG8J7t4plLW$Mb| zVL6=xKW4Rn)rYKBv9hyzf>l1N&8(hbwS(1YR{L0OWYxgxE>YJCK4ME<8$#&YRzgGt5{ZJSyi!`#%d3%`K;b%wUSjet2L}fc>M+K?-`csIq)S` z>Hz3oR$V#l7^^QiS)a11BL&unJ(cj#VhDt*k!g<6dEPoz;F;H(9;M zO3%kNvTDKVo6g+-{mkyaao|A?^y>mOj#UJ!=B(mbbz;?l)eKg-te$4ogVkSH4P=$W zY80y&R+Cvh$Z9UD0jwTmbq1<@d^O9N9QapO53#CawSv`atUhOTkk#F+K4f*06Mcr& zhpfJ3^)0I#tQPQbfjLmWa#%A~hdJyPR)bk(uxh9Fe^!$t8^*XBytd6p}laKo(hx@-q4m{6+b2#t^ zR)6C#eOIWTSQ%NJWN#~0&$4RIsu`qXFR$sGHCk%dK^%{ry=0f#k z70&81#}dct1-1W6V|jqxU0JPWRmf^Os{yQ*v$})T89sRut6&bB!|F7vrL4}gs$$i^ z>M2$(R<*36SnXmpnbiTP^6^7h9_PR>S$)CkGgenvC9wLH)jC!I-Jm+Mie`0)RRXJC ztU9vV%F4p(RaU)N?PWED6|uUDl|QSgKMB_vD(SX!ODwO zF{>Z>xZ7FzaoF9g-efg{)g)F6Ssmx&Dp~d8u(hlzSUt-sjg`Wx`~u52SboE&yu+%D z!#-nWVRez!4fg)XsxOE6SfEN-g|RZTie+_)k4t5>pTlxkHL@yT^#yzTvwDQXN-f;~ z-N$kw2cBT}eXLHiTEfbQy{lQ(vRcn-Dywa*9ISS->dxwIR#sLYu-eY*G^;#Tms#=8 zKac-~)kg>$GTvZ?yocRUte#`lmepcbW>$%;@>tDc)sxj)R)bkxWi=XV`f~4SlkdED z_5G{cjo+XgYOtj1Xh>Q<-nZVh?9y#eK6%%2Mn^y8*(UR(-DEn!GbpcrV5y@YY&MfJ z|G4FVj$)p&PUcCxTj;ZoEIsJ9&DKz=xrWi9o*!H4bScWuA6wqn(Y0?eI*JLt`{?tl z!1>QUMI(FxbE5|Fps#5w#DPEEAO(UPCvm*xqR8;r>6x$o@-!g zF^e9%ifarE#x;DtLp)zAJHE4A($ReuPdu1*%%Z|;II6c5k-cyYN0lg}uk%s8{gD#P zM&{9tpKw4Q1ClfTZ#dvBrRC3-8#>x(b57<-%5L<=uQ;H6fm172^9_{U3r=U4a`lGg zqK*cAhY?A&Xb_z?k@=v`+Jh3lcP7veI%}Qo6+)b`E=y*#%Zw?qy7QJuF@ywv^J~(gxd&tsuADmaNjPkW!(9tsA?lDx^&C!o%Lv4Xo-r91O@iFvzkhPEw z2XxmGH^pGBqh$Z?CZ%J5^}3GczLGzg=S-(i!K;WhH5l#|JM+VoOTkt&p1U_7lbA!D zP5qumV)vQgPTYvBEef@MsH2M~;KrQlz4X#2aF2?B`@v70CZ$cJ^_Y&PckDiy=UC^F zH3Q|VZw7aGX7@1Vjb_%*b=0R8XJgK_1$AhNY-QFt6O_kWTBCF1MtQxj^h&V~ z)VqV9`Pgby>eH-~bad5P(N8o!35M3sdfMSbOW} zLM3vd4yJ&I+R^-=90wIpy* z6xBXvYoR3G&Kct9s?X!>;F|7HG`T-=T05M}dfWlr*rsdwU8$z4C61PjL^3iCA{p05 za;??7Yt3>8YOP+me1|p28)2_6wWcd6V^H`o){n9^Q`V2Qx>RGZJ(gA;=UMm~3>l#s zLY0MgTL-|Wd^Fx#!~f5oVBO5eHVksaQq2{sztVG(bq;&>Pe$|8*LzX=Fl%cy8fDoO z>sWSuH`TfjZM?sI@^5PmT2Rn*q_$?TU8{^))4Akehf!%qYiniK3~OJvt;EiZ-YM_5DvmoJ%q>1|NnoX5AU8b1zdNmsUa4^bvm z@XeSH61BiO@n5=?x`oy|HP7rHtdUCBMQrPCcy6G7UPBQ{wk62$ zu^YG*wl3kkLTat#%2Mkn&Azpb-RQ1^4$H0hsCs92AEo*sZuRQnrmxZJxr!9Hk#r7J zo?BsEtfTPto@S198tv)ODqQWe^|)H+O1_$98=ARVvU47`-lo~VWm@_55$j{_z^XdC zR<5tD<_<+Y(R7;@NE5&6-h%dAv4$zzs`-9U-6My>jn?2t6a5OBDZL)$`_6r0J7^vHO+Fv=pkXq?Z*}$c%+P{@D&rn*6lYpLRC4hbiqgTJP2l zDZZ#x01in|KHbDkOFj3<55GGisl0zdxbo~~>wRvo(rJrzxpp9KXLlVThH&NQt(@3* zooM@NuXuDDy4J0QX!eaa@*|Y7wbpPQ+gjy3TgOGG+K&~X6s*r%70o{RlBZ%~UbNO~ zffaq6TC<%vsvw=xV$eBc?%-ZSjiYk2r{sdi6`-Xk+~>9n0$F%g>a?JmS5R{P!PW#N z=v6K`NUh{bc3S&s_VLN+lU^HF5Ttyt%R1T}sPx=zU8DI|u7Q8W-34uw4)xYqe;246 zdEHv2*}oM({W_tb75z9Ftw`C&Nm8$g&M%6NOe%*-$;Re!xTP$bP=Z+B}Nq z3;N$#^!1}?+_?v=&2%iehm67$aDkBmVo?Z>ALJhL-YE|4xr${+DYW=7vbySCht}s@ zJ{Dp$dx)vN-X5ydzh_O-u{0~u zA6N&gGEAvBZe5{CoR0#*0b$DKkF9fc^m3@DoA~E-Ps6D^4B1Nklv4(&)kN7zYlYiZ zbf=hXRM(`vcB68okuiX6<+;<``>FEQGuC-Jdh?v;N+>aH4b`Bt*5TwjkBfYGmdg$@ zbjNw?0v$d51UMe;B8i$^K<<{UwIwJIT;PO2hEhd>BThMR(ORn6>a%&}4ctQwZx(n{ zy?#)%yZzn&jdiGYjQd{r?U>4y1tE&*vb9WeGm$9hH&9gSB}$6$xc|E-zeP(#XA-8& zy~=%-dd!~l+y(v?W$DWWCdylfV{ZAL+Y29~puNo2(S%_h&c>vE1?AkN{6xL#G8OOsHVepQvWXo@{MD3p3Xibr7N&)gC5Ayu{91>C^n&33pTlF(y?DPRA> zMaN#H{05^i%a`u6UDE>R>uq>NQZG>6$Elv4Ms-Dl4a!b$+k=`X{Y7`gX;iw)FGyMI zYr|7cJtxoKcE}&2kGj9$AHCDuHkB3_Y#ZDc>>OY_u3e^ekZq54O63)IA-1OFXRu~Y zy&JlQ*#0S-R1<28Q!W{8%iJgap1TUAPo#1<)V5TM{H}1@dzvhYw7sKU$CI7bWcn7J zep$2)cZ{0o5p|w&D%ss9hK_`yO2#y|p|51O@@)&-Cz?Fj%98^!KW~jvOTP5yf@ba- zZ5eArOHt2xBF?s3i@m(LC-w^eLK9iA$E5N~8yo6gy|||h#VB18Z0LITcJs6X+_>t} zz}93=wDq9MJhX==5^ZP?kXn0aOtKBqY!eXD{j43{-i9tuJqXMmMX(L@d?9MzE5(Lh zX2vvhsGg;UX8Iu&v9Fq^z2+)+q}hO(urbXkG?- zl!y$DbV;RS@_${h7?g#WpL@j9f6dC`#KZP5QzsjklI`k4==Tw0D=K-sXQ(o*v+aKE zK=rB1p6V8b*pT!6J_f~_W1FLS8$UyyE#ZaWqYjREB|4XjRlR_jNt`_{b6Y>E)FYkG zb>npQ{0J}pp7oOxDDh)Uf^x&cS%%c!eY)Fhb@aE7EhfdsZqs|I9;I2n4V~c=*8J8~ z_7i4BJ?kx#DYL-VLpO~=ci7r0>k5!Z7%H}YQE0oJjrAZ^Wn>ZV9~hVBg5Bp$vSF=d zhr&QgJb{k3Q!m>c?3*&t`MWPn`KY&TDuS!O2E3|g#O*@qEW6b&0Ro2PTxsj=bi#|uucLO=TW5*k$2 zOfI|E8a*$!NKh)p&qgxVe2%hPF`JVCsU_o``}jJl&DT+Iok!hv^-es#)Kr=K7Dg-S z^K3J;1M4I3cu+m{AM}h=E|lBw3{#^3T)92fcN8{Lw#>H;a61$v5(Rkac_&6Wv{lI3 zO5%(~NZJ=K0EeGk#7TqHl6HEr4UnSR<;S&nsq!M;yQeI*;gy0t%9RIg;0^U4t{DY2 zgJqSDs}Ed-TYW-azDbF!wDr@wJ!(TtS!0V*Fj9a% z`OrW_$Iy<&d`}Ly*{J1OTNy1{f=kz~<%~dT8M*c( zy6F$8b(K9@*}cwIpm+P!hT3vTVFcBmLxbx16t|08KH*VAZSD0;vYqtw{TnxMeqfuG z3r};)gbbtNHXwP#(SlapS7=aHZQ`0%JywUuvo7M+V5NAoZQ4JbQS35 z^_&w(&y!{^n%~i{(foY&*=Fh8p18HB`L%D_Fp6+nw5K=5BKMwj@+}leLNi2E^fqS$ zQoBu79NY<@Aws{9RnUw7;hy9q(~gU~8Q4;QMHRcPU*zU`|kjRZh6{8JfQO>h!~h9Pw-g zog^0JFQU6&Mu#}`1m^=%%g5SJY~wW>U>K>SowQ+SQ1!D-uw$xU0t%=jXep<-^i?nL zUiG$8Y8&~U4So#QQSVu-_U}k9p0*WI`IERzJqGraxG!vxc=dP^@3HDw+L$v)d<`M- zF_e1A)=DY)(w3!nAE0K#autDSUx@kJHJ&;_Hq@^NI?}^~+oZoQsQ{A7wgr36V4xz}MXhe~hxj5LZAp0vdiM#^1 z=QiM;sqcp+!uVn#hbDZFBy@iVx64Q0bIm|%jV$&WGS^#axMsUw?+%V@iDyLFPquO$ zg)~P4^?c}HrN91+SUzfwj2M66j6iA`>Hn+kUd;x*8>@EPQ>x!achKS{cj|oHOSSfD z?Fb&0z!AyrCbeE~N6mj!!MEf;ena8%w)Y_0Vo#g8>1{{KVQbY=;A^j=PZy$`{Qc}f z`tYhaZJ_@C)#Fd{@~E82w7$Ewz%IVk! zM}iU?WJmTOwd~y)Y)3t@t(*$6@6=rGQ4~Z;^?ALFWcr{mQ2EMa2N9@ey5C*cZ7b{< z;_ealhS||3Rk!<6L?nm$MWGnJ9EDQf9mUCl)RLud zW}o1;6}(8`Zf2K)`g>SM*$2?X@nOkgYJCv5(!m%mJV>qDLt{~RIfv~g<(*jj1ik7} zKpBXn)ge!J>-iAHLJub(4Hpif{rsB1X@JzyU{AE8jjA@@Yw(iM+>Q^hJ}*pA^zG~m z-5#a7y&dBw>OtIpxeqE$z-KCx`lBH)PT_1%JO%jneC#rlN*e*+r_(sukXo|arz6=} zpJUl}jSJtMBz{#GN4OiKlq9pg6?zsvP<>BteVaYdWhyi&cnbl2^{n9@OZ#Z%eky&+ z)2P19;_SfIdi+k=_PaDYBn|H!91oeYdbLy!2@Ez0FA-X4x;>%aI;ryvi-Yl*a~?X=pb z>Q#@5UFzk_E_mLv7CSip#D{RdYM=Tz=)ru%difzVoFDQzmylYeb^2R zVaGtu3zU|Z{6Ti0y=wF8vQj_Tjv*M;R$nWS$mUd*-^))~G1QK+XVt@4pupq$JDW?P zIhCx%gWG$!9WTl1kt&F>r+S1vNO^9AeSqdrffJ5q?l#=3lyiUVPE>&BBdS^S*k}~~ zGov`ckXnMjzSEAeKem<9yX;#vm&(P6E}Uw-M@K0G$J+aA9(A&XJ=I}7{As{gG`1hc z@x|tT=($nxiB>rkeT3Vy|2=#$NbO=Y!G4F^Rt%Hu&uDV*WcwEFC{O;vD6X}C05wdy zHGmFX!63&QQ@FC#nA8_Hq`-ZQ;<(q2CtX4kvWmHZxpXNBxvZVeH4CXV+-o!Jb-FIf zrkVCf^zLAF&hPH~I6dlNY6pl|1FNHZG*g1-a)wn0<^V85b-#V4j;tY`M&S9*Y%ZCM zxLi;L=Mz%PXUTl~7`OfV-OM@?igtOCej5>AIdMVe#@z>Gh)sJiN&D$K>w-@y=?;%bfq?W$D z%eY@rZ58@C-&D8U-cp&kf|J3X-%_raR&l4Q9?i38N=+p{Rc6k{b<}sG-@c=J^%2|^ zwH2P*E78T309(7gCa$*E=|9ygu~qil^=i1Xg6w!38ukVHLwtJIiMBt67;I0^XxwzR5rCofHJSfK27teZ?Ept z+uJcvv)>-B^mxi{*W7A{4R=d-p?>gJF4X9*o|?yZfh*`tS5&%vBWDj%Yhz0{A$wE2 zl&;U%m+IZ&>Xe7&MZks1`>nTdTycjHSIt)YVY+x2(NsRi8HLm``u;XM@R)4{c>Iy( zVkjoW)R9aj<3g0G=j|BbR1d-k=M$O)maWxM=rf)MfUgwi(2vic0jzkL(+a7j_5D}S z(;eQ7+5YNR?WKCRr|dc&ALd8=jPBGHyoS_Poy0T3^Lb+q+4i7*-qGRFuyqfTtsAMl zUXRP`M$$Wt7^NA(Q#>Urdc-PQ_M+EB@ccXRQQgRkc=u{p*CR%m{)Rhva&t_Gsz*1* z-W}^Eqf=9&D|pJ$MM& z+c*;y+xxKH$II;*nTxkMTr-L)+Mw5Z>=;KmbQ?bdM_M}5vUiZR*yla(m)GCnYJsgi zigVwyV8kDWa|Ao7v9^*-kFZS?L z?*51y?teKOZli*cHc!0eQ&4tDbu?W$S%|M}XW?x1h2pzUxHC}CR%uc_rtYI#eckPL z;YrTkL^I!{+6Si@G~*QVc(aq|20eX>^9WnZW8&xBEvWYI*@-)iIt~9G&-^b={|on( zPj59T7#>4+sh()P>MrGIsyuA>Q{v7t@H}=MH@Mm-p-CEl`_Oeb*?#t*&%@_AEwHt; zeDD>QH`@xzyH0cQi>ng%jeU;h!h9x%#^b#(5MA@2-AZcozkexv>I(9E$qS>=y}sq> zAww1P{EOUD?cxwyG?l)KhgnU3JZx|M-j1Of^*|8yBc5}v+n4F+$h&APo^NhvQSEy? zv-dZS7}C@A|IGcAYODQ}S}m2AdIVFehX9v`U;l->{<|K*O5F{9n5!qM&sfii-Y;1l zc))FlMBDd#+iRu1dPfg3w)ETpujw5~1#GSKblwh(DzU9jIwP(qs{E-(jC-u^BcFfr zDiwYX;D{On$~%GLeElPoT!Uk*j`Ux7p6s5FiD%H!uh6S(4|L$RgVcJJAA=lqx{J!@ zV8>X!J6L^qnoSP0^Ox^NQ~bv-k4wUkiL!~F=C~`2GXdM3i5(FRv;fsaiqQLwaQM-c zW{zm8x!x<#os%~sIf3dinEwu;ivA9N_c6Z@R4tBn;6_o8QD@UH55kfj#Dl@D+&;f` z>%7$iK7F1>{OJ>b8^?Wgz7v|?ZEZPgkf91D`|u*dl2imh9Qc?guqasRk?6p)mp$AtmBu8;U$q0( zmpApmhGs?K%F*_YX_`lUn0Y(~Wnqc~4-Yl+#>tK(YKX^o)0^th-3>@{;NJe-!{h8b z(j9oM<}jtw>_A&r-OR1TQSx}ZQkvnw4Sa7m&kgMP_Io&`**y2|J6W7N*jnq0%;s8A zZBMNNphg*^Eq`9e%%$v{&VDm8pl|4mZ+>lq?S77Q~hI}=jA)4oLJbNHZaP8K?=5c z#!RWXlhdlY)p@csb8mcBUQ*;w6@!ZmZpPny7uPzDi6f8OPe~ukz2D0hJYCQ~?+Fk| zd3Pf_i!P#;Hs8&ufYgfYoAD0x=Bka}+(aGBy%TBAkRpS!Wr73b$sVQKB!^3rxM?5* zU-NVe>hi<$QydfNvKMbk=az0Y8OLwnbOI?VH{$Us|2VLms zr`M%dV_HTjUCiC$d&!>stKAs(PRO9SOOgDV6hw1=sha#053r^_#LW_}P*U4_&?-la z(y+|2KnpBg!=2>hA`SDNU7@C&59gjn!QptC|NJBFXwTLRGb!$8&y$TF<|2o!q1|VX zpeK%1R=FH^>)pZXa<#)xI$F5PJ-?dsKlMS}z3LFlMwe$>hpvwz3wbL%kDHB;az0>d z)o|f4?jcp12V0cMYaBJ2%|k3o`dY{RZd<{a3T~?ETTr*yA)+mPT7#JDk}w^p;%JZc zj%HZInuO>5)Tg+s9={d2Lv3Wxk_|Yr^^53~8aFuFV+`y?PsX}#bkynJ_ENsy=)gNF zhbvfPgh$1~Y*eLM5!iGhgI?W&82WTZMI>(J3_xm)ef)EdQJSqj7M|RUf^Y2AJ6JK* z@&jKzQhm==J#`Nh1u1XVIc8`c^-WOq#4Rr}xgpc_JlCyyqFT4^C|4GRDvlSqi%~u5 z14H#RY{xKI?lmymmoITGoZN%QMva1w;&46Q>AJtn35L`X{NOA6Bw%~TPVOF5&+kbO zehd%AOS`zwR6XhvPW3t`Ct3WI^4)xMycEp~k(qFR-+JSLdK6J5KHXKW)N|{B)VjCM zd(rCaTXZ)m*Y`SB>)jqT{UL{V;|`v9I`Jka{evY)x@YH(&h*|}i1L>QJx@IA+nf{F zW@X_4?&u)Hb{ulN>{g`qafmXBuBCGH_Ep6IZ3d!=6v-7t~%9L zAHs;JHI>#D1t{x3bm0A6^2CTArMtTz-=vH^#R$kA<<#eVevK|B1~%Q-}IGpTdNu~y(x zQJ^x<$BC!C8k;(Zp?a?Tt*9lTNI;W*&Ow@61!2`~_QF*6=l;%VnnxW;Q9UJ37Y8b< z0-OUh57s`b~;zWVM*4p@cMkf|usdj9* zGmGN36#FYHL!F>n4pb0WsrmUmS~(WsM2D&vaUtxOlS$u4A^LSDuvTfb6HOV?)0CSz z>*(H4#Bq0X=K#Ii;~r#f=WOQgDEwMEaYGiqgNLR1^7(d*a}Jr_#f>qxHK!9&tN1Ok zPIPo^yGPa9Ib)TQc;|fW7`1C{&4H%2PCR4yK;_8<=O)dsRvr9pm8FT!8Gje3AP|E; z{}3_N?Jf4F=4~;y6Q1nE6HQHqdzcTGpo&es{gmA)PP}UT<9X^N@v1Z@xI#Te?QU@a z^cvj##HVv^i&OE;`!72Swd#mc%u55=EbYjp2&t9gu?&>rkaV2=aHeyTUiB!ZY$skd zj(vjp6`Qsb(NcQ#Q_QdI>%zqbsTG@FS8hwHjU{o-=w|nxsY*kx6R+=TpnJBU9d;>7 zKT@3Peq!y+;|!>7mCKO<{Hj*>p4zm)Fe~Tc%Ld%1Dji_UqfS&}M+O={_VlE??3@eO z8gh6!opm~FX|u=~tsHVXN9f%?bz)^@A7`AqHOwjCnEft$)&TvhEtF>Vz=htuj27}m z56tM#lX^Pwa8PY^ZXfY>RL=L}yO#qM%f{6~Mlh!Ffq?n%52#hhXFOvV=W zB)V(N(w9^8XdAqfV*ak4?rMuC;)ed5IY_OFE)GEEA_+6D(X?@7&ty6k?1)mn8|X~b zyN{}`K%=Sa86KewAHuik9T!k>o;{zIP``_)xKD;5H@brVkFoC#jI!9?zPlm238aT! zlF&N|y^}z;B-x!ep@mKoAp%QD5TvM(AVn8JR)idEG!;~&DY_~xdKIrqiS$lTl#)U~ zMN!K4oSEGud++a$@1OVVGv~~id8eK!?^!jRM~_9V0ptio?34#TKnW94TDotHOI(8B zwHq*G%23y()E4f-jKrZV9ADxMP8bb;K=L3iCyVnxCDLoj!k^S^>RKD6_n!&;68PzP ziO_7cGh-c0Jjb%Rw@Qv2m}E+EOT#^ftkWj5N)hF?sNjyO3uQP^EA^tG_Xh{p3V!0A z&eTM#5BMjs$>erTPkhaTWnYqtH%`YLaoKMcP3Fz%{^g; zqbCfcX3LS$4ZSe;zr36?il3g09)Bqj29(6|+JQ$;OZW1XJdjIqMIh60P)R zM|{K!bfDEn?4KG~b|F7$lwZoMV(mX2OrgGLL-W%DR=EqIOJM`pVfU}(7fe&QKa&#!o2 zI5LB?)$4fQeIJ7T{0+SC!tII2a6a}easkI?bE)F6Hy0yzL49|3!0yCfVZ{Zbrr_&r z86|{!R!C&r1A#ePKiiXt`%B449?sA5DJuoZ|KNuH?lvU9^0UNWbaZtiqQeF zaHZCRp8X2aC$1pX>t7*5P2B7Lop=|6`0d1~f~y1CQPHsY5E^?CT>@U#rqI!=9xI(L z9)jKxR|bW--~2Z5Fsfoae8Ltz39qK`zgC-WeFwe4S>9Zvf1h}Wp85iI>aI@{defDq z1M1P{A0U#w7cUcX7~Fs<$XLuPCOf4c0prIh$kSIxkf-JDSw|BC^;B?TkS7JWZ;Pad zMUZN8&YPbpKSD>b#VZ28ZlftM*~@Ko0^C0rqRqiI*%*phfa5=ec+`$peggUD2!c?NrydxCoE(a9G7im+ps2YU3u$6Ny{ zx{hcEt{`9iZh$*t51JZW&efr1H^FHB2~xXz6O5v!cz1Z9%b+)#A?*DUgdIxs*6F2E zq_NY4k9jAQff4*uf+r2QrfW= z4Jh?bq_h69ZKETBGSOBtJQ23i1f1?tuHST7D*}V85T~u_ye9!E{(xN;5l|Bi-ALChV0+ zy$@!X8q&a;O8mE)Cfv=+&O}z>TrZnqvyjXA!KOnr@uK z5S|={>_3~qwGxJ~%gw!&3D@#1+Q)71b~#rA#BaM1$v$X+_?P_LI~tlW3ZJck z@{e7E9?_@?BsTe@5?*M6s5L+LCVealjF`RNp58Ya@$37!%c4y`qj4X@JHg9eT^iO5 zV&jUCLSZw+?{xs3LS{Xn1sF{ZqONAQK-8^%gs;*YxZ_)zF!XgF4g*UL3R_x3?BQ^v zAJN9NOLyG;?>43|J+&=IlUh=M432CMfq%-O=j--J;QSwWH`%TpGdHXwxF6j^^3Qby zcfob^TX+y`MkhL%k_yVa!$EwkX}9iE_nlbNL>*{)XH!e2&vh}yG2PzP)Sl_NZYFH0 zENgChp8R`4aas!~p4rp1i(0hAu-&zn>6#862{(O&w_n!BG@kzc5w#r97b&m$1%se` zqqKgAnei(!yssbLXpeh(e^acUVvkoJdOO8>%XxMJ#I?>S=dfLH8hACqv{QdwzjgIM zeDnKG4M@R#VSDOeg49ZXG=y~~({6o)pW9|O&C>CYLW`-3{PDZh^fqpvhI%W%K?>p= z4Z|xeO+iMwx_j76{(71)1i61-m@=r-Q1Civ$bIv%s1MnA;R!K=%EqETeoh7Bz;E7$ z2A_xxsqkx>%bOo-d8#|%9ONr5i(~U4gPoT zd!tR5LH0i3%>n!_j-|^Jy_0d-IHXbL=k057!x%wbGmy~qK-Ds8)5Z+E!dp7;kPQEf zwdr~$L{f|xu@bV-9V1QN!g=8d)OooH=?6}L=E2W<8~fmih_PUaH{Jac(PYLi#axh= zZ90jgg!ZtU;M}n`ot^~28||TC&}3*Bc+OkAaQGNW&MDv?z3eT7Kc+yW@#=w|(Qm+1 zaQm(Cw&@S1B9SI*2Zp&F(@cx>%!#0fGfdxcU<5ro!W2Y7$NfXxcXQBEs7HeLE#N{D z-o|I5e+)!EhCPKu8ay1(gfin3hO$@5c@*>r&AQcW({6kg3Ulb@Y?B#_JN}t4#}wrG zIexAw-1BqMJX0;t&-L?7fu5hAKVu5^{5<=tDa7;hujfp#jHR-eg{H?kP7FqJzNw6k z_dqep*05m_UiJN+$X>1I@si+^Xq-J{y>-`rX^4?o$`S5?4L9^DQ> z?yp}m?ZIZW)2kd_GV9U9m5|DJd6iFj8Hzf)y=@5YGbhmPFT4|83m3T8)6LJ*v{w*q z_Xxbz*;nvZOGla`+^?@TmE%U<-{=SMuGy68uSE;zi_E+$PD|Dz6E=7E0`3MCIo{6l z&N?V6nd5CIVXt9;{m{?-)oVP^;?mgpE z5r?b|z)bwgds1%D`=;6+xyv=-f-!%a4DS4)DcBR7w!?Ip_ILG`9^8RWpzYlTwV>v^ zkcGp;ycry^8?RKF?#^rP9u!#AWK^s5 z6EG64q0;4$1y`b3RPz^8ivl;oPagIb6MTx+rIgPQYyAG%Q_xibP4*I`sBoq#pJu?6=S(NIkoux3J*#v>uH<3a-`&1%2o!xZ|JlzB@djP9SX-UVBjy z7`q!+w*8%GlK=S;(TbzIEwtNlh_w3Fs~OHxF+zUtt%h4Cz`c6Hs~Nsi>rwYpP_XSJ z)NeWk?wTduJj0)A11diaZthFoS{{7{BHvoQ3gBpU934zT+|YAi6f}m_3va7+Y4mwS zo6rP>dgweDk=wAckt0dSMKBKU@Mh?li|8swKX->qrVF?r@`u-EgJ;&dn6)6g>K?|v zKd(T^g|09r;HWi+j&y^aeefzudWJjqCsUD*mVbjizOV$-MEdHQDM@!4TRidbkNXR> zpVqsJe_GcR};L+sNK6_tpy2UOfUlZRzFT zWN7^FrZ;qS$c<(ncF(k#R)2;Vr|-d%DAT*0f10N2bY*nVV!}34H#0t=9#SZWLOA-J6lU)$S^4WyRl7Hi)%AEKmY-Ub9mwBxC;wYR>;=)t|Y3v~dO zwBza1-B1)!17XufdSk#j?HFn@-W%f^e{glJ-~mXMPlyreeBTN^@EN0dm+p|eeSmqB zod~GbhX(;raP$ zxVf?C=a&&?Y|co5>yhSqo}XcL%#og--RqjMFV^&3G$%O6okmTzpgHZSj|6(Xha=0m z4a~_p_49Z`v(fXjq>;I)=Vw$CbExNMd=%$EMw<|A##Ya-KX|JJj&{e>(Zetik2ggT z9R9`2fXm$sx_!N}zM6w8+IYG9TbM`F#*SWY-ZjbRAHs!6ja5ZmS zuan*o>fQ#$+&ImnMStdd^`+dkHs;1p1r+wIQlWyWdMZg**Kb1c)wea%~R zw8jj@au`2X2*pYL5i35~t9Va;C{A1LEhG36o=E*)MJLXU2V>D+SgvmDfyLox35XW< z&|7#d2IBQ%{!WZ^Ums}hpr@ftU_Qd%a0}XEg5aapUcm^ndAEM5pZgoLd4i6Aw6mJq z$RER!%su3f70Kq-^2aAB9@Z6`xupy-2y+Mdqnl=a2cI}#`S4@8dAyr2k-uU z8uIzsr(WwdVh9*p-FSh8Ly*O1KZD_#Fx32qjt-vm4v=tq96_H9hu~YMkmIK5&@iYI z>Q&a^lo4PwiiPS^BcP!o7ON#1X~srf!&w-qD%zQb(1%|Ss7rT7LohlY!;`dc#*KlR zi$9|z< z26|tiLMFAOyJL{ejQpjeW1u$}8KsM3#QU02pmc6*(@W3BwiCG7F?qk$I`Z0#++l>6A2V+RyR%kYpK6aMHEed5T-WVqS(ibs!Z57Y1c~Xg^5A>6-JCeg?>~#b|;JojTsrGBVi!+ zB8&)KIM7e}4+d(a5PJ@WYW5loW!E_{&tEzW27H2{zjPH0QletaSAi7@B{QiheFH<} zHAV*M6&UD%k~Anu_63Z<<|@#o0v9V3t5B3gdD8VSathBI9OEDpz4Z8tzyd}__VvrW zO-%fxlV1e(QGx8<7lFGN1xd%gwqWVi7ZLiY2q&4;lFob~`K5{%qR* zsu26_g_`pU)l|H2h1gdwcJe~7h z1^=Z;Z$+9Y;$)(H?;`#+6*yOs<%+CS#nw3LTdHPbZz~ zg4sqf!xVW_kq(MXQiMI|Lb9nsClqO|2z$*1k6q@XMA=_1&;-R}N4Y@HD#R{wf#4q( z{ZA*oDYQtDZIa|k z*Rx=*V^~8vodpU}GNTo#r3m|(1@D+bdlm6hgni3`XH@7LMP?|%{$#-$qENmf9Tky2 zWKlHiKo&B&Ds+G%>^ByHgB8kDBu)|b6${=WMtbQb7KmNMf~-~|&nUuj!Q62ftW!oR;s{^ zLGV?bCI3nRa{DCfTg9rG$a2jT7%9Q$3T%;p$0x-3U4j=B7-Zr&OB8TPFiL^T67WAP zAWjD}i(OG1<1-R1pwh|aD{c5+79erX!V*W6#D*jWPbv_d!l00Tn_|{N-d17mu^e`r zQXS@2d728-XLHyY1u~vwU{c`9BnA^boGA>lJsbyvjSBRe#=x$?zUd6sE6^Z^!Rre2 zn8_eifmff>WdXSrs+h&BUnOYc5KrUN?o>Ro<(xeZ?tDL+hoCR;$d-QqfcJ(IAVis| z;{W^{gDwh8Sjd2Bh;4W6`&E1)kLu}oZi5Ir%`ayH!(P>z{i^zoL3<19R}eFOn;XFPoaqO!4?KQkplcBfnJGO zwlb%o0&BMBG2*!uaz9Dd_lgzw9&;uuuuuY?Z6S780-kdL8otkBa}<~?!Mh54DgjTz z5UcS4i}6$pFhqhT5{z|hlxUb@{VBn63EDW`*oHED3y*B+@1BbhAJM|QJ096`66T=m z9CT9#J+HL%+|H?$V%ay{oR!4$Bg;j91i7YoWXm}c8F?KbOS+B+i2RtrR;6Ku1jiLP zFTtnOc80lWUOg2S_X$h$^vJ5;2Xbt~BU^fghc^AE%#ZN!(|{Zfek{f#Te^yeP>~ek z$r0cWH^<;95+Lz22EhvS|C|9&g5%aiwsBkqbo|VZwqLNax^!`dx%&&AG2F%8c(x7Ys+-_*J0mij?{^nR|nT?kJpP=5XgPIfn4g=ig~Ls&`MBT&*F zk8C&*r{J09*hb5g_@<*Q&JzjZHay1QE{&LJZZGE%mz+6PLBlFYxa8EqsJ%oycQE3q z#O2`0gV9S8@$A8fCli;0rw>Lvo4Dls!HB05mxCt|M$;t13?fk}&j&6!g)lQsBA!DS z@s#3n@Fc>B=MPU*2; zbUAn~VaRg}-q3>3Uj`AFht3yYW4~p?Y z&3sS`AJobRwedmid{74;l-J1z#`&NwKB$`y>fwWW`Jg^NsGkpF8-?2%n=CHJhCEm) z4B2RLIoM2L#8wNKHiZf$+T?@Y_CfFZpshaWeIK;V2W`iCK_;k@*y+RE?Snq{L7(^_ zw-5T<2eFmKuf#@|%h7YZLboOAJsx%>GZpOX!|d;a;EK1JBs?-yLu|CM7PjGB4z}7D zu@UETu-V3ltvK*tw=rTf4m^kMUwI7KkaIcMbYsMp9EK#=Zj9KJb2->}W5l+c%fZ$g zBR1w-4w!Eeg-XQc8}rzjb4l}!5u0-^X~$I|w&Paif!Rwk*`i~nLTu78;yoFcgKauS zY~r~bY}7Gg8xK5B6|#}%a{S_huKS>yKBz>Zyf)H0bV-Ylm6k{~N0+H2DkLiMLC1a2 zNgs6D2c7jnY+iB-Y;L-woe7lZfoy3q(RV(XI;Z}7OJ8OkV6K{iAg@(zzn8lsFkNyL^YBQ{K3(iCOHmZ{6ZwkRVu zOT<9(%7~3qmo!Hiv2}_ee~aQh=KWHagDp~KvVn>>^dPoSUD70F9$Tm` z2iv5K*hFXNo8Beqpt4mM61v90Qo#wjB;>Ci?!OH_iyjpO{)d3@3E?|80 z@D$?pLKSb*7oH)pt`yztVJdXe2bK9C1J)I+MoC8dpk6*`un%(hAgoi={Fft>=M@Vp zRfv}^RfyLvj9N%ZUc4~+K_XtgFtSO+s~1MRnsLcxOcgqCK=A@3uMkMie+qu(!wfiB zT~zp>)jo( zt1}E<9>mKtmt2rBkJo1|xgcA$2J;`U&@kwJqarHAYcv*B=$Z%Jl9Iprpc_7@(;*d4 zN%EqOweTX(C0BP0_8;e!IdQ^~7%&3sT_ z56V-_7d?K4`BGI_ZPTe30RLm7vm+|ARtkn*VsotRSnI??F?gnpb_$hd$^VA9UFV z{po|ku>R&0l+LzQs0|Y2#W^#1t&Vy7m_qYZ@*Z^8U2Bo~fzG?_y9!LKp8Ds&i zS#0jCJ4uHYn+NNM`cbIK){x#{AX>S^JQ)8#bY+Qo zsP5nNV}8nX_r|5>`$4)V>Gjp-RQ>yY?vmB!_+b1~&B0yx9CXK6ODGj>#9zKl*l2#u zpo^h9Yf@ye(H*_jd@_<=7;g`u#)sf^GA+$wr1eQdBB*Guxu(0zUh_nMT>{0Hc_L75 zM@s;uePs@IA1yRLxk~p2g&s<2gBP;1_fC=4uDZUI83yNX2&f&ZyUpd;kRCO& zhSI)f)>iOv&IRd4z%Na7pSe*QSVt{TU>DE~n>$bQnj5h4O#XOHT8`aewqe!7sHEJF_F0nybao2Q zNNGryzOlBTW#3r)>M!UEde|Dech<9I1*kmDxQ;wQpgm=N2*|C^o?MkY&MbJ~>%kJQ;Qwt+^< z--&Ot5#fSyho{U@WikYQU6Zs1ly}zp2{qUbe^L*ppkJk)vyRjKymqFo5q*CZ=@wnE z8r}ELS^pED3ng1FQiuvkV&9|T^w&?;Sbd2e*HLUOl@rk^KU=RF{COpeuU%46b1X}6 z<2hP)%Kf;ztx16U#$9V;o&HxpGW>2Grn~Bn9$+g~t<#OxxhGOz!;c29vo~}j>Ncb9 z75ctT(q&yQ)q7Z-bfK04<8lI zOIo7;T~Bw6sKU(oNnIm!U1(KKO2dMiN%)Ha_H%dmrKIk<4AhvVk^A5Wwxbd5lJ!ZQ zLi~BHt{U`?Uu?KLyFIC+{)V1X@1mG@a)|W)c3^wby4rLsF~vxRZ7uGqSJ z`q_d#NiB)}qmiR+awv7WnS_CsA$sgo3cQTAGUl!=)D4YEh5~qmqhrC41B{|oPveg; zY(+_L>poGXhKy9XDGQ`Ghb4u$6MjsJtgnB<^ZGeAlST#Wrn|qpm-J46u7qYhPMV;b z@7C_x#(FXo+W?LCWh0#KxE?2k7rbDGpE_H7AWbtQZ}G2?&0xT4^kRtAqo*e$FL3$; z7b2fn1B}U@=9oXvTE~6tFI#}0yP#(B>}cI^9%#F=dnb2lyW}B8-D|4VYn`P#C4V~K zIk~g$IX60FjHhFJ^P$`#k)wC=7Tp0i)J&_RGpN|*vG&HaCpEdN{+=E;k5TTo5#ol& zpr`;{b9em62!_l~HgH`t#UO5yJZ+e3tOqkGg-YXhfZNqes2AE4d{- z^c9Mx+K}mX+Zy!np7Bu?{H6rq?|MA`q9q1 zDOvdY#PE742RhK75!PV3n3$5I|I*JbOexm`@a22lJdBE|B4vc`MLE(yM<8uTPiaGE z`k;|?jKnAQg|@`D)Heh!WfHWMqA+|?j~MWzgN=skfDKCft04?HB(5-cf=4tN+KO`f-a0 zoXRRbZ)ZSkWYsJhT2uFnD)z^YB;tm7*~1Kb)n+yX@FoXhY#@|xBc57Y2cRZ9yEkvL zl?K%PL2+%0@HPizzo?vKiz0Mixn28h7K4s>u3BTPiE~^fb%!upHTIoi2N|Gy9Q_!M z2_bB6Qnd7)O6TsPA*UU;^)u*%V$d&AuR@qE z8&gq5Qh<9*MN%yTGOTjQF(A82C1=vm9y&5I=@kgd^%1kw)RmNoe#aV@x3c#$9-gEa%cehgHh%Ao2n`B-~OSzoq{s=oO2JUoa}b8 z_I#e_ZW-!l%gqyr@m>gsI_Y-g{vXp^i(0w?Zmfsq8TF4;KX&J>NVe62w!w5~ihZsw zvvSh9!UI5@REZTD+pd_rqNuP4)8xi2aBUQ~DR~ih4Sed%BZ3?3Fa7HtQkmf04&;S5 zC_q;8q_l!F{fv5tqf6~?8T996=ZBM!)%FX@AvisPdQp0S4`nUYtk8&{bQ|J!NYM-99 zTjf@QQ=a%cmf>WO0JLSo}Q|=%*vs0fzz=7d2~8X^2vu&-U)Zg(@&?o5$=>{pH6un-03Kk zqA~KhSw0iw^9}iIDWAMrcglO@eDWgKDQ|u|<;8EOy!Y*tM~qI#ImzWkr<3n|<7tx5_vCY;d~T7?Z224` zpBv?~t$f<~ra1B|%YY9RoesX|?UdKNo$_GODKB|DR5=yuBc+)jC$ z+bJ(|JLO$&WJM~SFQ07GI~~dLIb1$plh5bm^MHIB%n^RhTPHFf#<)NBWUdVPj=1T5z z`CKWVSLJhxeDYOnC#*SsvMJ}3mYfrY9REHnWk$$n8~F^APqxUM(jap>CaLz%_Lx(e zV@_#}IUQ__p{L4lHpHCr;N!sbilp%5Q$v32(@_+*EK!)%%>Xf&mosMT@2;YrHAwXnM=ohwU1Ka+iuaFgJ7iIfU?}{_8@Q@3!^cE6X$?x;c zEeh?AEL<+Jx1jxN%ryfXuiexAtBqqN9k_-3OQ9b;>2@r$HzTdU97sE_+G|12^b-3} zkS|N@LzLvnTh!DAb-l>kn=&&{GE%`AluQXKWL2rXn+iD(l~*Bn=+%^F!PBSA$X-*K zZdjRps1ho!5^7zQuU%#KG$g7k_a=Jt77bnm?Z3WhZW!p*bCuSV_K2nBlBgu=QlpyMK8Er*IzVE5r7bvBtdNUdPz|+)_ zc5{kb2lH)uh20b7@h#H2AYYyC*kcOToBh47a20>_ZXb-Sh2OC!gN(Uj*Hj|4N@!pO za`EjQdn+8a(Cs_+?o3myAj7RpWL;N0SW)j zo(MAhH~T1%oxj_T0$X>|J^=nj`7+uuVPQl!(L==d@4+G~GOiM({2zN~?4Gzs*IJo*#OL`Hx4I9=V2 zW|H<7dSwi4{L7xL7;BDGcn%o5I#)(|&m6jTm55~B_fhjPwCTRx22yt4J`Tk8w|xT0 z&c7uJ{s%okCh`7pN}DC3Xyrfldf>nNkA0wG>^u%{R_N-%$B;zGE_`@>BP4PA2j-1g=dG2BqsXikFA7UH*9Y{$O*- zDt+f@{UhkxwKzU(?Io|ei(Qo+9*r@_CX1fuoA ztU_*7l>q)s`ZIK<%6C-)CC5p78`Tu@1iU?0pa@iOIWqcUY9tx=nVVPk{msDP1WCLK(P0HtS6}R zXQ<-!!6KCv-VPR1nT`z+qtrX3QD%rR(c=&it~3oro+qQ?Hf%x}$SgfLirx5Q>r|F< zLd6gzIO>F&>aT=~o+@PQ2{pY2yAgH&n)r@^o;pQ}GsDC@PPrsZyux&0xLC)ueuP+| zax#^6HV`vu+}}fj0=zXvv5{i6V$YGrx}GtF$)Ds&U$TD=Ez!899diLzeITP17 zXRlebX2ml!@Tz(I+Nhy$=z%mQ%i*ihs%9oR@L zQdxZCL}ia?%bZ$`#W1E>jm2Cg@eXRMEjP-hq8Ak{5v`d$qKU{;><>;*(|efwHpYM* zy)_+M_Q;dsZ9f5*oT%u9%|&O*I5M<0g}&*{?=C88D_T=pG*}_gqK=C3@d+yIh7vBo$ z)u!TEjxfHNSjhBpGx4m7c(f|hHWl)tr@fXpSM4>vg?L(V&YYm==aI;zAu194?L_j> zAPQUOErIj@Bami>Kw2NwRPtMjY^A9fFTw`ZrxoVz6qhp8pLPybGUiqyk#o4bl}KZH zv6Yyjil&r{#!k`w(Xhi-iH1tk?f>cC34fZKQQEr}SO9G>p2}u*_XO>3Cv0>jWLQJl zid66)zCAjCWZbZoL&IgYa{7ySs}vRQNYc zfP6noI92o%4OF=_J6UPFgenF7cU$Vx&V}CcYTpX87vK{$mkie;#4sfd1&X(B1@&!?PR6N(~k?Xyt5d^G`WjNQWE`7()j73A%(1o zhsT>>OM8k<5&cDXTPIJV{v_xH0q>LsiI2vI)RtcT-DGN^R>cmzPh{Z6^d> zVQ9WZ1H@pZ^%eTEAGD@L3=6Fq%ioL_&vPbX61<7O&WXc^m`y}8qsc(AT&1@0B)R?r zwF_EX;wf+KP#ii}cAK|Rs-DR=KxJpg0ujdX-x=hc6y85cO(IZ6GPnQL6F#h-<>Ewd zmUmLqfyi=Y%V&iLO=7Xi&?i-|-;MUgi3k<^S+(GT`opTm#da1ki#2Sp2!|5=vUM*C*Aow$pd$-EYNNT2=OhAFN^;tLU91mNG3&5-XT$$!ZELN>+6#Qp7Tq#5wiW z1vYO-yjU49sIrjn*u)}MGutj!sc64cFOWDP1~YrH5Cy6(OK5P4nC#oe-`2z$mg=1< zRw^aGS8waNX(GO=eJg=K|4SfE1^?~ohIn-|9jk|%A6}Da;9&0@`L9zH)&e8om=+=w zFE^mFd3PEj1}Qa$QTPaYEmbyxHbUfZH60wG?Dy!A z-kGcGsY;_Klq0sGw1T0bQmLx-9tFch3dL*`{#3YZSRiGL@=ja5@s>O`JhWNta*p5> zu8dMCrHvNj81MAZkTGhK$QdKj)tlH(RkLPMU2UlE+iI|i87sOdnZc*jT4~x?(cZ|X zG>+k?FjwMWUfVgWg?EybjFB{Mx@bg~`oT|L#)@HKw0*E8+`A}xgA&Gxskoo{;W#l2 zL^ob!gG?Ha@8RE|OXEd6NRtdP0=G74PKKDnv^+yBGqmJHXH)1Cq7JRf6w{gUC{s9% zlJN{0~KGV`{u|Org?iAaXQS|bY=%?UZeG+pkXunAqa6orY z5(}8dO%_X4jIF0=R|CWd%M|#h<|i#(X;;VL5wvP2+8P8Crika1;Pz9rumdc(!;>&O zg>@Pp;A!g+8sHFpS@>Cp=&Jjgb^?NwI7A{y>{KB@7EDFqeoa456?TxgX(9_`^)&Gu zNa%Et1Tu2E7z46rx|j^oWQL5MHA4)Rmt`FnPSJrJ^wwiD(5=7b8n}E)uBB^FdMYb- zvUkHwa;~1D8S~KLALLjPiGs9bc-3#{n&DT;drg@8M@nAV@h zP1xwQ!-J?i7p+q#@;^r^I}NWawz{Y%ES^%o6nwzHFB0t#eS}EHMy7KU*Y&*k@y5$;XY3@Y8Am z-eWF|x48M1TC{(*2!P0;*}@DG^t9+6A|)H1_U>uT{1baxq8Qhsb1%aa-J4G%!cuzo zX|W2V`y8>}xRh15IIXsD?|(8pmSW~&XJ#q2nTy(i>|F5@NauN?2gqb5V`;-Yk!a)- zPe-rQH0C#ZBfel9r)H;FXc6;a9E0wjj|C`b`)9;7C2l%hxswurE@|mZ#gB&vc`RC~ z(0ZC@a4gu@S^Q~NzUV-?$A;FEODm-!1$kX7a9fpm18kx>r%>@M1}_;u?KJJ4iS8G- zNnlr-W%7H7`ieIcx;-|Rk%ZIIor>+Ex#Fdtt{n6{JZU*Vci{rqY*P2w|H<2~q+!@z z;w=Fwka4=Q?*~xSa?5aKCrjQFrzyN0GPW`sm_9a^DaJe!HHEH{*2WP82p#Rw$mw(t{HFB8()UD;B}Bkg3i+Op7$2lGykpCE7aZ~l`NpRRidQ~jC#dVn?8+5uSXA_$NVbU`6w;V0w~xk z)YjV_k((KdvGfD|crms&WDFa z3Jrmc^p5K-u~acEy`_{(HtC~AfVe-&gYMC!H@YR0_$hP!og_xic_z&_| zxyy=F@GnM{D}3bS;7T!22_8Moc32}i@HQ;j{8rv}^5bdxV!CKT``@+cts*=6Q4L^lfFu?_@F|8v{VXI-4f#$DPE$Yr{ zOxnO>UllWyn!n(bb_2$(Li8Cb>>%2x;D1hgO-fJKd~}*EwkR5~!(vq%I#APOEsQkK z1#4k$fR?WHj(0WBR2#SC8z=0xM9Q^03l+>$w)eA+^z|EYiRic?( zz^Kr=RiTyZ7nSJ-XVgyrls%Sy(k55IjnB}RS8?+6!(tTf#&x1OJ+_FNoQ=5Gut_aT zv)LKi@CcPNZd-a?3VR*f1z`X1ny@Q&8>pxpm@dDC`q}sx6G6_U^k9k_s)m4PU-wQY zozAG5o?eI^4qM&F42NFv2KJ9ZcfKK>RPWT2@?IDC+i73hTjs1!b!C+%w~E$ZMJw71 zbB^~oRAv*Z#{kbrJFyCombwy1gn;LSz({x-*>j@St0uB)y{gMc>%~~k~e z3|k!Z&COz%l60I=C(|Ksi{8vhep|#befDh}LhPgO-xir5?cc$gm2WvYogE&Se+;61yL++}Af*A2Lvc-T@$nj*;V{w=}*(q^le4f57ju@I#3 zdtw%d>pfVS`{@3A!U?kYeX(2RXg!LIH(81fNBi^4my{;&%2);D z!fE`R5!lZ2*~hccH^$AdFV&{y|OO6Zppfw`fmsx9}ZZ z+CEuu8$J_bq3pqD;wg}v&t=7ze-4XWW~Rp3YQ|K|(h)u6p&}#?e*vp^A0_VIc`g?mvyiTDl9EzGD;xqtg7GOyOvIsXLtMP<9)Jro9!3RK;K*Yao`|RZhW@d zDcIwG;<0yoK(v6!(+9*nkn#g!iIQx2w$hlKs6yJDRl{zldr|AK)b*8mPP7WHoc=M;~NYbGWzhdm4ikAjjv&CTdf3Y9r6wpW6n~} zM9lETe%5rleaPEp#;de@?MJqXYFK;IjBmZHEX8ttD+}@Qw_-Umviv_{8A$kduoq?O zxv0gySm$XUVeH5cz!z1Sf%pWh5Zh%+VAffRy#a%={~mNeuRtA~7FzLti{HZlk!t2t z74&~eHS!r{=AWfa@lbU6dy#>B4ERAds{M-eJB-m=s#}U&dB%@ah{YVimVsovM63S8 zZPk;}I=H1XqN!)OxQ{v=mHl?+QPE3&o9S4K)xh4$Ar-1lMKHitS|TqpChtFU0rzYG$w~#b*zmj;b=+?x^2*K zu3*yq^>uMugAcc_6k!wpF+wQzN0@dpa^n)VMX+LKC8h;WYi_yl$=&gf~# zNimY?hbOT(=gWtVUM19d6|#_YM)WQ?g@GsSh*pb57M=2n3@G6#q#hYhW3vXF%+tt* zjBLXGB+tKf&x+m@bw&iKU~835p+Zus1p83g8Bxn1;|q%WQS_&TlUR=wpMg=6c2_v-IUs9OD0QRAM%@|m#F&8J108o zAL?nxIWgQIIb*5t0(LGBw!k+-2ODTc=8ij$BA47JN_eblO~vO$Hx-f%O`Gw;)>ini zlyB;AglQLq#&q8Wk*?Ivpj@bptbQFvDx6uOPLcC3V*MyXW|vUr46WYU`lA|qXNALb z{~{XXVd{5D3;|hn3A_D#?bETSMD9u#Tt*v|0ZU5M>0ZnO0VCitI(q(Pj4zV+0)>@` zPL!`DU^U+spPL%bXrU_Fa1`yjWOuBWP+dHd{u}zGB!dBXBhjBjgCmyDCxfRqXtYAp1|~$Rp^(pTsC5 z-(_{|^cHm|Ycy4K!KcfaKVwLeypL%2Pa?^uG-dcF=n-LP2*p2(1So5IO;~hoX!13o z8Tn?c<6w!}xC-on_FiJpY8hnkS2Xx1(UmfLV!+zi-HLApdsu78+E>xOsZ!gJrLfMu zi~&o={SONK9$G}qz7+i7_b&psX>3{~QjPyrj01V=S204R@?&Kxk(6*<)K;N5{)X=SUD{JL~7(HbC&mKE(RgH;R~QjXyWG^V?ud-FzGSm7meCw?$8os0#EAzTofp_MFB*sCKf||UK|}laVN0LA>&3@ zkDGQlr73-P3}Y`caOXFa6KLA+!lXM*YkwELK#u;7jmw)9_J>H)_=AQTbwHQhmjLGTX5N~xL=IwjfmXU(JOL;|vzbpC^ zHz#CBKhAeAj#Qtb|H2^wkyJLv5JB3x*m=;P}D=*9Fe?9G_w}IksmR}+Lb~c zq4GPO)eMOJ;zJ>fd^g@Pqm*V`6V34nVgq{ZCoPCSOl7pQc)Se@UJ4!1X-0!oyMhX9XhUedWlRWF7&LGW9F9oX_Hlg>q{%g9ZW*Mro_rN z&NBOIXbvUwPIZ~IENeTuJq4ZN$T18LGJ9LA+M|u5{^76nMT_oi(0c2hrKtw3KgjzA zO&Fi$wy~#_vhHB4TOXh`p*N>_W^aS!xoPD?bYfQt?%&24wHkE!7CNRJ!zKR<6flpR zbEjLo$(y*)TxQhlAbkQf3&^4XO#>+cQptUXC_G`_FHLDp+f!4GD)?|I?H_~S{6MXx zuAH_6YTZFD25LQZ8r80;S@j>_+Ez_XW4gVjHk7HpmNtdy^jcaL)1q2hrtt%QDZesh zzG^{QDswgjX&Ime!P+P#5LBj&DrYUNGmZY!7EFc3uvs8_pi(BHOpQyYpMr(bwn7V6 zQR|ek(bSmUcnVYgz7Vus#QHu&vl;n&C&$tA%9xD{)tc+i`O)xDt()--b55OC!|3U{ zTJy?56JO94g=%&^XjGUsmg#e0+BhSB7vgADraIqy4^nzlTsRt_3~ozzx}mbPhbi&u z{<942fOqB#cn89@cvkZ`TpO6+shu3tHj5-%Q z^;B2GpNKERXc5!P8>#*U+OZ9Vg6uS^HVY4={q@i*2Gad{+916NTS@h`!MaFVRbLwm zQd(b|W{l)lwU+U*T0MHB5jt$2<;YN2L$q1ROYtv38m4?iAIx_A!DnQ4^tr-9+^qec=h^!X+cQhaf~(t zWJXhMxDuKSp*dLlU23Yuf)U(IOM%;%k0`DN=sIILx9*k9OwP!(UwbPz4Nd6WIZ?DZFSCAHr@SyhEQWfvR3%m`12GU*| zOBv<3g%H*O+1o<-9i)Z_9kf|MxgE86wDGp^*Y8DX^7TVQCoMs#IBh+1M2`*G9VB z6&>Ma>d;LaVdO939LvkpEWfdvW&@+N8)j3nJOK(f(dudaR{5h+m@kKQ&efE{LFRky5(O3pYU*v7!`gH4{)gniE zM2hZ%ej&LnFIEl!{?zv%US;E#FfX~kQrZ_V`uzK1Je8vDtMn(Sfl~%|x~NRNioTjv z33k4yx_Hln);{FwhnYWytw5Wkl{k2+Qisun9qP z%-UQf@v~>FIPu_w{0*ZQ>dREGqF@tt6Yr|hwLycQz%%VS4l>=hfyFT zLhQ=1sKW2+tB}iru7;op`YodhS@)qTBd4NY;R3ZMFHHVy{Xzb1Ai#% zXiA0iHLPyaw3c+Nv#q9Dd`ngfkRA>}1C|24 z%azIA>ZY}6l~Kb!#fA^XY2H8g!V%3ShoNQkYNKZm2QURmO)o?a?DPAsSq&CPP<;JO^De7%&7d$;{$_(#p zyoSCSsg2X&mg6WSc#3jHX6QGV;gEj)}+-k52!L(%Qj!3$-4t4N)9Nx!OmG zAB(#DVzgG9*+pO*WW-#Rr0X7B$Rzw}4N|7GWX&p9cUCuyLH){*IpxYE-nSOnMwI&W zc%ZFvvrmf5uS%|`iu7FdNHKp~8$?vwsFHE=%GCm@VOtoe-Um?HF9R7 z#%XCxbH{0k#ufaw&T?v>sznw2V{Pocg|fnr9*)z}6@OKg!qyZ&Uc*{63fmo!*)iTL zvlbnOH~pu)?2~JGPap;Wal)>%uN|-pSHNGJTY#jZqSNATe2s zBi9pJD;46d-WObUTQu$ROA1<(8lc!;l&j$}Zi1GqLiVG{@|xl=VZ)|9Zz0LF3#%%p z0jrOoCKHi&$@{k_)y#?BR1f`+^f5?tUN22ldG48wCFxcCZA`XiX8LWmHiT)TC$%T& z|FQSoe^DLX|5?CA0Vx8CbnK`!dk0hyR(9{wn*~%

Kk#3#MrzwxFCO#+E#38Wo?! zY+}VH#+YIu)kIX#SYiXLY3lbqGk16I_4$1MfbZ+|(H{ zrboNibckz5?F--|?a05t5Dzf3z>o%TxBycnJJ$A&pA$R!XA3Z?o_q5Cusa zi%|6ISRSsP6Jz<`MTTy;B{8trFh)Cs5pL5rdFTl_{&78NcQNMrL+I0D!z6o7yl1tT zarC0Y`O{ovB|~UQ38ulE?=Nmg1m$#&>p~4=a1`iAmImM`lGl0Ts!;YpGqmiOV<-}A zw&yKX?_J{?*NyLrfMZE1Jm3&ITZ&cm5E?m`gDrDWMnmYyTuz%|Y~&ZTpV6^O5h7^m9@m)yy2Z)kD3|o> zZLtk}sM3J1o8}vW==3}+o;mHDb&$arI}d^<$4Ksi)_B{}6ug<>AbRp5W*R)*C2E=m z=Y=~hyE`k_AQx?G7GMI;d49L@(5?mO)E8~(zyiZW27MO7i(F&*ybHI(R!U138u|;& z1NfCxe1d#(AzIWma#@6Ozea_NFqHBXPcW{rgM#QBh;=VPetu47H$}3J%^7T(Eu;D< zq+Goi(HTx?OZ8hZJHvzmdnCQ%I?$vLlp>$cak^u(#kCF*qMVzBkDIyDoaAm2=J1@` zt(jIof*r0)4dJ-yGkPf|1npRs3eWSAgWuvM)FLeMZ-S<&-`u>vzv z#+-QGpc9xV88dvjVIYOhz=Wyf1%o5REPes8l4?5l0y<1JjeHS-RIWM!_AWr{EQyTs z#O=$tah0_sL6e$AFKQef7h;Yz@kB|omZdKlMnl?>m$=ZN<>q3^mJ{X-K>vL-YkWIZ zZYNo)Itq!SR&c|%0SK)#tl1psiUyoomOtA(5vr!#m$96zrh_jdhRJOyk=g%v1vz#p z8SidhdREi2S1|QNJ-&jtGv{3(^M);vw1jpuQp?ecY1s=X{spDx6$HmtG>ciu!PSPa z_R5{tYRaj?M1V8BC`;t!-M0(^&c#ahQ0lviH>G8(&_k-}f&e2|^Mcy68p9G#PI7X5 zIekT=gyC&-k5VT^S6Tcj&qKqj zJb%&EnELY6pUMr%xNLl9dRT367U=!56@lw9bFHT0^_X0v8Lr1#wwe+)V8&fdn>K(} zkCTvCg4VPC*6RY>`3Rz@%(xIbJ!E=2axK9q$7y{oSfIT*UJ#3? zjbwuZL&f@K)=SX>zl38&hjFoX}z z^%U~DVG1O!eH~*ympJBvWe(;j?5-U&-BBJL>uJ&(oc{=b;7_m`iScWq?CT(M^+t?r z_0+P_EIIYRBxB^V3{UlR=uHHM>d9skX6fwmu7b%I#EfQn*bM)g8F5-m*)P4IIW zbaE5wFoQxjqw8hRn$7%I^Je&j3|9ON&EjP3ye)=kfw>^}g|%A^Vf21G$w|u@FS3r~ zMPXafggD}|m2WsCf4da}GAG=Cvu67%x3*z1IeQyIr5Utf8>Utnbb1?VKZ63^LTAmO z#cy$A8s0+x<|!Y^zE}GKE{e{13vY0tEXZIs<_8$xkObTjbeu>2)jM1USv})u7KlBm^k#KS4?Ok`{-8_8aKNDte_fY@dM_K#!nG@*+-i{ zMHl3R*HNiMB`?~22+sTTnmA9k*yEHpTf`BmwVz=O;+QQh%$fC|+TG)O)2Mxh4v>_% z4~~XY-$C}+sjJE(hOnCbh$QZ#fcqDPQE|ea7BQjCIe@ta z$9ybzgWv~oxTj!MTp;NW8rnLWM;^{&qQv*nw*3!cJ;4$CSYsYXwKZ{e7B94q_8)|A z72oN|FJ?JY*m<1#olFj2 z8I}Q5ePt-ua?X7ec-%0FcHM>B=7@uhRNss&ZQT(!!aT3!gt|sc+wM+*AEJ$o8k~=> zt+76X#L3@aMLwB6_y&H=hnl`YlWnDtZ_$@pnWZ7EmcE3~@ONS9U0I7h8h!$iOXk49 z-1;rztgSTR1R57lGpN;~(3%DdkpD>T;2VAtb1BX@qE#$P*PJp8rN2(XXK{37tEF#Q zle>`1d-?L=8_qS_nm9(wF)?(c0Rt)S?Z<@}rwy*`I{z-G(Y_~A{%LH%PNe;(F$(a^G$2DbRJx7SBJ1i-OtflYTSoaK#4P!l3dyhVJGM=H2VibTdkhiFpG*#8wOD0 z{x~-}`~w8*>B}DsnE*jQqStYrGNm0`4`PAJPD2XXJmi60lXvJWd_`Ry!Xr1&j+d`C zoGNcF_%iO|c$|bfib3qdU(oY8SGBcx z!l})#=rkN%qs%j!x16}K3F9*hqS)Z7>BYZd{NUVgDl=i$Vn;>CkS_8piivY=X%$Dx z0vixrcyi3@J2>?%t09QyFTmvG9V`C`rf*UMLI!{b8w@&|^ETA(9OBXES>`7+i702z zIYU3(cwK$YkPdL;oMDD`0Bb{gadsI!pyfOw6`}oRiGy+AIB*`(F3zzZIba8ty?!5W z5LM67hgvP}92c^%m#6p8#qm}P$LimNFmo+g{)$WJWq)~Df$YA6Q1OQCQEk?qwsfT zIn`W+%iK%$R}B+{s@>#t)u5-UTLuT8=fZ4w*t@BMBVL(cEc!XXfR zI4)@Wn}nx-uOV)9&GuQ&mUSdoeaM<}g5W;_W8|8{67~|7a9iF*4YNg?fTdrYahgGufbD!OBsFSu}pIREefZXVYU+>Yx}a~o57ev>1YVt0|vn?f0> zzX+0Xv^^GN@?0lg2yy`CS1?93BcdBMINyN}rh?Y~qFBEy{svx@dz8AnaqTT;TpT~Qx?AN?F~&3(fp2Ak#Ih6m_u%UEvDwTeZ^iXG!+Sy2zrsE3TraiX<@Q1P6r zu~qCvUVjLaavmb?2w_DJh0v1^Q4O5!cQ_ul;=)vOh&W%s(KlQ9(RSMMhoP%8&u_#< z^VjjYj|@1t@Ce?`y`1w)P+FUPL~^mI0CR zks*T`9qz9q1!~)R(9K6MtB~$LG7Q6OIN^^mdC8^4kCEkEX5>AT%t2(i z<*^}N%P|k>$azEO4Ns(jv{Vx>PE!irzhoD9_z42Foc9r?KG<;B&_hZQiJzf$u2SHJ ztx}XGcSDmjLtwQyY$*j&kwzK@Cy(8K~aT{rvmScJ_6JzQ0BXcN@V}q@Hp{is1oZ9z}XfCIH;51tt<8isC z7Tp`R)oG>icp$;aUP=O(Y%fi*cV?Cjy(88X7wn~2ff)e|+i=QvjUUC=vjQD?2e)h) zylO&0!lMcGnr zj!Z`ibCGl!M_TA2Wog;%)p%zClizcc!#BSpAMSpZe8Ql35Mc^>&@npX`zmUm8QN6l`M6ZrmdlQIO~8t~yLZuJMTU<-=3j&AJg z?1E~DXImgB*8WuZRwZJ30SEg!88>GGQE?O!{G5wQi3L)JiVk*{6(*VA(v=bF-{Z}dP(6nr*L4| zOG>go#hSv=J5+lB(Q4<;QY52Dou#RQ^7S2DCMV&plfLozmJ{3j0)4`2f)}IVVjO=| zKRZ6m(l7Cr3I*f$V3d147=7UEn0Ozv_+L;&Y%GFv;fmdSr5us)!X0)P0#)cMh2q_@ z!@g1^z!P6-Bpw|b>4&WCr&s*Y%=WVkT)89W{@hbU4TukX_Gh$N*3@TVz^hy}Umw`yWHVEUxVmcp$@nJCqbdlmU zhbX@bJnA957>SmBh-I(lk_fnlca_Eo%mBuYzNi8F-vkX#@%st0n* zh3>gT5q4-8FuO&YWPWk7a^>i01T^W<$pLo>CEjz841v1n3hi zEfx}vK>|CpdPNsMj>4l$T;$DVuJtRNft4mvSagXq6-Sq}k#_(N(U#s)xybD)niC>T zsObZ*#%COdXk{O1o{;_HB{9(r>?@_ig!z4?3PCuF+_3QI<^c5Yx<1I4Wsm{i>=3D3 z@HJgBk604$#!#sg;PX&vtRP>%BzFG2{2*rQN_@&UDh#n*tu2iULyNVg^-j)Y0v!GCjVXd33<5dQJmiB763upyO|1-3(tkSksl>8XzTV{-ApU zVAmgH90;9%(1C%{YGK|%Ok%UI@1Ekh)Kx;03`Sb{U?6z*hbqv=muA~1(Cll+m| zX|PnF<*A2~+h8e;R{cJ?otUO_?1;N!dhld0rUx7oc~>k9a)wB$BIRhh-A{<^4T(NO z(dsy7++FiI-TaE=|*Np_3_BLJ@P~#t~8n5OcPzTVDtJWi9Q}BrPwDi zdKrvjoBy|?r2&)~iA^Amo=5eOQYz&*Vt`JfZzC}>bNrIKV#h^_f=l3-N(f*_)!!|M zA54B{B_Dx)UM}vJM<+z`!AZz{iOEf%1JRNPwQR@c!jI8XCNzYN#x#!0TO-Pvc8`V! z#>d>FrBMKWW2E7DMlo}YG)_}V+s43sRZ{a9X(E7rEF4fJeK;0#)=HMAEqBF6V9yw7 zyuiG5S2+B&G4SV=bUKEo2#b}{1bqjpj&0!FijlB487p}R^e$wA4I>Go;e$^;8$XC2 zU(<3WduWe=Rm`*Tp|olq=JNayBPV@~B4PVtpaqd}6TXkkxhXl(!*S9`+IEGD7R1cas0qR5wk2d3FHHv6 zC4h4R|5cQLR?O2i+@*+8Wc+FZ+C9fyxGT=B%o;C+(y5Agds?W6U+1)o|3&-NLc6S_ zg+B*Z6lK7iiKn|JH=mLu376R}M)6iAC)g3VoM?*yv%M1f(12MXXTFUl!@fn<8t}q} zBys8lNy-4zUI`6m6g`rpIQvno?Ebz>k>%jkWhC@7_lHrm$%wu*idu|Ps$jFb$2ui1 zop4^ppl(f+G6mHE)HR?klu&k!S(rSn&4P7nSHMpGm;+bU{+{qS$V041=Xy^pjp8#B zdeJ{g=*^?ZB^ix)6cr|$g?EPV8|YAjQlwyNpCaL9H0qopr2&+rVChps2U4VX_Dq_6 zs+7#&gjAFSd$Xk=_#Qt>ur&jnIcg28Va~~Le zW1y1+W}wx4e=<(R#Dagy4q=DV(OG$_;rGN+X;cOrJ;#i)SP&-=(f7pZS#73d)N+=w z)VLFcw_tigoOz>wr=c4DOT5N0-^1jlmIuKh2h+?Q2-0n0r}-1&6*E??uk9qXmcVAKk9z z9A?au7=7MlOYiKhNu(7M;6*0U@dL>x_u5yH0>Urzft%k zbl)6WG|5aTxF@1oPbR?$bJjvpXgxN^M~iq6$Clg^{c1~&G>F>gU}DM9bFFd*(dI4a zHtZvKL3`GkWVFC6kgNMi4jeX5zxbZmADaGFe2B%%gwq?jnAL_e!=Jw=rhP6`kc4Ai zx+g};IaAO$IOb(k1-p2C-V`aCk7ZO*4{zRYD(Z?etbvtmY6C3@_ms zH|x1^JaCBod@a}BjIT#`p_WdDwl(eEJJ$u)v;Qf2z?92yC62j=v zLM)m1aX(JmaZfDLIql>QlsVt|;Iv)VGWV~^hY#Ph81r=gB`K%xL2lVz?Yx<|5sqU% z28OxNFBc_5P+m)di$I&KN=AtIALrgDI~#C^Qsb`pHs-zo>o4R>6Id=r7Dy6a@?BLR zjRB}Hkiu*(+mOvH`21Rm5@6{pDF(le&cc+imfU8;)zz}%(OwawRaJ%LNl}H8D}68< zZH?2~T@eneN0HQv{+xyt}jq4@ET#BUbg4u^QKP#AB>Cq?gj%Kf1OOC~u8`M%>G5T38{i_(gu9ki) zMt7>EuoB4#P+20y0(@D5&uzKt{#QgT#vX{rx1ryahD??AnumAnKx=ZZKlne(hP1pKc*E2RM3eija>mPX9O7*%67;0()XPbFpvTaL%~q*H{^o?~CQ zLd)XOf)W zaIkQUz-+OWXei_#UV@+&XMKmF=OJ5Lm%@HF}BR=cFfw$g6P5z z@s`)0YB9)56Od%_bC|es8&4^9wA>l(M}g0q%lA9f+i)yhzMhNnIsFsLzVUB7&>rwS zFV3pxr3FI985Bu3*g5}9e3G@FE_p$ESxwwrd-x@+oocD&C0=UL%Xt~DUoH&=^5k+v0~^S31y(u@IIDxX zPy@ZW0)3!?T34VCG*INrn9(;dujX{s;?-QJ@**Oa6)$7vefDMaXwKkrRSbh`-$9*~ zybMous0jmq_$z3toS_3H{!7C3wv4p+6@)q(X!R?Yq;aCxRZE2-esc*=qVFm~VRD+! zRder=HGgv{-pO2A4YX<{dO2qdy2@?_@FJgCk~6chEd@RrZEx;SoTb}UF*BLH0=*AZ zJPd!?>LMGcv99S(2`YBykHx2Rdn|7caiO# zt0V`iy^7(ic#b*SI0o}J%l7Z+--k+2{|z*8HEOGYK3t7e6Uu*$lp#te1`mHoI){E{ zr_w+N*Pwwmkk48y#kf_5s}{#G%31^sYq_N1>(JFWTl!V8YqfPNtjhk`>@FMV<~n%B z1{(7!MzRK4_No*mR8OUXO;R5UybCM0HphFI&mwba(38@?mF71hstEfk%o#?*}S7Aq>#%!XiUE9TZk>&-P@dR2Tvb@FYP z4~_1Y-Bd249F2v|=rQmO5K`w`F+C}N4pvK?anV)Fs9`nA!OiNnIoDE@Df_4xV^OR~ zw@lgC%~m>4T8-o^7+z2|c3vbMub0C^FOal?Vfj@tk$?F(+Ye#IVI;JBrGw|XU%6`W z)Xo;Z?n1_@t74LLr4_?t_5(PvEoaLS4uhu_3~OPgGs>Z1iK@)4zMiY7R<_WJo8@Tt z@KdOi=U$Vh09<}enh!APbwtN_f-P6Y!Rk-`hSQ1MRo=DcMM(>eiEl`A08YKZ-GkGn( zt#GjotgNhv);zc6SCgM%(H{FXf@F7cQNISqfzf6rVvN;o-|VvSMxrigKeQTHL>_Q8&hA9emZ$vb9D9p0Z`{V^7( zfM-5N4`Yw&7P#G4lw{*47`lD;!syDqk|SeWwb#tp>Anc@@H{p5!lh!Td+6{zY}fhX zQ$;S#`@Z-RCgDre3zs&fC82}RV87!v^QtAH; zs~Wz_=Cq;rdE_fNL>JAEC}=r$1g+aE4I$SM^d93rjQ<=PNiBz^;n+ab+0%}F$Q{Ry zzAwIFt2`)m6|^V&BoC1yMx>}E?6l_WM=#_l;*>>b+>d2T?S9Es(8k{vGn(`JrM@<8 zY{}_>G@ilC1Co)!9S4xBHmpr%Ser~hO+R$F#y1d4!mt;~u14l*UjWOn-a9OL zGZStemXZKXQFYRvwwh8Jb`<`xlwLV1O{ThVOtWtv#p0us#(#ljaVhQiLMkBFemHXV z4*CI$v%h;3TOgs)=7(%cSvkCKEzL01)j_3n@|ctZIbmO-g>&9L_l0MlRENfEy@But z`teIC(*6e~Zouyr7a3v`iW|0$OR3J0jAFWP9$g|n!r1>LMmNYZU*in>?o)*yykhuQ z81*>j;C&IYJNu0kMI~R!n|y*+cVFE9@gN4S{ZT6}AmvFuM{$P2?+uC5rHex|9DNLR z#)yUN?{SKSy%=6#^FS<1Cwwm%2=B(=-6M7-BX~l8kjfbR*ALip z<-Cp$#AfU#KT0t)ISYP~9eWWp=Le!hVH3V|PSd&5$qNhZ<OgtGn^Cq4GKBB6xn6HeEJzYG4DH< z-9L!)D@eKJH?(KYGXH^?QF4}5WoV=9P9(4_xr`;yCThHlZTU?!{tExK>k7g_Jl*mK zV%&bOXpAd0&eI{VF%NSMe&3M;GbsY^i_0yJGvFfrk@(Cjd=z~4M^~}NcB9s-I3xCp z4Mkl;MgGEiSLAiEAF%rx8ZO6-zAjp}(+!+iyS@;;fL-CrQce6_n!@0b-_aWY!>>!Z zB8}m?m>KQ9jx#r)v|Pt&94;-zO6jjU2*|1Fpt93=CvRXwfMc?*i=i$2rZkvI%D;)j zg}YBkTH1S4>Ze&k*KSIF**`GTx72H%nJLYb_|vroTk(u|!4^*&JUpMwO5<%6_3fvq z@2aTpTB#=}=a%HB`Hhw`Fpu73;B(q1z!`uE)0z0kDgmw!Ey`Ch>f!53)5cq=O^kX= zMSa#v#XIeZw7vMNRb{!K@j+fJ|dH>KVf>YVM>Q?G*D>aa% zeNII^si0C+Gt>prBmou+@P+`N0%UUmw^ag0{9(!aTTJ{N6;*nQs==efR@0^^s1)8J z`LQSJq!ttbV4)0G%J2ig2~kYN$RCtKqW-cNz^RK>)VH6aeyO59P*N$VRcMX`!~=8_ zT2UGsX`ukG0ZiD))EE4yR6qZ3i~8=2TBM?Ge2V(Aiu#F?N^W2vX#@iWlqJA? zfb0U6J@&qtwE`2Y5?*9fe-$>my74IJNuFO6zPNtEnX_s@6(9K#fq02Lm1p;Cr9{8YVynK=uKq{3Dfs9EAWz zJ)ok_dW!mmiu$aAibxz+cUu6b2mDuW0pb9J^1oFA4k!dL<@RTkIsfJ|YA-7=&fKXnd5-{P3rC@ovtW!}ZTd8Txv<)h1fr3i4OwZeN5`aBLaO)we z9j^#D{(+`AoO=BM^~0Hn8!8dsT17N7YO{)Z%1Y%I?5EvOmdsyP>bH1Z9qQBR5Cgra zfdNPC*{KG%Kxx9L{_{$Sb-O#9ovDsy+wDq%aL-c!l%X=AZXzEW73wzrZ>bN+_*pK0~q z$UH9b-N}AN)7SV3a19_knkn!;T5`v!hg8($r>I9%)HEwK4_67joZ3T0ePX3vVQG7-s5WgZWrnNp+%!;%8|lIr#D#2n263&~EE&EG znBBxmZ@)^)0jm@{rsJ@RdiW{oe^k`#3TllF^0|)u1sK7=5Xur@K0x+GCcXZ)GWRpJ zmK*YAQIdOk1O%QVY{lP0qFe_0(4Y9e_;(X85+qIlmm_M6*(YZ(ED@ z%S^jni;_CdN3ctTdDn+`Y;vsS1WZNURQ$p|Ilp)CX-Ve4tg`-LvaAv`~&metxDy`+gb8{ zjhS{+CH@;Lbs|$9uS)yCO4U;x6tIt+FSJ3X0Ut4l?|*%?fah&!C}8$^reZ>q(tr#H ziva_eirp#|6;`VJL9R0Ga|$ZeYLU^sbW(tu0yx+MIfZ%wWG`dlPpZUEbF?V8d^BjC za?Y?)`KN&PsPsr> zH&&_#qq^NurhQtcSt~V_rJblsdtO1siv-B#>$I7H{d9nV#q_HHe*jE4#00EW3GixfQO>E=D(cFo zsMl50)mAFLO_<|=T-wrV2V@%G3hcyB2ESqGu5=CP-u&==&%4UZ-?Pf-%B+k2P4mo# zWA+s0X!OBp{PB*+#21v$!1J^mVC3_Rtq^S13hd)-$%K4JUP%qLQj@5ON%E&B0{A)M zR{#xXppr5f*g*3DvNtd-$5mSJ6{dL>c$iVYRZ-utQjat0X%%&om0Cj0OwTB4-yWcb z`T(%wtGf0ms2ZAqpCczR3G*&1b1~P&qCJsOv+gOW&swRI=m-^dLys5;Cm(01 zLH!JKM!f)L0FJ!P+`v03Nw%&QJ;RuuW|b9M1(o(NkvNxl8lrHX=N5hfIJ$5UEWkK` zk^H=p;fm7W3acPaO;J&gDX6qfNIERQIRXA=pn*EOaxfTRB;O+rxvJE%(an+>P7PO4 zw=1al7MDxfEx-u@ZV1rMjnjGp2rb^&(6%43C9&`trq0brXW*C7IX z3-<0XSl%;GN}Azek;JJvzbmN)R;m-_LIjJ|1F)F)W_Ji)LHikY1^vQ+Cp`qn<}u=~ z50rxbwhD@6P3aevn#WI38&p&c!g_LS?<5s_Ku-@^1;FC8A9|n(1AYyNc*&y2@^y*7X&m#UESy*YBF3fbI=BL}OHS3Nnhw+iVc zkb_jnqKb~3b+!uYAXsmzkSheIQHA`sJ5TUvZ=3f?*eTBECctGz(; zxT-m8x<9wt3p5X?t{Wz|8(rtYHUiJ%oHDycXK!>6Xda!kNXc7m^9)7%qx{m=$l2mC zKnug?zuJm)_f;ixLuB@>!qR7S1uHdzmj?kYB67XtGT_la3%VTLmzTl>CZxiQ*BiQV zEDzPmNR6%xx#VaON)nmX=>GkQjOH;Ui-^y*ao)F;*6B;5Ig*Ep%$&O5?ph(Yf(MDr zczta+XXc?DGg7x>pqvpNwXvWtJIOM}DD~;QJ>>lTq(Yz0lgs&c6}oflS90y&R^gA_ zqcy#Zo)tsJaf5iw#G*OuQ(4x}$~5{mqH=g}#KPOIKyEKQDq=?KD@5;mUnxKr{JY#( zrkT-`xlg*$|5a9p^N;j`^C{BKJ?xTqfIA zC^Di8+#?&|qY^w@G+MswHA~RVzbW(brK$z}`9rzp_$t(bzT+zw{9dJG-K9#r|LulB z+4~2Q846VlCtd6)x(C{-{@=o4zC5&u9hf4g;_E^)T5l7@OMg?OeX7JUNS+w3Ro=fmo@%Dcp3l31C^&Q61wys8ZTgT_^ zs1g-0=DqB=^eJEC_Gk3HL>c{{ zKx%Yzddc+{sz5)Z|Cbm9_!Qh?#$Q^w?44A+0ivWlj!Qun62 zEcm1ntzRm9-W6p5=~^)*CX{p9DCJh@sSn3`E3x{)g7t4z`u)M2^J^7na0o}vR3Yc| z;>gY_+~l0H*mcJ`%Od!r-j!&KO=^1zME%}@Kd-f;ajB< zy6-=bZA(|7XJhA$7fUY{di$R;x2p>M3^t3vU9rC4O(kCcP&AjmDrBjcmdsEgZ;7(_ zN0qzP5!{3z6=#L0?(bE|a;~VNpr;D^t7yU(ltOiVFUVQAsYL6)&*HlHCZVOw1}>6$ zrz+*@VoPOoqf&%!V8s%-&=#rKhibA z=ud2)sZexkqlwEve^DT-Mcu7dB6SOsWeFcE(R#h8JV}L2^W{>nDzm1)E!s{8m3!B} z{T*lRuS)ML{LjCYNZqZavH`c0X#LM(pgX8U>Ly3XygC(n--`^*+&h1{%Tj1xk<9*) zl3hPkSp1a=*`Yf(c)b#-qn@&Waus@KHyK@}L|5pRA&A4J{H81+T^SBAaCCbmyZ#U1 z`7SDvx_+O@bH{5cbn!x2<7p*Y-%aGCnj$Ek>>v2qG}l)Q8M=c6?dIcMlVyLYx>FP9ZIymhbW|6)of08 z)Z9j2Q!&36#WU`qMC#t_izCc|7(sQFZ^|mNR18OoWwfIT9d2%w{I)ksJ4yal=02t3 zzK3WsSH53`USj69Re2Cyw>RZV`a@M@hd-6k_DU&wH{nUYP$G5DnB94i60Pqp3hXDP zTzyV&;X%~PiJ33SHdiVo=)V74Mu#ZT`cH)CzOF)MiFN8NmA0E=-B_aJ)ZNHNGvFmO zN`=?N%i8$8B62ZnbYp^LbfS`5zgy_bQ6hDV``}V91aB&1E<;PD1FkV%1>INT?l`S-*d0a!+I8ny)FLf+NL}M$Mi{={$7W9rs zvTbe5Qg|Gs*jwh_twO(XNaik8p;y~;ZYuLKx^|i=>OV%wp@AtT=FLabZbrDYc9+dQ$tLiS6hU+exmp zL&|mZ9~Kx5X+_iWpUt0Eo;#bTQ77p{4#vXvRP}m6+c7EsyK$w(h1_k>Z&!0Vw7e`rXUS8nbveNRYW#y%!4p|AIhUW6hn~w4c zEXge^%PTEHUCqob3oOjbD{}}G|ETHNLQj8I%THNUHnTKu?#$xZ)8_K3_wk)tURs)0 zR3<8LN?v}^jKGr8;;DIa=jKhL))B^ztQy_%&QY0Nm$}0NSte)a&*kl;sCZf)Zzogo z%xP-;=5=fjHZ#j)1I;O2EO4~kf946@^Yxh^((`fvtyPC3eK z0|aeGZu_eEL_RpmRW78tWx1tgthm+}{6?_E*p_xg8~r!bWsW1)?~G2gv7fQ49cRlOp4k&m;~960pOtSIeQ0-oV+5@|o{>N~ zBNn@vayCEvj>fe0^z{2Srb#avpV$jlroaRRi!@X++L%RIV=||aw8rR8S#1j+ng)$E zu9i82`V{q|$sc7$(V_81twX8YpwV}uuti2+yB->SFOn7+z3qBy^n--U9iq`k!=ou&?ih`}ocTDlBjS#7o<{#A zNLH8ol}2ALT<-T8{aN91&uR3Rh0DFF(LYp5Qn=hdHTt$TYL`p9-^gieYxZ@*-@4oA zeHq)+{+1!t{&t?i-_8^MmZQx6mi-X^mjA{5EoV??lcUTw;NvasZ&iFE6CCwF_}h7= zrqjk%L)&d|@1}W%{i7m>#IH@!j)^H6%_^#KO6=mdika#*hL2}6@`{Y|kiNcv5y;mu z(YG!Cv#P@w+SZidj&$wYCw8{u2th;z>C`y zR?%um=&dA(d~l45U{wqotEj$xqE{P6EvIe2Cv-KrIVWz8(KJzQa-!E@7RyBrjK*=H zGxEyxd4urM*dy+~2NJTVX-$rY|Zra2EaEll(=y|W_mk9NRsel>BBy+|8C6>}m3 zO@F_d=+#>r$Yl4Tu!jk~?bzScv_DbC_Ms;a6G8+>Uz)r$sp_*)+*_7s_T z@+dJ_{FU=Ku`5W0PZGPy1_n}7ZA_5qvnPp-VM4Pn{mJ;N6Z@;mxqL3BwWIUOa^)<)WeS{foXj*)VhmSKiBpn-O({!~q9e6YOp8CY9*GICEx?zC z2M;8Lu`dp9A4ux%$ccWj@`wXTzQQiNqv5Rg7JqwF^T`;WHpm&YyL_7DDVQJc zOX>(2CVgE}{}BSU?qO0-n(U_U#AF|Nl+>46{z>u{H0fc|kT%@7>LZ(b(8RxzoETTd zqogRAJ647vRCFfBi=YQuL}$tn2Q`U-#oC2h%zqeII-F zcX`zi+Os}#sObewa>7_l28{Cz3rxZUUo|JJZ_UxOA+2fZmnKtQ?o@BQTW#dUp#KZ)l(mP)P1Xk!fk| zWz&WTLIl%*M<6#O^N(R+p%2yVj&-G_amif%+PLIVvhBRc+s7w|vfm@)llw6^Cq7v& z9KUL}3J#LK!C}5->&*81ndoa11*9#1;tbHfe-kuAo>Pr#bVm;`BbBf$H;o2CY zq&nG|C914Wmdm_{Ak+p6X^`JvmdeZ3Ls-z4=0xi8E|}c?z}1<;UyIe!lE*Rb+%T9C zqTt1ihvW5~nIz4IqQ$FoZFc;Ud+Ba`2fA+v`4HRO&-d-D6^plOBHF8#^I@Yb0K%GZX(>al9JLuSi0_i; za7DY_Qw9oBM2D0B)}~y<&pPLnp~8Y-O6(Hr#~Y0xg}bNt;$7cZM_%5LfDC%1bh3yE zwMYn{y1>}ZvcG_WK#Ho?J89Po=Li)nV`;L>+ub20T4)?1G*)a#_7jNi0=5!;np&xO~1P z$So1ISvyS69cTN*6uDP-B~6mPyIdgsXkB=0Khx`pDeHM>3R{uV!<;?{PK36;VD?Nw zWJcIiV`Ca0%+J4)(up>GEqv7;_M`Dan(T`D2!5AKY2b$_Ay$?GtgA}T>HV>t<*djo zz}VAnS<&H_Q+kLxuYWOxyYHx#(AGQ-u5IO^SPx!=iLa!{&T=3Hy^`WVMH%|8teRmN z_XIFko^wRKl)~o=kkU`cJ-Ix^--(Zn-l=8zv-8U+_hgJGm;33;lrBt6!^)J-T{(+~ zU|GN>R#S54=E?IgF`Ra#ZPBq^O~b2F8oJS!Io5}Aa#%aym|hg^q4B0D+jLhUExbc&S9?Y(uNp{hA4d){X+2VVb!KwHLsEMS zIen`4eB)1BXX;%TeoaVfe}V79@s-2%TA9BKxrU~;mE{ei+$picO27Bs(K^!9c^dM<}jl$ zH-EN@$%ip@H05kdwehff5$S06m#HJ{*EmD8U2`rf9WZPF^-1Zx*^dQRWX z{C6?_7ACEBPYY#2&wHeW$VqdT>ARTvd8YLkE7|NsfZ*SflBS%dBE^=hv;h`c7?S~v51UlkQ_JY&4zko&z~ zh>(bRCMF=V*!~Ra-xoz~$xPz=NW+&1eEKRZP)%P&st|MTk-&!n9Wavsq4xc>VS>%B)$75Y&8^b8^1IXrU1t#NzG;ZXa57Oi|jY$S$XdI030t_etPhztYTa*~NZciH~ z8;)}1lUQJp!ytwQ?8xUJZFuR@vaM-BqPw9bH5bzQG5*I)zG83%%H_ATAR&7oGfW;_g)Q9g zz&1GQt$N%)_fkqb!P;Ns!Iur7LTo=#BHraxzdXgqi5u%(ZXIyjiZ<$7P6t<}_z7nB za%x(c;vr0oYE1KjEK~jEw08bloTh!I3YX*sr+2bjUvNNPWnuNymMV|OI@xm61}wZH zzlv>VQ*eOvcIiFMscPL*JKHk}C4#urW1DQcRS;nn|Zg2nbH*S;EiQh!FgZQe)OTWfN;{abYvhOD?b0za#OI=pntI>B7!* zeFqpCQkULKBpXa~j_QXBZOaa)hYPG9ZTmCUTbuhVLTv|3x9if!ISWEKB_7xJgM^|} z>4RijP=9vg2AP^prN889PQLC+I&S537$*#0bvb>YIX$OHm(tlaOrclO{phgMI1kpO z@q-D@y^`Krn6phV?Yxpc40r&4n%I=?jrVSNrB?N0t*$FowjJkcns7C}ZCjr-){Q#M zD9tUIX_?ZBIb52lqB(u;aJzHZ3Z}Z?47`$Z5_cblZp_irk>HHZWZan3hWhu(@DeQH zy)(LL8FQ5f8NbtaWVaTr>yzQpmg73crcmw|86Ca(FXz~l=#tX>;?jJ1{>+tB1ZQ-z zXMdF=upQBHT!g7_-;5V0Y1#Q`boHDc;oI>vTN?$UGrJS1^_2{MHdvnRCe z$yns+!+*KNror9*uZflE~<;^$gzyVA)0R~>`6vvJ9fC60v~5|3}Am%xy6i0h)!WKU+eY+ zC-~C3pA7y;we?9xCohh25WK<)j=`%BPqI9EE2+W`j&TwEij9GWS zrXQVlD{F&MG!xH449#q#WdzLsBZg#p!DVo^up!uU5AOiB4MQ`%ako_M&`d9YuZCs@ z25^3ng|Ye5r{i#l+%PzyBklf7*U6?J-4rw|Gh?Whom7YPbpyv?x@pg8f(uNnLYp~zR2uB6%5atALnlWRO6FH zM6AeS38Rl?dI+i5(nDj@xSC3iWj>o6$WDu6t1K=$NpIbaN@BZFf`ZrIb?$-Uhnt1X zTKSyI7qL>EU#8%4wQyN>r#O>?z>DUfREsWJRF;%Cw|sWlTv@HmD;me2HniJ2%d-tj zQ%=!0_1#Rjyt5Y1W|wx&TAt<4;7S?pSf1slW#{wJn58?I<@3KglH1q1PCfl<$^>zNEGmZRH@6(3; zT~0^p(7?hI$8|Ej^HtXO1GMZTf+}x{{!8zx_!}+8PHLl>N(Ucj1p=IZoYe=w;Yn72 zKTpvCXVh@YDQ~v2e=-V9dX(jF$Nw7jD61n9RX)k`*Gx5Sd6K1%b7mhWRN1BApw;>U z++X(BxNKiLhNFnXGdpQH)t7v8#`(1Y8R#S9vOR3TSR9uf$l$uT><|X);9hr=Y@!8#l^2l)(>3DP4*3eP#`!E5% zw%pM8Y#*}_O&dc1g`J+#h9Y&@Ub1z#s5K^A=qazFBZ*NRYjVeVnRe>3r$pguHrJKe zojNaKW$hXp9b@e!e9v|f{lB)ZJU;5`+J7d@5=b(WWcDS?K-eJ=w<01W2C`>nl7OI) zWG0zxlWns60s)>R?^FG>Iz>?AxRhclrBo{hte;uYG-y#rLpkUx8rX ztFLbFoO6FOnFRisd+zrv_x$eM?RS57$$x0GMNMqzd2n;)d=}Izg0ULFXd16hW2!PkV+HB_jN*#?l5?Rt*R0tDC zJ!TQh#@N^rZ+617GvLE-Hal!AqmNlr{6enb+s&@b>0IF+qeiskzUna=Ii|+>h%VuZ z6j=;okiSHJ>f6nmYw1+Eyt7;IvZGt@<~b2@Qs_Cm#ld0imbnz}J-fwj{UepFl%k^2 zN?dr=t2l$qlV`U$^QJL{FAS!~G~)8>j|uWb?G|@G9%Q%t>=t~FK?ej)N8IJrZgFBz zS-WK(27AyMO95r<^u!C`^|M<@;biR=Qx=QdFg4=fIJR!fGI`DWTgpNz?4FO;W{AK> z_iJmAPIzd>3s3{M(9~x>(CGr z+r;;`+%Erib*-)+57pz;IZ#qRB2qsRmpaiRbw;mCo%x*lbiPRa2&b+irWC|(k=hPB~gm;S_PDNFfX# zE-sW4Uab4=X7y%rBQK@i#KkZcwQGriW7sr(y$L%C7BlGU=Oi+2#J91$wSJ?WV<|;9 zPbnKLyh~qipUxIJ#OyQ4^%f0LST=9=EP_49ixcH94fO-9s@TRnb4r)t4;1_npB z)w|TRj|yJcTAw4RgMY5KAnpoe3*%B^Is+k2X<;;_{cpBvVdT&C7UXb33ppY1A)YoporRo^YN7nqr}fX>qdiW} zSm4~DUj2rS@RQ>NC1%19d*;Fe=gz;tHKdYCxv&D3%%9o!Wj zlbUGw`8B`2gwf=h_3IjODYw!PGiHinQ^#vl<%MHxZS0!gtSXaN{f{5_yM zCU|&nK$Afm+ahTt8?eov`aVGnsM-_AUd$q?F_Bnr%J?jSi$ClNe1-NG#WRE}j2MJy zTpw{oUh_zx<9XFS`1zU!hjyRHq^b=bb0*X2HL+ADM<&F9U8@`1sOHXZuvu9&Nf8x} zu#9g_gLTCerf`O#R7F0{8^)EMbf0`Mzu}|ZYTBQ-|4f6K2{`|5gV{k)Bz4_&8HUGO zzH_F*oq*w0)G)K$OqLT)5ditqSi&V{>ECUzJ6TK5T5+xsiqm8H4RhrK?=@Tr(HWY% z?`X7ZBjk(`_SSjKI;PW0VB&n(NCM~XXq=PFU|LBfcj)-S82k5_k)$w$gLE+Gsz&?r zDJ;eRk2gA}Glhr9968=-(~u^v_gmGtQ2z7r zMvsq<7rj^!bm;hXN<^~M7pZiwN(j23`|}o!Y7VSU2-;wEWiW;0D=UK;Lc~`dG!ydG zjG&^_gNWdbsDcg+8IoXclV_>?U3G9}iAoI@DuPZer^a+PLaNGO76$Ih;35nvDubD7 zHI)W3kHD8Rg4qIK>&znSDz!Xb8IG?T05K$7aWnSM1xw|_9|!LT?I&b99RlC=n4E$ZiC}ezTle`1`0s1731JtE)s$x> zgg$`-_cd8~+NXJasG zZMJJ4B{!`wR$p#g9^!~@eK{N1C!*;}G&c|oD%)xljty%6+2c@?61-|^UW6w7wq~aY zEJ<8C*rE~K_j}ADDO`(qzb9KL>8;HcLFJj7ZK!9kH(M98N^&$+@t-iJk7C_Ye^|ng zz>h+ez1eA=svt7sQ5Z%Rnmk}{&cfhTd$UbAfJ0VCvjeW~2xKQJ53(u-C4p~ClNARJ zkHQv5^9nngPFmj^=;{kJ_P2H8>kdQsCCpP|P81R6de}3s*Aca5guq~v^0YR*ZrI}x z3ESc6w;P<%Tu2*i$`!!6m3F53DY(HF+% z&!~6b7h==`s-yUSPtr!Z=ue|#z>ISd6F6Is=RWs*-ZD>srb3>-RFec8yVl~k&b;u2 zEf}HT7!EavruV+8;{|KvlE1Yy-HT^PAN91_)p=xPxUw}fM%nqgD&!}7TeC4(>TO-D zBe96B5CVoSyOtvkIQG2~r!K^ibQu1AiBZE5&{wuPS%F^aFvYcUrmr>7r+OKN-e}Db z0lsA8QzHG!8?7!aZPv$E{F86A;-m}?D-c(`+3IvKPVW#c@r9dESoTJ%1I4P|Y&CCS zF{KPMJ-rMwm>4x94hM)NN8`D@5;ji4h?u7%T9k99j=hH2!xWeJm$}5RWrZ7+cxEIu zM)!4=`V`}aI7mqoI!@z%z^0#gy)_3P=;&$AqJKqP!-in*j#exaCtFjItAC5Q@{+e& zBb(Hx$jetU+H6{)@U1v+q{N&MIt3G%Z4NxUJ2|Uut`NGA(PlBTP_oZgRKK>UM(MCm zfj_IwIgKTX&nbCNR$G%@T~Db54zI_M7%a8q$eC!8K0~ zT&`?Q!2`r!xV>#*oZ8Pn_oQlB$^}&`+H7#}J8fD4xCOB0J8em9N80}z&#m%9E8Bk3 zu9|?n!)z6}c4XAE`f8@1iVc@ulgOxY6XKHVu zT$l}OZfeKRj@VcTzyjybdu%8=f;a}hLJd2M(wB>yqkp+b>=qgS-$Dsbcz>@jY)XHL zEGk_b(4yAy+Vj*Yrf9JF9^Ms@eCO#^0MRVZd;r7MI#uP1({9Jo7>_QXJ@NBy|G3q3oIn-{C zrt-s&OEMGC#lh#=T>{I5lut^s2z%wZcDL#!`P_5uPde2Nl)uwjo9i*9wP_Ho4e{e! zn+DO^Osa8f!&33B4FmD54FULSc-6B+*8H|z?NtwxGZ!o!$}D6wYS$8l?d|ga^;i;y zXW&xij=7198QaASq?2PQ?NetU88pKSfA?7J(*#7hBoIa{9Tp8y?8_W@?`lb+e3QMS zwbufaE>ZOCuc)ft$HSvQM)s zoFNeM9z6ag+cpzb^X-+a}Pp$(9m?#HUU zbJRq_*q0r40b0TP_i|f8C;-D>cUS~wf(ez^q9aKuvg|Q;>2mqAuRC(rCYs2M$ydaU zoh~GzpjUe>TBh-B;mdMdV{F1p*Y4`fQ4@rqiX?Q*sx6+?k^z3LWKP8FKRv zb(*z|S#V@kYRwFBM32+I${#0EWz^{7FUxF$-vU^+WdoP)FfO}&Z4zngB zRvw=TE_Qq$c%6dAe(#>Lxr(F>s_rer5AcfGnawd9>99Ac0ymxD9S^>=t_;<^F!K9u zEM>M*qkJf>>lY=r(%C+dbegO#ocwIZ^CLIp@XKlv{NUa$o0sT~3W+XO^ z6>nndlqhp%2@R1!Nub}{WziA?zc8v?r3>Yn&0Rlxgf65QD-0W#eo9?WqOV3|>%I`j zQ=;))Q9l?o`)WWnhLgFm*xrdsvzlV?@L#)ZWODcAuDJrq{%e<&koPWkId7e2RJg`q zdMu^5K9f0CIQD8At$jlycUjw`=_1gKn$(*OXrO``xY>rL-Z$z}byJme;OjdN$Fb%SGkf-*?ju9TmUt&dOvq zb+f*rDFvKyGo;;KYDozFTE=pg+od|eeQxy$GB3vI{oOVFxR{}3Ux+~+<_PtXN;FA{ z(j& zEGr1>x&KA|*VcvSiXdAw+pLrgRb{2P&4we`DVLREo)?A_g~WS!j=`@S?bjzjm}z?6?-S(YEgK$j!a6C+hAm6>33vbark{7UZRoqMA)bkWp4)f z9}nZ+TAcnx2GVZz4D$RSgfp~6;m(E;2#c{bN}PE-oQ1&^6cmQ+7%YAwoT(#WS}3Mk zQjsSQKM_7xr1}E<7cloYP(HDK0YAJDc4@z$TAU3d7sBTKm+YJRBTDxdPbbUE zRSmn|@3CmB$q6fr=2s}|<0b(cT-n{Confi2;kW!m=D0DI_8(rinqv5szsDXmajd{= zx3P?&x+YpGmC284==z`sC$UinTgt1grOV_KAN1VwuzHBCH1=AwMB$|B-nIBvG6WUD zUYm{~7y7-;lVRsbYBkU1#=kEN!AP*zZe;c>!4^+F1n(eYCNnI^09CEWY~!dwk(-?5 z9gDjjv$sI;DALBwZkwu9)EE-sXlJ?rp;GPD-Cm%K|PqQ|8UgWI8ow zCf46Dj%!@Yy*5=C-{AT(FsKv3PJPsf87@{=U?UaAi(vX3RH>OF*~>yU+0f_4SgxVZ zzKCrq4u{+oSsaT8lugBP+K+~~Dtu_beyC47Jy+%R9$)Uz*ysuxc8*@fz> zr}~^)7RQB3_juiO8&SbqeK`ViK<;Cu&Kacg{kQrugi6nweMS;{?X5nC5HrCjl;T$| zvV+xVG=kM=(Qo>`Uxrr@jivSDw&wpRRwslw;zI0lTEA24r~ekWGaV?+CRSd0zr(^9 z{*Au)&%u5Or1!g)PveQaWe_WYq7YYv{POeZ{kL}F?MJGieq|iWbOyX&z@>~iL;Y6u za`XYRcJ=2Z5*0Dkh}j27O+|_Ohx${sj9VbP$!p7C8vn>>!zf%})K~+7RGb>P2?9SZ zy-Cg(?tdkG8yyiCNnc;%EA>np58jZ&|Lf%hFkI`mYFWaCd)U00MNFs0?8K^Qyp^eC zkU6u2hVT;Y?zz@))({8xC^dVR%YVAoUzAibN)L`3-D(PH`kKcI3>l*kzFzm^qN{a5 zdJ|_>@+2#a{XSzjU*F-i;uTOs-}IZ*1i|ZH_nQ$o`VIcsEMtSfOQl#=zV6rB7%)T) zwe_v*4EK{QP<`8PM=j^K{h2xvk|J)%`{XXS9Qd~X^BHE=OD1P>16|#CY+ElWeRx{3 zq0*iIE#cnjUzX0256_V5l7$;D81TE|DCDO~7Ihv8BSk5^epbp90S`t-;hVG490XoT zm9j7xPnG5?4$OmsS4!u}%hRN1W-!!;uR3FYy=$?oF-yOsXFRcp(-{3sqRX(}`Al-! z+0m3@T7yo1{$%#ybOCxoY&@(*vY1#fDJEEogSAoUSu8C^OFe&yit0a;D0j~+mKIV9 ze_>ZA{vs_9S?h$o+woG(QAqoV?BHcG2vUpZ8w$2t*;RO ztFAVj##I=KSDiea&spJqT2hM5nGtEO$esgFOKx=H!9!B6kyBCBM2Q}Sw-0eHTscHy zGCui>i6S>};m(&h`WyPcQlm~h^jv{lxF)3v+y2j`Rf5Xg{jZ7X2?P@Q^*qvEdgbBg&0d4=Des0W}nJd+ztnk^lQe z>4BNc#wq8Mun(K8Wegdk(3Dy>4kNEhMm0%5>MN36sHa3_@lPng#MwYv9JmfY9g$b# z`%g$tydceWLdtTolp!h=t7vTd>aX!%9*52oSQEzO$O$QVhK1!RDVp&O1jT&&xP0`a z9mYZDSV8?7e2Pig^wvJeE2}4 zf0It%ZDQfX_2tF6qPnugon-^A#mt#W9Hpu zKknQA`2LCk+f;6q)Fd_4v~9=MeH`*C2F$xy*`z4PY%67p3Nn5vM^Ct}H&dE~87Hy9 zu0Us7BR2!gG7xJ@Bfu~}sb~T?j^EmgbFs|L3i98_4|Aqs0E;GEt{9jna@PsniDfRG zNOLYlaP|AlvZNw`uuaiEOeRfnWm%QtEawal7DOqJK7qr<2H2a4lbcHHu|0!UEz`K# zCc6xe*WgGtMZ}j+H36{qzO6PZv-G|V(K!|2-F8?qv^C>8rpPlqi)m=9gHyoqYhZcV zTu7Z$I7@zEXzP+? zS#BoF38#>8;p|rH!Z?O-hyguI#^uqU66Eanw44`Odi0Uv5ewYFBjmG37_vt! z7w-`=$fE^u4B-(2*Ln02s2<;zE6qf z!AiHl$kXlhM%q)wBps9{_4TGcMuRs-*C5h zS&6S7%t?-Ngs+U56bw{PgiWTHgz%6gaNA8r;au4D(~3mdTr-%vQ@w`0d3R9xf*OrF z@Q%-+GlMR{A9{B%M@uaFnmt;9U$fW1#WRCuf#HUvfA!iN%-0uBn*w2jXWkjK>WHHC z^%LvLR>}{&H~75=@b*u`#_gFRP`*{%36&eSXK3%F#N2SvSBC2z@oS=*0LZ?3yB(#E zZQO3rv4nL4PvzS~95ZZ)O$#a$Fn8jV(RL@x(hS?)yUT8q@7}ci=mTmx5**HaxIIft z6mD|rd9?x?evaTM{{y_j9xo;BI=_9f5J30tEyF`~Sa0~l?bfK?yPM1KkVe)sVzYvi z_=*)96#T*KurVjTKoCIrfX=Lx@4vA9;8ykX^l*laJDf2J7d+#an?zznEHxW>CQ9`@ z3~$=80E1^Y?Ql7nXTVL$(HBNh5ZKlj+RD04K$HW9O=y$1&OI+Lzh}pXt#}8j{?rbe zV;&`#wozG?8`rhZgZxuFtUBg9QTOk~&Rrpn8KTm$n#Ax-hJ{aYR;SjZI7#6g1A11C zYncee*$kXYDb3y5)Yj74-xMtBh44ESHaYc;9Tz0k0hm~^GeZQ*H0A+Vdize7_5eK* zo*?*NUY^Djah&wK&iQ`7 z&-?p4&-e3ezx`XuU%x#pk(SHW`)`$A9KuAv&S9LN;K=ocs*f@PB$fVG2(6jJnRW1h zG{*vSU(Oj0`J-}V@LYY47Mw}hN#NZyWf)r-09miFCa?#NmrK@FM#J2jGNSPxR$%r@ z0z5w=9LUx(F|a&2I|eU=!PY#fzfc?|lTVzUJL#fz(DZdq5L-D4rY)4m2>F?M#s&|} znQViMzfMhp@*8segpAlAK@%4!Y)KAc0)V+XH;}E2g1N7ai^BV34(3=4m74slizdY{ zy=w9GS1r2Ys&$qAa7dElD<7XdCF>9CAnUI=;X+o18EW$;$$>dMC4j9AhlDF+!(rvZ z91SeLbgI9kGCUs^KdA^5@+Wgb+ITY)>Uk#Zf5Q{891{jvC5j-t?EXuA;LzGkAL+VE zdoD1o8SzYl@QEW@NJ@+rhFdktrPs~9Zt1$pVAu_gU}1V#7;}m6kLVGMwf%Qiy_O>t z9*s0ILBgTjVeVh)wXV|d;;XK>e#w#ri{=Y2#H9#tPLRVNTc?`A{(fG(ur?+@SUl2? z@rT6*xlwS$xo;u_wr(323J=WB2n9!S9>-RO0;9|c>iD~tUpFp@sf1}CPKbtk-k%x{ zI}hYV3C~Qn2(~d+m{*+>0p=AsL8=K$ib}7$8gF+ZOnY5A-17v?QGwD4+4%6hw>oTs zW^{}!X2MlP7sJ*=QZs%%$3_-{&GBa|li{8z8Ob=-=3bE*?iqUP6*%M{%JG4tEg6YI%Xoj7J8^2X z@IzcEYncea!{x(ZlXs?En&2LZI~@~7z}B%jR-ti{1$-O}aGu4EuMb(K>0<6T#o1k!J8XUMq%a(qA@hauv|yoTVxX`hB9#gDjI`n~xpaDN{yO)24~IiX zGvZhr%J^P<1V=`Mkd%;!Q}qEKO3R1FA{x*AoMu_?p55 zXS!1OV&pI;7J`$<`+{SnOefgKbBsmUIojX-9dhA|G(G6A%+P^l{3NB2mm4NLK0yu7 zCruqD+>{h5d>3tndt0aKAph=(zQP+5ln`-UMi72szHPi&7(G_SL_?M~%ir_6@r%PD z_&*cEg(F!b@UL3@-1s2R%}o1K`%0y2U*>Rb`nU({JvUD97yfS32?5DwfyoTR2eVb5 z9fMCccBXJoVkq9fT#qlv_2Fb$t#8I^XeTNu}QvUxALMot%Yr<>hx2yT5c8%O!1P-vCp1j_#~DQ6wNCik4t zjGMc3!4;QGoQ_K_j>*=d+yMCG-&p~!G|q@$8wpvplcI!!nP%a^$$m^!`xoc_Ge^(j z>k{YW^B-obpkV1mK|=Y27+j0z{(DLQKJKDBvOVwD{UqIsndcWKm?lKxwf(I*p)AhG zPyRb04*&ZI2%eKMLZ}#N5Hdq$u;r(0FBX?cCYLpO76hRsgyUoj7F~JO4eQXk9J+cE zu6wyrj2Y(6$}ryyo6JOaV@b;2MxBr%}6Y;-ZBMEcg z4c^4Bzh(!*Hy4f%7Q83pDq$FpOHG7loC}%=H8@Jp%QQ~%gQ^QBD12(o(cIpv4&k z1#|dnz8MF`ODBMmKouxEK3M~>`9__6c`FVVm z@K%Nm$8f??bS*^_V_{mf!x#Vb0C@DxZ1;oD2pS)>Habjra(onIRc8-#FF2v@=@f!X z;^OEqN&dP@u&6Wb!Y2`2#15g?SLx-!Mn)EJ;CL|#<4LBdI@oe zqPOSpo}=+^8xw_J>n-iS4ZlD()8pS0 zu5vrxKTgu({RZ#M3G=E{Tw8SI^$V{;|7dnkNcUR}gWwf8fy!}9u9|x#dLk%p%0{@b zw8KLCJ1p4Z7!LaXWBr7W$7JB&vGp>2j5B@Ae<>BV25AumSC_T@$PJcwV70oD(D$MnGKpc$;ujyuV-=mjZ7Eypx55H5iZkrXz>yBH8 zrt#xMYsLRn^20^z_6hU&+~d~&wEPjaW+lnRv0n{3!pDXswhR`74fFEjr#L zT6aG25I;w>R^5J(H;C3<@hbl1_xc1{5;otn1;zdpKvk1RAe7tDQ{^3a;MC-=q?&sHt*3If$__1!Q%suq}wcL|s|>&X&1<*u7m61@%Ka06y=Z-W^DKU}XdPVq z5`V2|wd|DfYSB96e>s1%XtllZEWfA2`kA@l5q^gUb{t6%zq(TtMaGtABtAxz2*D}(Q*YW;}?k5_M5HzCeixO;qiQ9 zhgJ6TR}UTHt2)eIY~J(v&pN*TmjulZ{43(MDI;FuXNlHDkHqu5Xx(t=DE}AHx@psF z-b=JLU;Q>8C0b8Ed=+0OT4gWZdo|CB=BH1`@n+FF;(C#p8UMpHbjsU(uw3dba%pVf1)&IJUpDtSWl*Rsw|3ow&y1J0RO0=GT=Meu*$Fumg z{;^wmrFd;uWh?)-XnpkdJN!P;+Mnjdt3<2Se+9o$v<__y2Zhn*`hVG+>if{_;ahLyw2Y( zUaLB~qKyB8Xg)aJhYt{~UA{bjpu=jDN^ay!M9cd~A>S-oKINbD*NE0N?=0m%?)bvC zMYm1j_lnl7yXW&E;wQ^5YT(NxqPa12G=H0DZF=zl|Ec(cwYZe76R&OESk2!kTJ`%G z{!gOy!krWO55=F`{n;ORjd-m!BavT!%=+nq3$nBL!)3=l`qKqW+28ob#Ea}L2l*F7 zOS0iZ{*R(1{pUOU1)?R}>Cay(TJpw^_(aiCpsy$wEzWTVzf81LV;A$^bojrYE>Q1D z<}1XDUVmT3mx`9AVm$wdXlbv_;dhIcuJU7kkN8LEFW<=DB3|>J*2>q5)`*{0@}G%T zMCopRd58b|>4L~wJwHXfnB=pI&l9cmrtSPL(HisVBK{uH%K7`_e6VQcjrQf=6>lbg zVJJUYyf$s_OukmME*mi#^FE?=%X^3TRid@*z(W3O@z!qrppxJ2zUKCSKV4APdJX@cc(J_s zFrOp-;GNo=`S(R@)#v&A*P`WobQ{l!7SxyVNuu@8Q+M-sh}IL2Kgz!;T7P|N7+>wN z(Et5(!P8#_^ZUfF-*)I<{Ewnlf5U(IX3^UDln=i_{57xpZsz?&>y7c%{3y}-cj5bd zkZA2)vzC8Yv_4O~h`*uTD#Ncou>3>bC0_jUk@xt;qILKR3qMt~zAgM8f1PN3=XU{r z$#Dza*calB{y0;~Zx*lpZ{}-!Ylp>13U1*uj#*_tG15oo@*j2lAfwIa_`iuC9d^e& ze!qAv)HsFTD_#q`^da6RTHzNK@~?@Oeetb)llXI^b?f>6iq<&o5B!#nPnI#0;AdXi zVKS3f{EcrFKU!Kfk-tm4c3XZdUnp8DE>7aZL~GOJE&TnW^}s6?yj-*%Z2Xz`7Okhp z82R@^tL(Yz&-sf*^OeWE`FBO@)fb=VKM`-{?QJ^#zv8tID}(rdiPlGVe#T!dT1~zs z{P*I|eIi%#(c-lq{+q{tELv@4FPHEib(pO3`7GWcTB?Pu{7BLAxpEY57p)-gOZjI+ zD_UR5>qRSZ`XBhMqLr>n;171(44Zvd2!FeHE$79uZM;)7r#5Er*`k%d!p?su{@|aU z`4|6h@!FMNY~tS+uPs`f$iE|AE3LQ`-Aenu;wScwMK|;Bh@V{TdX|q7uibmmm@&2tn`SGH) z3jzH~(Q5o<3SV}oXucKvDL+B9-oA_DpA@anEHCl*iq!-!{hwrY(5HNx_|Y{c1HWJV z=$iM+_(`I5Z`^pkNVNX)S{pw@v^E#5;qyhSW?e8Zh*s^hH}jv1-|%$kyL_bNf_%^Z z?BZU0Tk(|@BV_mZ@3JzVv#e+EkgGY`lB88T_<0MW#4L^=Sv&~V$u6b5)F6B6= z-=+-{%CA>LQ-n4EKN2T?B<-qE!mq1y1lO~60j`J_oKN7VKT-}8%HP!p&1+Bid1%_L ziGvE6Iud_@>`cD^il0$&LguxBP;d49{a+<@;wJjo-xVdCax=$&m);%6LQZL1}>S z-r^X1IuCX4JHfI<&q3Q!yv-JT^6ozgOcU5Jq5AzO&)0)3TpNw|5DYV4)y4=176hJf zGxA5HPJ2VKV0r~JPxzxIC|Ai0cz?yecYjs4XfcoRPc~SXQQH1+z`j??3HE&vLas9& zj%XM?*uP{kHhQP5Pwy57$PeuU1Ye<$dQgTC7b5?8=z(z6Xx2%S_I2ersIzu3Iio^P<)w|6KdW!pXMciDU(SQ z8rKEF{;kJP|E)^40i2;Rj3@zMt5R_wze{Z~}DeuNJBv z4};dPq?%LS<5{1e7e+IT&+Dz8>BwNq{5Ni zxZK!Z#`Mn_M%g)jtav|hP@_7rNMjhQx?iz z)I(z;j)4wOb@Jn0J0Ksoeug|8*6e1jLcu$FXqv$U3cLO}>f|N#ybkW)d+hTD+hZ@C zt<4oG){gS9RQsc!{V>)97#JgryvvO>OWC9zuinD0*&Jj}mjs<*8MjQ6aZvRd6Cuo5 z7KYRq>s|v-SaZ(!TJkDo3BnKex)-3VGrXDz3p1vluk~k{7U%l?Y`T<<>g|_g^H=6U zwL;nPrfwQcZwhv8Q^kp^*r0n|xVd(xN8Ow2xfW@>U|MN%Z;($xsg6081e;V|AyAdU zs0HVD!JQQKLB5*Fg*}s)>Fp$2v71eW>K*LmZu|#(hA-#xVvxKm z)8n9ifs7Mu<)dJR4?7te=iu-6Fn){NkloJr)dwaBGnQFBuE4Wj-=)T~AotzlY99)j zlh`rv#1w4~>v6|CT4l_IYu9R^%FBy`9p7X5%$vVT_23!W5iTZleFfGTpv0#f3He$@0K^Z+szr=!LHROC?D1*jcu7q9eW6|3V$@A#?C|#+R9#sl zFM&0@Bmy2$%HyGHdyWCINS@E(*)-GJ46Tb86O`p(_RyWMIn(~cJy3<(CJt<$vZ1}T zf;N1>#zD=~7*5RF%cKipEVC>7mdgkB*o}Bd8q=QSKFy~2Oar(nluZ^KZ(|g82_B5I zU&m^Mw(FvLXBRzi7u(Z}<~?g9R>-s94%vJiV?W)#yWfuM6*R7CT)PW2;5?4&wOg?a zstLnijjyW=V0#hEx!h5v-dMN)O5>ZxcmEsT;0j|CVB;_i2aa@354HD6eB0Bl-5vC) z&oS}v^$nOJDgT?)7mkHnGtc|*cfKf%hoZMsc!W6wsr>X2iqpgQoOd~xlgEZb%bV)s zq5saIOw&?#IDa2T^6!tq;-dY5m?}7)5;!+xu}G-Y}|Wps~X?$P-O8v<=JG5P5!=yWIIhUnzMxYlqeII7S<#U0EknZ46H9qZtk zMg^~%I9QX+hLI1#QjBf}Hfchglpyc=gmRzi?{q~*p9D_3M{%d|OP!lgt0PQF;4Tq6 zUfCfAsk%ybQ0By{1U!_}>yfL@^Bw$syEejeGH1>bPm-YbL9Zv1EP-3^+mY8_J{@ax z#5ipiBU}B9`?@~UmJR^dRkxjug_gCZ$x!8kr9r2pEojaiD^~62bFMc6ZUcV0Jw?;4 zdoB)UFJx1oIi0l*4EJVdFdS2?S4KhVeVAp%%E*3ClUVzRb(d=82&lT3(Ligi{8$a; zNx7VXI|Xb1qQFtZAXI;+%zo+n2GL}+{29+*wp=Q;L2;@iy_5CIJweZ| zxWOSeBaP%9hrE02A2V{sU6O1#!)CAx)3Q-eWgY9wtrkNXqn3H^6rxUg3ih9kbxM(l@B>w#j82kb)_O1BSu=CO{}Kd6dlq z=YG{$7T|8F<}@V3j=QlD^jSKw{eF4sfTNy&Co5yxV-xnHD4Ja`jP*ZlH#m=uYcEu| znHD8az?2rH?rBi;1}Uv~pk8g`7lstDr^wy? zHp6Lk>gTJI`BUs0W4jpB4H4sHCkmDJS?;SF>lAF-t{VxhiAs}@d2OIuzwI{)rb7v% z;D>o!j$2Sc?|M%@tjk9R2&hizR3Ykg{ATSs)Cobl;|B?QIfK^A@$K^$WV&00hrK`Y zwm@x#w;mkdv%`8>1myVckCw9Eo@zQL)j~bk5z#53YN)`%!KTT|5NNoa zJyqhc-_}i@veeo4N<%>Zus98w(n4JI?S_h&2F!pO&lPrsd{Tpz^?l&@)o-T{!3($+&UX>;G+e-0s$bP-C zHo7eMKpX$2v!0>@JLDJ14{4D+<02`)LY@S6y)Fof-*A`Yp495DE2ZlLd65KIEsKEK zLq-kMgd6pOW$7?sel?znKVVEa-C4WNh52aB>{xXw9TGvuc*R z)$ax-3^uXY?>ECYfpf_uW=MU8Nj+iBR7}={LSrrVv82_rx`v7CzM|UDCeG>&@<=E# zuzf7L(&fE5lqi&Tp=M!sHs}k^)jC@K1n$cm8#pVJu+o7Rs3Z#Q(TXbHt4V=6r(x__ zYxcUxqr#SYY*-Y`S%re{!r{2|)akO(gL^OkL?MPC%Yv{pu#3s*ez>b2jBD&BT4Otr z45Brb*4SP;scQdG$+@gt9JI~Euy9Q}V-qUYj)IayOqO7JI|h1!v9#EBxy4o|fY!M~ zX#{7Z{1R|FaGxfookX;Sx~cLMcXg!+%2hHSI8%GB-vkO8Y4N4SSLl?6S@%N*odev) z8!=pwnTDxi$5WcFq^kxf>e4bC0P(|_V4?h74VTdV$dCx%T!oHI zRMCf1;MlQBo&b$+Go7rJKQ$atJ_$vUx>JSK%UQE?xjrKqB!Z{K*6C`p`fh#xtV9NJt&2(m-}hJ=CACXCcAxDsZZ2QD>bdur&iDQ-AesRk4d_4 znqmqRFZRLB=!01IYkijGggN^{!J{)sOuaZ3A|8^){HCePX_)$aui32yQWV43tjvV5 zKPYryc^sANyV3D+P%Yun(DJ65151fM1N)s~i@_EPDsXqLy+mKH=umP*K0!#ks=G01 z0`R_QgXM`+pDzHPMaz1Z&W`nEx{#LjP8DpN(|C3tEbFx)ST|9A=Ww0NF>xf?z<4pUud!KI?MO!V(%zrIM;WYuoI+j zXw@%7N7@flq_pZ&3RND1ejcl%^1qU&LPRVZ-vc4V^A*AII#;WHRg?ic$pP>G8 z-pgJ#MHy8t8y62h1j@!h{Q?@$oDYCHnKBtNp28ZTrth^%C_X3+5Z?RU zuzinw0(J_C?5NIoAc7e!{JJ^^nwGlHAMV4Whxf-|C}Dpf69o|#W(*7~(CMKmlud@& z3)vLtME3P~B%k&Ko_^3BM|OI}JG|kA$LGiDv@rYOAWWEi&m^7_;Xljn0NPluq^@+H zr+83lWRDtFpUZeq`RnQkuxmIiTrUk)?i6Y-Iczs6_q?R#hq6b|9V`ub+h_o^H8>&dD5uB@j$ z541Ho_gfQkFMX4UZp=c}g5rO$VNh>Tnc90I_OD&Z5c4q|o3uEv-LJH`Zqgdb&-91Q z3rl{+Bl17ULtul(&s5Cf#==KSj2sl@F)@($6&vW%?bfd5 ztRAP;ppSz5$x02(@x?gsnh!WMJJm4nWXsKuf=^ zuIeWnA9D{KQY;kyL7fOiZ(#$KIaOFU;W&(SpQuIW!d z@mrPTw`v;juvWPr(s)4#V+Yz-4WNPo+E;bEzTixeyk7NNP&JBkaO*>l)v*W- zCSEspUR`iwC5y0;+5WeftikQeHpUrnd*{uKYL7?k|DZPu;rfYJdz8Eyd9{ICCf6Um zTFpq69XvwU12<&Y>#i*e=Dfz7lN0sFV~OO^Ak~Tu%%*(89o3Crqm12^EkT-{wLarfpM zY?#ZTOBu-dv!USWv_sU>3AHOQfL!bo4h5OM!=bpD@r68#4x0&3e6n90cp|^oJ#~a0 zpM)a6XKh~z%-3Ol!gQ~EqENRt0)9VUNq%ntW#S6R?+sGFhX-=;%z=kT+b~hJF;`&lF z0?(SD&QCTMBh)tG6CTGZTyiGhObt(ZFYehi1(j2)ZdMJ0+P?%Dgofwh!18A;2Q8OM zZQ%HY)j{iPk{GBWfBCxt|9un=>M>6%ZJDcpK)aForETRjJ*p{IANH~$#}i2EnhQjM1>^5{45puMKpIB+$my#6kCuQk*ft ziT*aV2MwG1Lvbp3*}>ptKOrwmUbauXEG}`uP@gaHh30hD3g%Cd3~d)# zOH7*2_)ZfEl)U{>$+@f?O1Zcz3CSm)MKgzdazFIR-<-Kee5dq8&z-DJMYbvlEQe8& z*72Fzj=Hq6V34n7a$(OTW;*D7rJ3;ZA!Qg;>}FFj29Je&f4@Oh2raL$iEuOvOMNnp z*h#m>;jIPBNQqsj-k9CD6~W|~Pi&Pyj+q?u8C!FD`Z4rT6*4*I-xISV$J`GcvvR;} zmdP>qQs<)cQ+?GpjyaxNKc=I%(qfjG1!CA5yMV?+)giqGiW*HlJl=Y)DzeTLz#gc3 z=c7q}DyTie*`e-x6jUo-&B3lK70DoP(ajabc}~+poBVVq)cQJkY-orEwdeR5;-S{v zwRQhXs%U8VfQ^Hirw2o3`EBypeRa5&w$kTwD@`8z{71X{*kfnz^cpMdnrH2-cy9mR zRM$=PvP1n1c;2m7wVVoHRb_yu3XFXBAoJb($ajU-%Ty7ZlUI=g@Ba?GyhLY#D&9xq*1(%E(2p(mP2k)HRkN`3 zlz9Ua2Afz0Wez&jAjy>vBv%eN*sZ9%;^hSv8E1q1Z!~zYd_IcLU=3c<@8`OEcSmmD zW;DV69qKUn=s9dYR+NHzjW~YK!;vi7n=g~Z3RRDXLF-pi&DyPa+O7$^6g9rCGC=hP zc_fq=*ooZ`U>@ZDeIxmI^6%Z%_u4qjJKik-r2he*AGs z9C*Miw?moKdmKb;mS=!-htdenMtPr}5^LYi!?F)inqi(rYQ=LbSnpkXDU&UjR+@k+ z(tFlJulLgE{dFflWIa7fmvFB4ePdz97M7~w^gm)Ar^|AnL%`)XO_G|R^#e^T*pK3_ zvtStOk4%gJT(ne?0u6plKA19@L};4nZH8`&uJq9FW4wz4U8&j%2NlV9r0z>)9N6wx zT3k12jbL8IB?0B(2W1W2G3S49I5Xs(f77cdXkC68Du(n$s|vz^LA&863`l@{10MEl zv0%?>!hkcx_z43BgRb}>5Ba}wPDB1sJyA0fs`hC)Va~o#IN~c!hT^7?Hn4v$!zOJ} zD(rgIl(5o7D4mae-1_t^+z_S$`*nfAP_s-O3#KvN zDcx-ILBRnE4iFWbIrBf%s9+@IYrQbMY`_y~t-12?(EJP&1B2o;{9r}{_$FO?t|A0P z1-+&&*9R$szNdnc7qn(@+|48m!r}mm6;Q086ZL>Z1w;i{OO4GV&y*}x`)P0tP=7@(k_%)-g?w*xt|aI3#ARhY5ND!jKi79t*!Vg&CMCKPrw zNTz`4Q)w<(?pC2T{zu*xaFjBf>pM*t)K+-wfuaXJQQspl=nNQOuW=6YHe*!YDZ1?(w!u;rN0KmxG?u>-L~ zkCb}{COgdW#UrD*3JnA2PhNUhd672!Ty?@Bj3_z8WC^CXW8mM($`}}|7@-f7YM^{N z*01jWpDqr{{-p|YIdmzIKUsN-h(84%dJueQoTwQG9n-l#K*el=3W5rPie7|@IlMl$ zy`Ov2Yw8%-P=)#h=0Zsv$oFbepw4L+3p?(XghT6S>}luR8v&NL8NE>Tk{@ikl#PPM z8`0NirYS?gO)5x_DV)U*=L#r za4zNa&@_Vy>?_g4lVcWy7a!}+d;X)`55-}0Vfuug%Phu$RAL$q`BSk)D4qes3WEKfDh6HGoU9QHB$IbdgaQqijf#o3v6n<1A;Z6wl>XYtA z{Vuj~H^nxHK>7!Pc$DwUp4Qo6(++JkIMl2Ln$uZpuhe7qltnx@w_^-u{}q!pq0m^1 z71uT4M!jHJI!u^fjpD%vj0sRNiyI3cEpcZt^YF0RV5E}N`;4hD<2y|x)QnWwp}9ov zfW|D0+7$nT4TE}%$^^DIq@$pGft&-|tEfqdYT_JNO7t06_NoH?;6jsL>d8cC0+d~0 zd!T^6z=J|R9isn#^$L_R67%Q+$QrbH;7r`17ilq3wW{X7Q+ zt5w!xXHiFCxKe*HhQyD{Rn<+!!MRfF)$Zsax7f$i2?2$xY+j*I3rm?TIoW70gG6+Ds&jlr02uV2K) zoo;_E%-9*|+U1Vj?$yLW-QALSD7X~`FFpBo=UBWEPxX^!mL?dAn;Bnsr%8%^U#zD20F2-GrHy&EE@FSjGqVrpc1|nXSB_7`!3Uij=SKKGT3_*lK1+_;w zJDjH2{)hXGC_CQ91Vcj#O5(Q7#QUsCXKYY%L_VQ?&uPwNqM?2P_AD=3#EpVYmoO2~ zuvC_GtbfY^?_}3k>hSg^=lJuZ;5q*^4t8ykrM4fG+Ev7PLE{D~{!SmM!=1XoxA=-S z41O-fe|f5tEx|f`JPYL6;QXssxN8Kqveic$@R1(WhJf{1wq2yGI#PzeLlhs&Fye-| z?Lny>^6!)dgM2lU3l(2zZ63U-n#a;215EsA3@~ z%dLgH!Vuu8JAkq)wHBA!pb;w8j)MFz@h1!JWfb77Q2N87`xuj;f5dpIYO?-GEEsXT zD^-IdP;Lgr>)w&z>4MZsIHBrp1vDmNzQTN~B3LMYR|C#<5Nk@Z8M zY>ZI50`)mVvG@j8iC{dQB{4$V%c^A1MQd;+E8?QtyRSBss^i<+W;qU+1Hc|;#1mZZ zke$sRPXbikqD^Rjt(NbMcGxpd79)IkmtJUn%na4ru&+yoZvy9%Nz70;Mw13}_To6n zkI*VS#Xjz9pp&c3P=6Tbx2Lg5{tI|atbQJgce`CT(iNvOLH&KcR>+T(>7jVNFIEQa zG^Pu+O>u68Q4BMM;}Yq4(8d2`akho&N1u>~!m*kR`K4OU^_EuAo=w6DfzxvrhP0k7 z(RxFzk_(5bQ79VNnuQBk)%6xXa31jr!!f8#1k(~W1+aJve2 z%VZyXca!w-csCdV`;-lZ@?|LEy=gKQEH&KDVwdVn{6E(fl5yZtdBwu68F)0)(_+f@ zB6F;}l=%ln3$>5S!oi}$mt8wYmk4o};Y28(&Ls=8AJ&83z!<^rV`CIpTsRxt2R%!E z!L_cmR2Pkt+Di?&rMl5rR)wWjssGZBhB+=-3Ruc;oiZ;|1)b2Y;UX8V3VETJr>#?> zeByEC#QZHXy-@#-5h`}GsZg<8RtPPxu!-QhS`#kpnvDy#&JYAMoAHE3(OW3NSP+8l ztZq9S3oUC+lOcDXGz}^<@D+N_Sh*5pW1;LlT$tA+W2o@B;!xQiWx4K0q!;vCN3@?0 zw8beB+8Y2xSeP+Tw^=z63X{}hU{;bC@w&*wpIwGw4M;k;}4WKFQ#0!eOgligTysQe5`uJcC0D zd%?*;zXR8l+7Ntq<#!I(xlF!+r!!RvSurGA^%Pp~|tIiW>+aib&%T35-j z&pGyT19y!yG{+jW;u2CUJ`;@#s7m&z}&e9perR|Tz8v3Js*A}bC$GnCu#7u60ora)mldMTGT zj$`bkgd&+?Y-GE`Yr9&K3K6l$bY;JIS=+N-D_y#@_NQUrD-8imR+*r715yCSyzN5G zLc4I|hGWNa3O``Nu(9WX6B!8SZIqCDQ~GHcXvTJ}1KKwD1Vi3BNmh>-sQG(iEO=zH z2O$W#k0OqO)cYh6L_$N4gzBxnoa-@NI5b;iX+%TEP7@Lhb(MxZ-nnI%F%oni>k|6` z7Wr`N6&)fw(_Zizb-vlC`gN}akYA{ehWEma$%7n_T;CbPAvGP*L%&Lf&`>Ceg{}Zn zYogKwH3|AafVVZH`U;Rta?JX7m68yy{$h&pq~cxg$%ma5mo}}`6@a=kycC2b_qYFh9^28Mz@Eh$4bI zo|hwnB7!1<>f0ophoA~$4K|8KbuwK?7}XmXg~_{XhF~-bN|yU1o}UsY0;-MK!Z|N= zn!OM!gq$n%=Jv#P)heuZ!b4_h=dJk3WpURSZO7V`g;7{?kohJa6!TO;4MN(=mFrVr zW}LzZ#ov2}44s-N*EYrnYFI-QG(D-)xGRcM&v9LpN0YGNAHK1kvw9T5I&+m&p8;6v z2c{ILedoLtO;u$1CjL(46eR|GEipI}bPr)EV8nj!(a`les*g_;0vaM=EkZGOUykGD z=ALT({fYXdb5MAGo}*j@Wmr>Mv=mP;H25+3?WNe~tUUd9plk%UKH^xVj^JH-tcZHh zRI3x24V?OQA~P!4>V=Z6o{`yJBC~UO4)9zC$zq{?D<1l>zwbT(cbjhlY>CsPyU!G! zIXGNMxJI}J6iDl( zBZvc{!oFv?7D72q!ZnJiX@C-)=Th>4aLscvo^XwDjc~0O6eG;{sZmVl6%)!q9rg}} z+E0|eFa+pLLiEy_F^I$l)Dc6NC$3dr?=;ulr6byok2 z@~8bce>y}7?=~X5-XgqcZhd%%q|QzUi{i$_dfk^|9f%ci#Cp&t06^R&K*i4I2+~IL!vht0i4HrJVL@wbPhPznz%iy*jq;tK|(@0baAXN6XksSQ6r}T z9tR{Oq&`sYK2WE`2G59uC_oh7lLk@5g?-W-VTgtbZzL`xE+j4_F6@5|KKqgjb^huU zsJYG%35D5I1 zw26>kDYFZvl_qFj#Y}@OEm&E&e}p_13a2TiKqmr>&42Sr2iIhM_8_lCY`S z`A!pbetK*SE@&)yS)BmY+q}oXH8-F_`W%-m1^OT>O`*p5j2!ekl>R_kHQjC5p`lPC z;UnSW;K9cRlVKz{e!(P^!{%j&Hr7i8mitgh`Ku$S5?&-x#X?Y)77rt?Fa$v6POq_0 zcBR(hQX4cv#oAGj|0Vup!M%(E&RW4pK}P~f6V%^_{r`?1Y9Ww>xXW;Al~3n-=bQ_H zq#+yfN2`@kyIU0w6|=ap(C?eQ4bei!^#qcG8YC0B_3{p#o_n_WW{~`0g9O7!%hbs* z*yRs9fs{uRd^l+N)rfJA8YYgol7n8UfXpv7*rD-Z`3z_r&8fhdjU2zD3?;$Ktol^g zGl`iF6s1fQYMbKR=d%Y~J>+>!Z4+GfJGk5*XBaCqueE}Gt8W}s{XwFE;zmgjw62nC zV2E<%Vajh0YOYKI64U0au!Cswcz}{<5-RRs#zDkpc?OghV?vu~vUl}&C{#(I$`YLg zs(2p_l>Jeb3+2lsdO^Q+1eji7LctcNNC5Lb#)_$wfhylfG-(%Z++c!omCOeUKVZT* zC;u2lDTyX2-94nz-9(c_lUB&^P2gNIi5dDp&5>x5Xp(4h=r#I#foPIwl4z1>k}4>B zs`W#e?l-)!@b(|Rv2a?N4CL1Pca-1kR4K+#&KnDs8x{mZ$uCRup@IdfXBj0D}sI;x;_5lvFgTaygC{7^XJ`nRO%aBB=!wC|X&jDnh{Wg`c&LeK?7 zlSGq5lSGq5lSGq5lb^Do?qWZ8n@ME|G~CW+KwT#OpX&+Xp(4>Xp(4>Xp(5M+cde1Xp(4>Xp(4>Xp(4>Xp(4>Xp(5M+cfzN(In9%(In9% z(PZaoGM`&NrlbDmfgNfT-Vl3tlVH%<1%v2d_s7O4u+YJ75;Kn-qzAhz2q_6E2`LFF z2`M{|l+$2Ki;;u26AQcRStv2+<_bB+(?%B+(?%B+(?%B+=wRqRFCHRj7S)K}YRP@H1MzAGF4S zjP>_vcIqAz;c^!0&I!Xq`QCLsP&FTqZX5H0rqcl z{?#koHA1ZceKfwZ`h(gKus+Lj!km4fP#r15J7%ScP&yyGJY^X1w%Z<*+9Cf=Sun^~ zGr3Urt#J%ge4(`o)f=;gs>kuIduyYhQLWH}rCGWX8hw=kP`FW%4(3(d2q=#+3^q zgIx(WZO6Oc^$n8_vlrru>Rh2WgR_a%K-DUIOl42&(jb2sN?z$Nb3e7^1_jj4X3bDF zi^0dffeC|M7Vm5r{fklsjqC84I_G+&0<4xrK4Q4in~A z>%n=zm;i-&D05Y=#v7i)>to&jQbE&e>KK@^S&I2oBV!R#uZ?K`@A_;m#$~~0wr0Dp z6&6Ne!Zq_vCI%WVQQM*3>dUzv(}hEW$uLsX<+4K?>!kwAeX3~q>IlC0B8e&%sCPH@ z?xx<|7S~N$BeYC*cO;plkH=Wx>^$sWlo|=qRDQj zyKkX%H>JBNHc7EbN_SJbo6_ABnxcNk?ALCIH z5t?31f{HBPM5x=WoCt+U>M<}Y&yWrIqt!~N-K`3Tido!PaD8VChtzcJGNWIG`ZSh8 zNh~Z2@WR9TPD3oDPM1WsYg;&n8KZ?wt*C`@pV11tX z!JKDgD7i78krPdJnFVCf!7+WKkEepJ@f{BAO(cB$_0e zB$_0eB$_0eB$}kyWVd6J_Yh4IO%hEKO%hEKO%hEKO%hEKO?I0mgNY`ICI<{n+PU>+ zvCifW`Alk(Lrrp^_*z*6FYjwjS9 zu>VOso`L<5uyJY*YXSMK=qOWFKCw{sh8NK!(InAi@6zOC3RMzK5=~O#n-brY_@=}+ zCB7-~O^NSr$0louCW$7ACW$7ACW$7ACc8tEqfSu0dEjwbGFWs94r=G<5+Uv~tscs! zbIHQ&hxMR0Fh=nE*cb&Cmq8;mEC_~@Uzi9eE!9PX{xUB$RKM<(0EMvz8^|xzN5jZZ z4O!sap)`WCQEq{fm(>YarQkgVuDL zDA?i@31HrbCA_2>ln%GX_@Hp+d}S2WJUy^ggPtauB$_0eB$_0eB$_0eB$}jjH>JC~ zo$mfWqDi7jqDi7jqDi7jqDi7jqDi93ZqwvfM3d*4Cd0Y)F&#=ci&chns93DAL*4gG zx=_3tDd$Q>GW>8q_KDix#soukx&K(mzh099h=3f_q%$@sIU=6`zDS zVAmE|Dl{9|WY|^2c|qd_sm;^40QM*9lc2;$>Hz0bti>sKMH>b`m*T&QChPD3WiXcO z=oZMc!TDFOaMuXb_SZ*aRZsmvZ3tMOWjSHazEG%+l;It-(nKhok7qJ7jCk8^4@&Kj zf2S-Ml1#%JYnr5wIyjp@P~YoSkTrXi^1Duc>2T%4R7C`;Cl6NWC@! z%GI0-^x0gDi)fN)l4ueIHi;(bC=NC7?q@9*|3NfKG)b{ZN_SJbo6_Bs?xu7%rMoHJ z-R*R@578viB+(?%B+=whp~)a_y{4nSX6Gn29x{9rIG0Rfh6)L4)8rex@tEltEV-Gp z7vtmk5n6@d+#BKf6zJq?Gt?i(LYp8usZpQ5Ub?P6IPM2y46SS8DS5``H%16{kY zC`dNnA->NnA->NnA->*=?@Op(rKMB+(?%B+(?%B+(?%B+(?%WVdPZeWFRC zNuo)jNuo)jNuo)jNuo)j$!^o+*F=*f_WCH)!nBx3Q8{4 zje)Yu)tr!dQz8`4)9Ro$N)qONBG{O9waN-Jwrd^Gw!tSD^43YRNO*F$HV&%2bTP2< zB5gR7?A2w$K}9kuWlr^qgW`X%Vc`5$qJfB4Wr@)8rkVpwi9Q1?f7XtI)cYh6uqi^J zg4!dT9V!-M@7%iYnRKCeHL}f>ie&iVexnukw=uy`UG6^?@~_vV0D>O}HR+5EN{+}U zxX%^fjwF+bhWZ7#RViD=FcHwORF(u0%k^WSdV@R?N)C9(Lj6{hXV?vN9q9QQq&18ctslq zKbPXaiYDt~!4izZp1K9N<#GPiE8H~#cT@Uk)C#RXs0{(@vn(gf*%u1ckutnvR+8x`qbUd4@o@)*M~FfZid-4AvG)X9{|knt4WR@3)dB@`c&20(>@v%-!B$rPww zrcQ>66~o5~#bpX8u9F1Ao*3K~Vgq6VNdid%Ndid%Ndid%$!=%5_w_)~oM_Vdlb0Tj z5KR(IX2a-TlqzUkhlK8&>y-+yS{4Ddhm0CfOxA=#W358tNmU4zrNe~z)p~FqFeX4@ z9xCvcs}X^M{s?(P&DjN(QTBecD&N(NoD#tPL%Tr}AHm3h!m zs*Z>JZ!~(>HpT~PSVI&vJ*m^cvnAS8{DdY7s&3IHv6rgS%@yD8mG>26AQcRStfM>I(^Ni<0`Ni<0`Ni<0` z*-n!&+h2RWhs-FOvH&lX+;JLWA$7VWvb})ZIm{R>Y-+`V^ZW2@YjcU*0cFd4C_>o> z5z0}-l*E+8l*E+8l*E+8l*E)2p`-|9w};%qS>-0&AsorD|)t-hbPd$~ai_37zkD*-()Ghd|jFp>_qG@3zP|n_D<5 z8S+cDoa-&E0_-oN98?RSglgL^mEC=e-5Y9^TsTyX!o~=#S=dXW>UxVGIFERRp`xl1 zEAO6Ar@;Ovv5wAiw+eea7rhGT$yD8sI z`EJU0Q@*>~`R=JilSGq5lSGq5lSGq)i6%`;*w_==P9@y!lR`OfccBSIDM>NNm;#0I zeHx{_j<}MzlDLw%lDLw%axifvRZvpSoAf8GLT!^7%57MPR6D$nX;Qdtwhvrmk%mEr zZ$cE5T&x=dWtXctA@in0D4wU)L2Z;I3>=5C+NWT($_g{KYaP(G!6z8<)=9FUDhf4D zt41oL!O@5%_bub~NkYv+loOrGM8Zm~mliA|C3eUy_K9zA{pGNEg+i6L$^4g+RAcRawAT)sp z0xALl6$F62ly3z4IUq7YHU2E4y#&y45X zbI<$v+&AyJ=jy!=e}vz&*4k^Ywf5R;e`nP!8ow+ejiLuc^r1}|m?1K1WpF>rK4?lJ zQ(%mNj!*D&X#1X0nOo^i`PE8+`~2#GRJ8{&;hZu(wan3H(D6cDCdD1YY?7?e0R@y) z9FRv<%OZ2#<6i1kcL1BP8igZ;BZVV{BZVV{BW1K(M!RLSyTha1U&y)LLX$$1LX$$1 zLX$$1LX$$1LX#b)$wy?2+e?#~`gMiAeQvhv12f1~gg(=wKN~a1I>8W6mB*DR&z2^x zF@`9b9EBB|O{Ioda{Ur!qI2(rXHY{JcB@!1B0Q0*4jb*Bolr)N49lR(T{v~h^}U~g zlHLf&rPKRE^<=Fw*~of#ct6Tt@0UcIlY&C1>6|{BYUdhol+{_K&|SG2lyhxR9{sox zr$ZgRsKir4P3Iyin{VhtKtMe;7Ajd(buMr))yzP@aGYI9rIr~u=c;;+z8`HKqa@MZ zc>%pCX_={r8a4zbQ`MId>D00vUANhXOi0D8Q8~0N!%)ca^`jR$7vPrL0`lp&S(ir# zD)eF0y1_ro(+PYu*VLP;BK;lYnuoF}e?2^beq8`nG0ceFIO5R(Y@C598LlV866?Bz z8f2>=*(yjDcgy1L9}L~y2PR?ID%O%r#!rp87ff+oM9LeWa4*K3MVZ9O$O|7X*jURI7icjCA9NnY|#mhk&Gj zWSh=F^>>1|tDi9zP}vg9)i7Pn_`S>=L`{=)aa2D6zbE20C<%1H8c{<1f5U6kD!T;9 zEMvMeOhvmA7D^2Q zl5%2q<1+z$ss3Ixq0K}7bRemB&9q71q>OY+x1@}8%SgA3bjwJ$jC9LLw~Tamc%=Ii znKvmkDKsfGDKz;9pvgl0I=gSSjiO)@3sw`xV{;on3tfCIB#(@#hD>Ux(5F&X=ipJa zcR^?`Dm!H`)$LFssZnQ6p|-6?10NTYj}V3ws$U$Q<5~J>{lSt=2d4(4xj(+kJVXdJbi!Tg#v zc>$?Zwg<<|v`p1u5B8nLzI7SKXlhv>l}Yt)g<%rRuBdd{`>?rC8{wWTJ(SWzc||}e z)hzKdxlP-5J}UHC<$1VlO@ZD! zEi@@KDKsfG`ERAk4E;L2Z%)p4-SqjMGpB0yM3hpy*_1+M!-5T-)2G%P(Wg**Y2Y9_ z{;ZNlrGchCG(IE9LX~GDdbr0eNG9uGquyP=Du`Nhm97-GG$`I(^MS#0-ikxPaZ(qX zacWeBF`@ul?_h)Ry+?Eze3Dcy)h<_xDd~|w8`V?>VMm@Zi}CB2lwmBN+6mBN+6mBN+6 zmH)fBGLw#11v-Q#owPB{FNEq7bjkEW=K?)lyxuRLlG1g3$@q}5!!$WfXi{iWXi{iW zXi{iWXi{iWXj1wnJ4}-aLX$$1LX$$1LX$$1LX$$1LX$$19j3{RLX$$1LX#Rz_Sdb` z(MN$f+2m@|8L0kFlb))dF&0qS62ELRT@BN^%p62blXP)ZKS9w`+y*6q4p<{fsQ+)l zA=J7yDu-NC!t#k$2P9F`cNPO5BhZstn}Q6~m}oJ%t@C2t(;F~B=SxctO&g{3rkYT_ zo+i&UrL)3GR&R!;(WQ_0>*=UPvAXkTCwbgWCHk~FE4IE_vok7_W~Es4WZ#c1boP!3 z&8C*jD1F`I#zfj1ZSG5s-|$IrWQAqZMO|13S=VEmoRjAa*fqy5B%LngMC$4EdECCC zQOO|tOJPM+Ei5T4DJ&^0DJ&^0*Mb_r4nQg#d}^{$ztrGrwq zQn*sMQn*sMQn>QZ!9nM47&^3E=5)#*>zC}AI_`?K zq`Eh^W2*Uji)<1USVDCX`v0a)f<6$M6q*#86q*#86q*#86q=O2N$H#HSl=XV-S02M z-K+e1QTbB5MfQT=9^@**xWLh$jTvN}V2G#6<4Tn0Tw&K3LljMp!eZX0QbR1cehD+t zxp%@ds3FXlMk_{yCsNg6qup~H@u-nu8C1DTmq4!X{S1`!MnEo|-XDr}!Br+3S?><- zNBQghl4x^MPzW`h(`QrdTthZBpH&Lom8-!v*9PU$j~nq@>gYu!o*HU87g5=KLmvY8 z>8Y_$$)c)rfrF`L24)$=*_BjknGt|R$aD1lX!95)iT2J5=uJt>OhweNAuyS$zKlqx zmhG4bkbQ_(C*O+o$J;Utg&bc$&laW!wgu$VakDOu4pivFsC9!s#!+}m!O>h(Z>oy) zcaUoy%BKAF@C5pG0aV2>V>(&mF|1;ofuB6CC&Lo!x`Z0Yl#0=pmT$v*Q0DVGy?gRU zJ*go%04dh_=hA}d_+ezTAlVlm^v|ZUI|AYu_g_J+QNdkl+NPjFin~+ag=*5wu@pB8BReSA!PFcOoJY2&k*v0};lWh- zt$$alHDh>Z_g=qCsbNWI9@XB~sn}gv9YmGQe(`iL&A*T~??mbkoKgyD(k#>f*KMXa zS<_AB_bNf;stxW;bJi=-ZquU{a#Z`_fzJ!-LwjSCGCF>(xev8nipA&E-GkF8XkSD! zwM7bMjO6j1K4oc~u>{th-`|HWlKPml_+7V0AKPml_{iy5&z9!N?8InV7 zV?mh}i^FrNY-K>UJ9(Gfnw)aHuktjz1MyNOi+ZB_#cmWJ<)6OV?UI6IDK^lm5wlVc3E; z-JB);lhQx=XYHT7Uiv5hkMvK`#OYW|G8sQL=DM5O()H_-ee-VO_xksj4oYJx4%-R~r3UGsH1*IX>$|0c z^3U2qnJOKW(m^T9ab!7;tm~F(lhQ#c9hA~RDIJs@?x6fsXi{iWXi{iWXi{iWXi{iW zXi{jh!!-Gc(4^3$(4^3$(4^3$(4^3$(4^30hiTIBC#A_S{kl}&1e_@^>YQ@oqHIAa zTTqS(&E{h=^mUIL6KQX>x$o}>n`V2?hOn;3YU7jVu=i+%Ur0L1Rzb2TM;7H+>lTGu z==88iEJhk?>V@f@IFwhoQn*sMvcp{2_fN`|a(=gLXf7L?+xIJJv{z`dHCO3MaZ7{Z z-8CN=JZn503eEty*o>{zD~u5ZWL*WI-g`tROS~VCqlO)d(4^3$oZ1~tjX9=nMDH2; z(d1_XOyrub1PV=dm?pD@CS}Z9#=K?BTgJR)%v;91rEgODCWR(DOq0(FO$tp4O$tp4 zO?H?jhwIlR`sUx{n4(H#Tl4?w)E7C@rR~XAF zv^gASFMko5PTAX|La2SDlI1>Fk%_4saa5Cq7@Im-`p~pqI2ySw0*4-NO!Et&`UG9F z=e*^M*ZbvDQo61$86Prsm@7@fmBN+6mBN+6l^y0vIV9)*+eVZ^lY3{xQ`K)mlbM+7 ztrwb1<5|4ZgH!0wPLtb(CWR)2CWR)2CWR(t%v;91Wz1W~ygS@C`K=t1BQz;ADKsfG zDKsfGDKsfG`Ddib$@+DQZ`#e2S3>&yPY!qAE*+GDl!BCkl!BCkl!BCkl!BChMx^|M zOrCTJO$tp4O$tp4O$tp4O$tp4O$tqRc(}VnXi{iWXi{iWXi{iWXi{iWXi{jh!!-GW zOr8{)6q*#8^w1>Ep33r0!f`*ap@7Ox;OkO;uM$MA+ThMKXT1{bHa%(~N3|bz37;3# zhxW!OWpw;nb02EE)L&24-GkF8XkSD!wM@X?6l+cxa%t9nzY>bRNhzQ?)3LeunodeT zs@Z}CoyG;Bne=T?o}MnA2+p82p9RNL&7O!-YB!rwsBBoUfhI>OxZ;RDh1yF42hs6o zv3q-Ips5dy&j_+m<=KcH?r{r}$vW7mch|29BH7kFh1#|n4fK3fcs^xyHl$Gf;_w{L zVM*2>EZKB$YCxL%7|rjO6jGPUdj&lQXZ0CN})-iNuf!hNuf!hNuf!hNukLO)8zZoHz_nJG$}MGG$}MG zG$}OshoH$^{ks0X{cq+zWbRGPj|2~)X}v=S(1cNDoI=$9nM47Q1z0? zJZjGkmND;t?U;A9aHVjiaHVjiaHVjiaHVkNAA&1;Q>`;9S7`E2b>yOZz@!kGYW2?~ zTU1U8RgE?dpz4XCdbfR1E>%tqH&RoIUjjMKL|}UU>X1wtw=>*97dJ%4)2Ow6PO47{ z!6A@+gHy@TiYfP}2bp@i8)xCi!AK>UR)mLzleMp3HkDRJ_VP>(cVvb2r22@EXv&%y zltS4zVtRh-PvLQN{H!INn$H{TR6Elzi^eaDNTcWh5q)S=hFMReRtEQ@?1QExG6lvM z==cOb2U%w!QDttWH|19=1@7~!2U67@#MByZ&{NACeFhyb)MZlKF{7TcMh6s7QgJ{Y zRV|Cmb&q?gTit*6pj>*6pj>*6pob9?hcQ3r%A7*(4^3$(4^3$(4^3$ z(4^3$&}4^c@vYl_oCDLLkClHKyV(}o<@gv+u877 zs{Gc!E7h9ynY4Sa-=);BBs7m|Z|hX-uB;BC%4WZKI+*5PNSk+}`})8srI04gLW}CU z%@jwjHl2a$?=)c>oM(*KJZA~I*iBc%v@SCTQPU({9Mw<2el~F%lmt3pjVPi1zXgX- z>)NOsa!m=#Ct4klL`~mW3=}lX(34u5f(+D{Xfe61^J3l88%*T-(vm~dMxk%LCKL&t zJkylUDumkJ3{9g;AHfbhM=grgoj*It<8CU^r`1_`*PWeFnKUcKf{8%;v4_syF`?Pi zk{PA1d)$~vd!x;Le;)_P_DmeIt`AA2ljqQ9U*Q*$P8V__F^+H^w{K`vGRXc?SP@kV zQVLQEQVLQEQVLRb7%4Bv;%-68KOs^UQrw;TE>x3djun~|n#@(YQryy@cz4YQ26C6;Xq6q*#86q*#8>@ZDsli_ZmNuf!hNuf!hNukMqJx%u3 zugmkz%URZ_BvQ<$mK3tqnGNo}GvcZ0HzkP{EHI{G9!*#%HS7z+^p|vV76lGBrBdHx zW+%CJ2V2P18fc}e*FrHnWkc&ZwS-9BK|$MtaVpa%{k?pR#QMCU?vG7OH(mmrwa}G>&W&^e@~dh!)i=va)-X zUoR?OieF~-g5VzHD#BE@qdyxn$U4CgPnE}&D9>4Nt}%uv&k1l%rG{8?{Ss!PbMJ&_ zP(zq8jaG~ZPo%2DM!V+-xltp-GN^KwE`eO%`xz+djeuO9--pR}RVEu*?+))r`Ro0X zXme6f2sNG4XH)H5LpC*^RSMmet3f!|2IbL@8?i~&(Tfl5A4(7o-G$wW>m0D&5V5Z+3eLvbf2F=voc>%pCX_={r8a4zbQ`MId>D00v^XIY; z@f5&YG0AURhM|z->qjqiF2F6f1?1Clvo4PgROrK~b%TGFXZ8HiTvKnViu8AoYaYs` z{Ppkz`gH+R#V}(!S>w@k8D|8Rkn72?#JVn_1~R3hg=_gXya#1IuhY9Hf7Fv2k^_)p zoqsMZn67t{&4OfKe9%9e%I*k=r@+-pDK&p@89=pPglD-MHkG*RpFo2c5uQS=p+P3H z9`|2Ctx>^UY1*bB8S0jalXAwQ!Bn?HiKIrIS^z8B4rmky>Z}yF)R;o~A#%o|fTZj6{drl+H=%oRrQ< z>74x6cTVQHCp~N;lUcDyx1?!%7m9ve=}B1`K{*unk&=l8gXocPoHm=N{9{uOt>?ns z_KNH`**qi+Yb*a$`%Qu-uNImVniQH8niQH8niQH8nv{u?GI6rQ6DJ1=P5zN-64P#C zeA8|o*c;YM#=K?BJA`DjpguG{BgjIPXCr#J$1O;fF>e|3uJ4E0Gwn`HIFd1MnLH_H zEQY32_V%a{Y9Fa&xer!kx|`bKs3uD>P*W#MADY$+^U~@f@Xl=f?-=vGR=Dzy%#|{O zQf5%f)|1Dd#SWXLfhM6zeJW*j4jx5&7lihrvQt8nLX)x-M^5ZEmQ!eRIF?a-@jpwG zcL+@iP0Eq4S}I?)N%%UO03BXNTsqpSTEf&RhPymO7*SFFh*0$dK}eM|5g|_e%KY2 zPJ16V7rGBj!iF|K7`kiXbgU(rjGr2FG4_^0W#$M>-AMGy^6WZa`J4{hJ0zI;Q+-%i z7+C}KS$q^!9+fQ!*Vnxp9z@x%VXOMngq%=c~das3};VNYXheos-fz`A6xT z+$uOJI4L+OI4L+OI4PZz(m5%elhQfa;m*l>g(ih2g(ih2g(ih2g(ih2g(ih2J4}-g z3QY=43QY=43QY=43QY=43QY=4c9qpD?*x$bcz6GwDMu{I5sMa++d41SJ-xw1t}iV(oOcv{2w}MaRx8XjrLzj5wl_o5=+a00amc4d zvAXkRgCN-;h>WR*Olqi*4T5A1j-1s^wG;G3RQH1=k@5=-d9nuQ53vS^3afEc^i->V zCa>H}p{miw0aQIPRPVMg%B9Mw;YMmo@k=1bnFuV^TOE=~<93ES=;DURcpA0V&q?(u zAvpE1Z*VF(T5uhMv^g6l9>rL;*>R11t#5^c-e? z@kDS2t@$iCo@(|)lv2CdltN|0f(%I8x{&k z3P>7<&`MnZ2Gj0}w9)1je+ZDo>55NCx1&_*?tLFh3RnlxkZNoZ1N zQfN|WvcojFMQBoJQfN|WQfN~8CWR)2CWR)2COb@%4+u>PO$tp4O$tp4O$tp4O$tr^ zTWGSkex22K;M8ZyQN3yYyZ(i=G%XS%1k;04sPUPAzEpp&VxZCfa01>FXXhCeq$$bKl<&pvtC;y08$k zt`AA2ljm?)RE1wiI$g-YY@O5Rv6Xs5qmn`Pm%@suT9{IpQkYVhQkYVhvcpXIo9>cJ z)~rpTDOUepvY|O%C3`_|4{{aZtdgTY8#Bl{!4OZC$CW70#>=iThA7W=%T1+*SaSUm zW}4RRXTRoABf~OeLvz{CTsAbvIR|SxDgCHs3*IZ)(A-o) z7o6Ck$8HHoqs=Lnkh&~=FZ!`tzyNpCZ27o3S^iZbNSsBcBMrBIh-zhq-sCLw z>rX3f!Fn3?h#{Toasn`Q=0ltXxF%1RKs8lHE7i}8G*I;w0i{&4#Lwh5ZSO+SuPZ$% zDOt075qfvqE4``K8I?=Tj|2~)X}v=S(1cOu5-O8k z%0KvyK^JArTewoVQn*sMQn*sMQn>QJ%9X>Y^dtWQp~+0j-X4`f^_Tk@sIt|sJGI{# zXrQ?Dp?aG9dUP*xoQa61rq6<-C^|4am8!l|oOC?h@V|4%prg`DDKsfGDKsfGDKsfG zDKsfGDP!Ip9`hb5G$}MGG$}MGG$}MGG$}MGG$}OMVVbNEniQJ+pP)&HeqEez2F_=9 zU7sP>ESEO*1E5_kO*n3xk0ou_g_J+QNdkl+NPjF zin~+ag=*5wu@pB83uI644;@U+0l|4>dm8g`+RlatQ{}h*U8&Zr&!pXZ{Vt`3C82p# zdt0YscV%@DRW|#@)4?&rb5Vn@aSu#5*I%LX~GDdbr2Q z67RB822x!WI) z!_G5U1YwJkCEgY~J&X@d9%}04ZjvS5iB#A#0u4;NCkUo~nLRl4!vKV=9@h4hyA*ePKB?E!~_&fx}Iy)b|)R26gQY zwveke&`MRWh2k`;9T5ZQhJ}6@&8Q3L!$)HEB5So-PjO2^x@$Y*lPd!=e@4_{`p&4H zh8$`RRz`Y`5pZn4q@S{F0Va3L`xdHwN0(3eN22>s)B6F_==AHlT&la?ARUyh=}Mp= zWrvaSbJ;6MkW!FRkW!FRkW!FRIw+-sQfRWnG?^?NltPn2lR}e1lR}e1lR}e1lR}dn zrpYNnlR}e1lR}e1lR}e1lR}e1lR}dnrpb4OCjV75nW|rx;G1^yl0%n7Rfmms`Zg#J zlUPQEWl-fV96jaw9=qo!y%CVh``YNqT4l14_3rR~l)v6Di8dz%g;3KueKyt3HDpus zS*6fjxf-Z*ZBQQlxY3eHM=#6z+|fWG9sN?wj1=6eaM7V+!~cb+cFG=9A7_r zp>qLlxh)`{j+=GZzP~~rMy(tCv$PYi=xDB~H&sRYJIFN;3zExU4^N<97eG}EGp3U@ z9&>h#GXhJ<^<-FLU6)V;nNl&er{&x59+dgKPVb)lQBP_}4nT@^{<*YZx?Yxee`&## zsZmOAUcfC&ydz4f-E2ysvSGmnnjEFz(6%G`6lyOG97M;TRnn+5(A0;<%M$Ob&cUN- z?}E@?Bul&#slFdtl6I#tjq2xHW5{(bEP?DV1>>Z?Eunqr=vFftr&S?n6bI_86u8uw zLir()=~Vw#n6++ExGeFO8I-1OMDH2;(d1_XOe8ZX$@manlBA;%{b@y=v4C7{Is;`N z_U}QhLk!W>w84-;LBkB$?#5Z!?wdD6Q%y)fBuzV_B;3X6DP7n1{})X@FElAMDSeYN<}G91GUhE~-ZJJbW8O06-Qm8;Z-pj> zCWR)2CWR*dJTy5{zs}D$yC!G6Axp-*rI%864Jwpg%FQc`FHjS6Y)h!|L8$XNxW{V~J#Hr2oP`@5&czkE_rYyIZ`+O3 zKL_f$V7r4N@@!5zQUsI2?5VUV58pp9%`H27D)EK$o})|VVY*be7i65*5x*sWkvQ3TG0=e9a#y}H5>>-IqUae_UHx|celXh45>3|!70{cTg|R58>frw!8~ z3UTvSnqeB}I|Hfwls$-+yfDa2Zx!0cQm5ruw27Q|j)jGg7pUzK$(r!Md2sf`? z3sZ|K#D=KCGGXH8*`(TV%N5VT)be4qBOf!Tz(g)@ps$BQAxD9!)YqRk#cTRuW^ zuXorSbzB&T#6ZKVOT+2714((}9=PE?)9H;~Q03?B{m5F3TYNbSCgL=ZtJpS)*53rP zWr!n)VoPk5bnY>jO^0FjjUJ3~!%ABeohZR&*KmeVXn{1x=18FV1L3x#1#Vi&eLB!K zldgRNrk42N16P`;>^fT)+As*=zMTP&@|n1H_e4i3^(uwinn&TL6-&lon~7Qyt_r5c zQrqS9?C!twm_>ox|L$6Zn{MkwUk^qEm+ydwcDDtq9O<-l2;Al@g`1X{6GM=hLZ|QA z&Kq&xCx#-(I)2)CFo6{Mup^6#hr!M2hTDb4;y~Im%vMF2+hAHtV6NQZz#*2y5#)iJ z;Wo0xF_1DZg}IGiBiE(2yJ+byDD9T&VMiC5JOX7u`~kS35R1q%5`o9B@&#Es5~=!R ziN`mLx{b2UrL+w&%NHR*>L}aI6w2jNW^e@3m1VYS`e_qP>ty(rhC91b%OlPx%DoJc z&abqk(&A8OUwW5Kzp1`h3P&TBjg5R+H>ZuF#=tk9D+5v=NK41qmeQP3m|7VO&U9wc z<(DJKHBZB><<^owD$8^Bp)>5ZJO>rQ)6r%RtQ%*$m2`K) zDyzUF-ZIWMy^foyKI3ikDEDEgn(J`qu&K^$Qm(+2z46sBwT5P9O#I|B0eDAjNRs0m%C!+kG84XjbTwC67 zrqc_P5abJPV(};z&<%HU;B&}q%Vacg;|QiNJ|ng59uiFT`-TLO=>(qE>T+B=jGy`6 z1$l3Xk-~09Lz6ZIzT0nruU1HvKckRdX1Cd!;ilDtjH##x@xx(iO-@W`aWB$cgCL*s z`-YMVU)O7BjHlh&%(3<*Ct z6S2Hs0XHq-_8XA!J4#?`RrfbnaTe)kA;`kJ;Ko(g-B4tu>dR5+kFxvP%i$g}+jb4z zco`HTzL9Qv3QCJEeGbf+2EKF-zcF)s9@E||?&f*X)>a^v$R>E0{7Qo8LIs}vleIAM zZU@q)N|-IT!`%0AaVkxji@-$_I2LZ{4*V5v-?Lk8IoyJO!c)8bMwpIeFx%5g(3Y7> zx_EAsJP#hXj)TWt^YAzl_dr>1LaJ!8C$N#$o%;y_Rvg($> zx_2lmBvDwzxmc>B~{0$Bu#ebUA{IcoM3n-WEx-Y7u1hD3}LoZDYvEgtGD7 z5;Kio0gshjtF&-$v+2A7X7(Mn@idm-nkVi+R5$kV1?hJuf;`IKiS9>B5~+pF2j;?D zcdR6e`rQRn_o^*{Hr!#L{xrN5>3{X@OX|{ zCFx{I4Bf|O02lxHl|Ygybx?~|*{-HRT)CmbXmUI1Yt(9lbGqPWJcIkLV)N!)nC+{P z+!c2~Ek29;E?)zWTZh3su?F{Te94wi3tVsu%jUpg1G~{VHgCKV=GO3mU1y!Hni6`1U&6c;#VI@@+lnLLKsC zeg&>KlWi*LxOvcmN8F3xAMks=y#K%$x|_|kAwFMaJF>OSM9K#TOp``~eu->oa}MKdrp z%TW|#HzLT3zo%dyo6BaxSBu%X3Ff(_FlSF3XrX7>-0>HfT{fe#sQfftn^A?${KX5Z zM;Sdf9tzivp)0mP{aBB?<=3KUD;~fVSMv+2#eD7oM3ur{=Bpk=kUO}n?wU6+n{*Gs zqk6h8+(I^wE`m9GIdXJ{%`1k&9Q!b8$2I)gesTvqPCN{c568kB{s?Yl=47-yg3@?% z2h_$js3&6^5ahLfFtrryV{>IS%wCUz(y!(3istd^qwqL266WL$h}r%a%xw?DjNUXb zic~i1nECc?9vDs8kHd`T*F?Lvfz2(MFgG;fmI+V5jNOUs-|++rXUHIUgg=c)W4FNL z%e&#Rcnh+h+X9bUng@0w!;|oE@K1!wCvnASZm_hNe`AlyGhj~MipupdN2PguyA>Ww zu7+8*4N>*u48Fb%Isa`f)Gr5+jERj1a(*7nmPS08PQ9V7e-Ej@v@j{FYo9@qi+3Z=Z@wC6Cd&>4*~?I(MRgaOw^ez~x@K4(aWgXX$AR&5 zJDX4PH!b8>)Yo6wRJX#MsNy-_RR~paVPGtMt->ReKRP3xg~usQ=wW40G#z>t9{bB- zuJIcbL!)=X4CA6H4Hy(jud}(03q(tbZ5PbF+zdAx2E|ben*|IJ39*9`Xz+6|r)9w` zi$}~YY$h*&8Q2ps_kSK{+Ox>yrsvW61n+{XOv10b#24Uka23K;Bn=9nRWI0Hqxb6J zyE1){g;u@@-(8F0tEE7<8$ZeNebz!)bknskKiZ84RE+N$jcu`&Q+Y8|cF~|%YHvZ1 zhq!S(VH?zyDqe!w_d%FibYHOfIpg4vJ+^CU2*3CT_TXs@;4;*LOnezZPV%>_cj4V^<&v36tWL5z&FUvsFR=>9fiki( zvnpm4$Ep*n3|6JA3Rs=v4vkV)OWADU&nbSY6T^idY#~tzp%fRS~OXRufs}vC_Jn zoUEQ?w~?&utR}E}j@9+OmFi1oX0n{mj=ypeZe=x(-PW*rn$-qYKeO-StSs!-%<2fM zms#~;)yk@k)hDb@u=<+SbXMnBb!O$C2lWE0>Ijy@S$1bNpH(_5t>3I4tJ&-}h*c=7 z(X4J^HJQ~xRL^yPvs({V6If-jn#pPatNU0DWfjJ198~qp6qeVp zV>7EtRytNoSjDlri`7b2#Og6t53?GLykvIp$@o zzGtwHt4XoC(+d@`1vs%vTDpvQf z`k2FQW@TWvCt0mywUgBu_T9_sadvx;)gD%Dtgc}7ZC`HxE@Al#J6_2us2@}=D+{X{ zR`INsu7t4CQ)W%UlL3RVX>F^gF(X16<8wLn$RtYi6Cc6^A{ zGFDBjE@kxst5K}pWOabmhphg>>T_1{tiEIQ0pH{Tt6}UGS^(9=Dwfq5R*9^hVU^43 z{%V$XmM2+V%Bm-;D_QMgHI0?l2|kaN)>&S|O6xmc#cC&qyN{LD4gV;sf$a7St3#|_ zV)YHH{jBt?J}Th$uQ$sR?6{oOSyua5>H0%8urjjxh;!GK)laNaSsiDU&uRmQD`6GG zs*F`XRufruXEl@6!>kstTF9#Uc9wN4|H5i6t4*v%vf9GxCRWd~8pG;UR$uUq-(~d( zyB%fK&gvUhHda5g`h>#;7D7G6Zjr2xvYVCFVXghkWSPa@{aL-qYA~xd4tP1MuUSoD zwT*q}u<~bh3#)eay@SH}8iS$)Pg2^j$OHM_;IdYM%MtLs_iusX}(Y^+k*Z8)n>SzW>E6IR!;an#yLilHHzVwVsuURRgQ-te$4|E#IVt)$Q!|HY*paBdkhTeaY$v4)+7Ax7kf8 zf;z-*;jG@*+P^L=wf7)Jb7b#6tkU?BVpcb@8pY}Y`(DlJJgXV3y0LE+tFKty#ww4M zi`CVvHnJMT>IqiYvQk-9-@)<~mV;Tn!)hz5Pg&i|>LjZNS^dQ74ORg*sPU}Ktah-9 zWAy~93|1>x6|maEs+83Otj4gK#j4!K?Oznj+3a{3t3|B#vRc9FH_qo;R*mfT0IOrH zwz0a%zR$5b%5JZ-8p`SeRu!y{u^PwfG^;XJzp-*dT`^N{hvZ{FW=6A0X78S?rm)Ip z^)9O-R{K~DWA!|%@vOdObuHBVmHszXTr+R&lC>!_SF8J4ZCMI^-hW^Mb${3Pys}#T z=v~|A3iTN~D4!fV?frT9ZVsIviytE|ePC-+lGGay+72o7bCIKh$MO>C(?hl)bc9D) zh8?yw(OHMXq=p=^y{gcIeM>5Mly5O@?pKmPpMH$%UsBh6g0Vq*H^W)MLw*A&whh<6 znCVQQ+uLyc;Vh?FE&a@PlEVzD;K9K8v>_AsFZdkZmAwX;)So}My{FKQEr=e2gXuKw zOGI(+leovbUn0z`ttDo4?Frl43O#ov!eH3&RysYQB!cRHL|0eUNu;AxP5#FAlR{

A?BXsj(SaA{U`WU~S0=`G&t3R=s)z`kaeWFm% z(Si9?bI4Y}V~u$<_(!DTy`w0~r+>s9URAF>XFH{kJ=_-xyw z+T~Z<1%*1#LqC&iK=EiEqZ~l5oJXj*nt|RVXJ5dbD;5qkt7k57$=vfIN)OR_hcNF{ z>_e!f#pw-wRJdj*e{&L!(}c5iAj3`or@>L&*K5kwn};>P&t&GbSSJdY-m{bd^836E=e zg#AN>)(t?uFrGS(Ru`c{Otm2T$L**P2~l=D&H7Qr6+FJWl*-2xd!yIIBKjBAr(^AB z6uQZP=rQ8jnR<0W&KwcmXRhAY#U8D&Z6=f59!H;b#Z^Ppd%D?edd*oqmSn#{p-~B_ z_u3=Xdi*h3n@C@#AgY+eK?&-ZRE`BQg0h<&R=O_@u^dr{r`yNsJkF0Dwj0%!O#2*# z&e&1P+Mo;udDCfs7GincF)%^xpKZ4&EF-A$j5AJMnq!~lvDLG={CqSoo1-{b-IZtG zsY@OiGbrx3iW#t1%iRto2c9Fk_7cc z5oZ9>n}IAlGEktl+3n+X9_Nvt+l{pHQarqk_c+YzqGJ1{3RQfA4sfkhwElGrOJ~sZ zfyj^jTSWTaK+X@OH$O3@oD$78ZT7?#L)puQ1*=aFw%_RW$vWfE?t`5$4wr?g*AKN< zdVOBlge)NixaOWgA(VZ<5uv6Hw-@`Oyv<=$;XPlWXOevn3nRTZ(vp-xiE7X&dz8Y` zo5K-h$YFqbq0Bx;=W&i5h&zwC3Pn^i#y&}**vozI=Rb_9FByv*es(#Y*jHnbL)~c| zO*!N2rDl$|U!_^67u&mYOfl57c96fi=L*yygi^DvvOlT?P&Ru4V7=XXM`tzZYUF~W z`R+@&8|u-cQ!xg)Yn;f1eEl0JWYdoW`%`^?o0aaKjJxN)iSj)+84peQoZd;YN1_wi z-i>Tikg3nr(^KqW{_t>qV$V|3r=iqgJTTP}t3EK@?qpaAB)E2^_U(hh)mb(ChG}=%eFD`*%Ob81q}G0;O=`@o_F4bbTWz|{ zevQ{>;aR*j{g<=7;TK;O_|MZMqR6oVnY->+)PpBiaONPrnQOnpKGkcF?BVn#qt{A% zER{buC_t^d%RblZZTiNWN)_HnI>(`IU1hITNS%yE4YM#(Y2O;$sOB1P%ck~q@!epX zsXWKtUA^Tm_6c6Q=y~ zxY}#pldpt#eLL#M?4Z(Eb@;vfT6r!^DG68G*4sCFY<123_Gi3aHJyBMZpPiPA$(adCfbKydJy?dI&4c&GaurtLV62! z?!#QLn*Dph)?HR=p^8WB!Sq}wd=XL_>@&PUMxFGQJ%S{tA3w^~NW1p!vw!o5qUtfF zk?IqV+ZTC!)jnJ7E4=}KuY`ypQvLNwPUjb`&I-?X;{I)DKidxD^V)V{phcbDXpdCb z_CA*a{=F;d>_Cp0PK29cxCEcpenZo?4nkncdI?^ls(`PK(3! zxUbL**O#J_sN9;4=#GzxZyru(s^5u{i-|*(4BN#e2k9-jvghohz4pNhdo;apeQB8b z!SnWOJ&x+I7wz|Z{a4=)|5YKjaQEP+`dGidwck@|F*cu~mKJq`lm0YhT^f7w`_XzFO)}HSdg#@zlR1-`cPAhVi@$zlUk+ zHqQHadYtChLW`HNLq)rR^3v?Gq4=i$E#8*zzz=9l%YZYNDde z2$T2&R~inZqSD-~(3G!HUodK4L!(ckzWD!y{3!XJ&)kro@lavB(`HXv=W@hQ<6gw0 z-7D%>G(5U|zjgJ_?wpwJ_dOXZPJD;vyfVg{jZsa$5-EFe zL^pan0x#RNPL4%r>u>E&sJN*7Jb6#5pQC$V#hYzjm8WPA&W0 zsU~=^iENue6+3%4irLRY92e}})P4yLZtd%fwbxIZzt^3zlN>{+{6XI*ZbOm-RTZ}P zooP#UjPu&RH-qZLR0mowEf8MDD1xo0rv~Gx`lUP2V9d@gsrY?PU^bo2z%4HJ@sa*Z*o>fZRtF*D0?wa(+CeNT%b2X~{Txo96Oxg77r%|0slhZ%-pdALJr zJzlkid7OSoZ)@~?9|wL!X!gZ7@x@1!U8(H8VG-(0eI0nYHJ|EE_$v8)@ayCK5qi~L z;JC%>?P_i#C3MH|Bzk z^9<>Q;6V;Yld?wr(cy^j)0|a6Fj}=e1OBe92_#I5OrzeV$egPPZO!IV&K#sSbAKJ| zxY}c@c;D~!dI8Fev~&(qR-ZXIl#-61&FnMWF~#exrMY?zng{ESVP^Hvr4GP>7N>?p zzh78aa%GUZa-;)naK zr&%+G%jv5o-_z7SD}S5wIcqF3+`Ju6^Uzq%Fr+ubUB^4ncxkrQcp*6vWO5D;Q=hrQ z0p`(sv|nHzpDP@Jb#Dy8evqHzt~Xu9Nz#Jw?=j8`E-oyNQ7=s3^jy9WFNQYv3bRb- z(tw+b6V%HmaRMN{3AlGMmpI#Mz!V3*+nU@y)q$UXTBswl9C2#RwT`7;FXOb|Lp?X$ z@u1gr&J0I`_X5Zib;J$)@U^%Q!R=nJm4s^Py4zuLm)inV_Z$bl@jdRv=SBO?_aCOc zTIes8D70_xMWLOq6zgBK_JB%X&>e=&=A9{q9>(TA_*mmSjkvX5PZ z25$d115Ij_%Q0H#@zJVa`u&b*6+i3IEPqz-YcnzRIGY|=i^RV80Df#5)^TDXy@|c7 z&T*aBc5OlhK^$n&$PuFcMqFlENUh8?pTGTNe`7sANzI#I9u?jI?_0k@2a#6mF~@l> zm49tdP#ZUL25Rur#M3wP<0eOwZk`{eKslq;7dJafbso=E1el)nsKY`nU!o=rdyp%{ zzOg6~-vsFev~CJvx|XkfPjiIUw|o)$rgq;>C*ML`dCi+>JcSIwQZN9*=v8i15XiwQal;^>3Pl=ht$df9?713xnJaDOu7;E z1XHnB(#UzJ9T!?SBapri%O2FV8T0Wm4SJdLqxo1j;&E?$)v*FUTN-gWCY}$YPhLY| z^lm~NLtp0%KzcK<>J5IwG<#AL(pL1q;Qng)J_kAoG{>S~boiLwcD&}X)f4-9eA8$WW)WCLiIsAhiRc)({6 zjBa&124g#G?#xO*iXun2xHFDK_UfuOw(&ceddknRjl++R82 zklv!7_Bp=k)2aUlj&7833Xzn3;mFf@0%+;Coq;226k;yfh{u3bYjgN>=*_QC8Y!C) zY5v#zEFitlV$n(F7tPlA1#$Es*Pg*46jfPlR!hF+x~6$+)yU@^PEpU{Rfsx`0?@ow zK+I~d1Oea|&f{e$y_V6Ktc!I61vKjiB;n@EP=tqm;Cw-P^A-0a^7Vq+`lDls&f{$D zg66;SX9s@O-?0{NyKlLHogVrXv6QbvEXLnBBaq&Vj5+U^=e4_sIgIOGbf(w6K3K1I zzQ|2AhuhKUtn-H8{sV+a^VFgTbWS|&rziQI_CG9VaQi!l&@Gd3&x`&}q#V+l^3p(O zlQLgD7wGJU7Awgf6t=FDx66EHK?OZ9$X@CRtv#OAot#nbn&KeOOaGjnZ(8?W@qAt- zQBBvk)RNWKj zyhW!ut7xjx1UwtzyVkcL#72KfKzgdph~<0&Ck4{`*qupER8Y;<8bg!_7D0VBI6>8= zIB)a#sCB7M^loT@xT)e2Lhci=Tx8A|)Z*H7E`s(7{NVR3I$1y`t9(E6k7aVgVSB$; zsaZ()L0aQ3j-jNl23ra5VYHf@?d+=agtA{{52x-EoS|g;>tK_L9~c0u7uryfed|}2 z(EXnwGvDQLW+1(p>67oor&qJJPp>DAyy0Ecw!Th$OEn)Y2bxb?Km5pRGUHv@QNYhw z^VS&4=N;vF#zPA^gYyR98UK^jGNnZ*+)Rh>VLw&G*@f-R?$0)4cfIwe@b;M>EKBiC@w(a9rd<$Q~Jl4;=xq+!QLXyra1!Fho6 z*0uCe&L+C^t#cU$fMkh32uG1DM_%3>@bK znQONFj6Ga!8Sg}22-_<9R5yDidS5YSqlJP@rm~Gd3IB;s{G8PstLHkcWDOn?scxO* zyxi-EZYZrpVm;Mycsb{-xz_g@_*N$^q~$A6X&#%(34`=jns2UgqQ{MGwfs8glU^?k zT~TI{b><;a>gChWddwib`KMV< z{K8{f4VmM7)GJ@Ea6aLc$Qqucc7gWe8uu`}O+}$<$vm$A`ENKYc!AJj>i(t^2sodg z5Ty4B{aA%3RPdHFQr)@0S)=p#XoF=l7V(X>kXmP!RuN)`#HxnH&M{sO^s8fVXNhwG zIQKo&3E%Rp#kA#pREMw{E;2}Ok(DiTPV?9r0&$GgdfD)<>iJupRo;La;c7lLsY5!e z&))6?vuIKHiZ+zsgXVYXNbhI0SxH)(tB<|aV1|JDRFt#o!#XRmUihmw7MPqb=U!>ykdng`z0dKZ5Mo}1|# zS=PAw_vL51?m-1VIS04Wx-XO5TDvv}v!%5W(%EbA2(Fqn(4=OrbB;t?1|Jm&j$b8) zV`v+(W~~oxUynF`J%(|gZufD@A-yS|azEEY&BpiJNE;Ro=}gw!hli-a8~MSokBU5@ zzWhU=${UA-s7vdeH+g-uUy+{6Q=RB8*^62+#gB9yt{ac^@E4FSa-yL0kN2F z6?VY{^f?}D=3w0hJZ4|-w3@|{$@a|hUqT>(YHNY~w;gqly zSv~MDexk$y%<{w(dCfo{Pb{j-BZpxy@9fxapLEP79JF} zQ6cAHl&7{V2`l_=q5YrwzBQ|!<#faLK9l!%qVb)eF5l&xtMfQx#HAaRRRtM6i7tJC z6aDtP{3FY|Iv9Tb$@2XIq`K$N8MsOC!HYJf`A!d1QCB z>J{e_uaDMqrTLVt8WQaRiqU(ynrm@t58CJL{n&i{8mDM`SG?}p?^Y~OoJVcly;Bv` z;x{>muyg3neaPH>YX7&KF@Ee~rpbk92@zj3)$~BawEh4`)!@Jz4JPYLcfW&trIz9~ z)++G1cQ|vfy-if%drk}xX?EF3XCk%j8*Wigzt69<<`|xdZ~tVD9X?q7*g8_LK6&t; zc-OR`Pp9pfAwlYlLtJ(L;p)m6Gfisp5huogG#|8lTB>8H{gc61pSloNYux|+M_f`` z7_CV}&M0L7ZXYze zt)kfE$xb~IM3x`$Q2%=DpLn-_Jkq41iwdo!cA?gHucgKHmNQ7T9_RMCxEJ#YFJVQM z{D(!N6RArU+N!^t;Iu$`)AGSrT;6P}c$Kz$BsWf~^;_pHzL4jfN!n^t6`eZxWwLoa zp61`(=l7MSN86F-+WU~_;otFnAR|P}jQvhx+sX z#JlDDAqKVS0)JGs3okDA)Y}+$dw#$UM={Ftx^mz5+qX#8PM7J5hfvlO6y*!LVk836 zTa=1_F*CSaFl`nEJS(c)HHxyloYrCfihu>R$hpFX{hr@ot$J z$)Ei+lK;G!lMm@hezT<*6+ttR7W7z8!mph6SnzTEx#6LnJiHpkY16`JAJCdH#lfC1 zf9pZ2jVZ?aqJ_Z+G)6@fc*j0?+m{>{Z;^mC!#B}``;m$pyC73a_}@*F*x41?3Rh=# zD<0~ngx7I@V$mcdLu=oEvlioZyFu~wCu*bGoKTFP4lGH- z0K|a-{?MTYbx2Y%KEmvy)$_LG;)lEe@%tA&8641ILML@)^iY3we`@hfUT^K2=JAdj z8mcZ&=YrPmfY&&g{vXD^J20xMdHdak>?S}Oy(Xb|2)&b#-A&!Q2_30HjKE3>ic%C3 zsxE>o2pJTmE208Hz>88XV4+2NCn(ZF38>g8-!pUeCfWD>{qg;C=RRlV%sKbeIb~DDoOUpkWs-=G|@3{p9!8_{BE5Ut3J0bGmUJ@aoIM58dNn z7c<5WtKvTOz5d%HZnN)or!5XWSt7^^dPtL`YLwn1wzNLW!C%|*m@#ysq0Xc~k74lm zBY_jat1ppGNpaYs5L}{)+9qKskQ|3uTsTEVARE&m|9E={pvPP9=kl!V#n*M6vxIT)bBcb^wI#b$c zol{`ZH+o=DTL9og3Sd_79B91<)rAiu=&ap}9BWB6KLnO0mM~ zA`_6U0{rNG23=as?I4}=+IDf4JE-=nH7#E_i8o^l=wye6EM>}g#R9aFX zW%o}CqJxF7;WlJ&)r*V_n1+m1Z#gm!BYeN#j9U5MAJ z?zrPHnhVBg9!4#qoegO3fTSS(lQD5HLYbp?9T)eu?-d;fuh$O3^pUH3Hzvf5r6Y%6 z^-Ot@M?1X2P`|AF&M+Dkhs9gqB(Bj(Q!p#RTxmtWPe%SW zXB##~`V`J2u&=z2e8i?Y&I({mmXTs$?ndI!$!Yw_}ElWpUWdx98C1-ZO|VKrw5a0emldQrA7P!z`hT-v>4-a7adzCqs=N< z_DT+|h^ww@!=A$ha^V-F1^IhT=)4Rc^ublMoe!7sx8T*+c5c1Hqb6fLeL0UG@`|kz z^eK78wg{H%=i8v9;c=lZU04NGhudN$nz%ZyDlF)>IKi8+hD*^}R#iu9dVL*)j)Z`d zzb>vZT2zQp6P-Uq-}}w1-~KReG1?Wvb<_hUjrr$cMoAUGe?x2f@)Kz2cL5!*!Ka*K zy!vwN-Wd0+56j%JVgu%>{1j)f9=4fhdy$j{uW)i_CzaFp=f=I_%=cXQc=dhAtRHyPW2|HC^M#KkiybI#NQJADEXr)DaySkvY>`}cByP7) z5|P@-V#xgOQfd_w(}N!7#XVICNQpoTejv}MMajoFd#~jgEgGBh;+mra#hpO*96zBo zZ#u!*!>ccQ4^DDL3YLn5wg^h!oK!|%eL4;ceBsD!W^e-Z^s{l;pAwF=8iP|>e{znC zK7T((I5+~CKsyc~$@Gg{%y{)Jkk?rkb}8?M61t@W~njvv5E=(Brq&-^!A zkG&r^!xxx;3EPkoC+}2JWxd>QabtWOG3L|%jSHo)-{Z>ZTYu-iBk9O_B;vr*e#m7y z?K(;Zo>N}Qxnq>cn!mWm+%bye+TU>l6=bbCw0aaY3MiDae@+V2qaMe-q!=igT9p55 zQiz`SByN-nlMO3r&qC|o#WML z=T&XFbUw8Q+IclwKdgP2BZu-4jcirbh+?g2Lzk^!$Bq)5+;pOUYeCyxI}EUq5u8Q5 z`m*>*qz!g5W3iK=B2rJQZ9^Lq8R@(d7*^LdO$F*J>e<%&__BQheqH^I1~!cB5{UzK z1Y*a?Pch|wof=5h>f-3NLK7QiJCRnKgh-dN*E_BHo~AaePyFM_arVOIHlDaS=Q1)Q z0SqZTK-F%^UwiZt$_`ai(veTiR`~8cmr;suwBl04tFIJ~wzlP(FPZfjZEVxc60V1} z=PG#7gBp(Yx&3*Ax-CFG<#x0+#0~5Ph6!cujMk$tF2+`&r;g-idR`YB7WyKj4hR~- zB~Z)5sm;{XwzC^&U)a)dk$wD?izC^095673zoFV=T#PdO3$>%P9>{*VC%7H8s|RNv zufFV;vY`>=Kj~hcGUwPV`azp*s9CY)^yDqg7NuIktMRNi>WneB{9oRRCM6=7f-{(9 zeo5rkfmdJaXqarn+#y(&Y$sguu-sL{lbgWMEYR}O7i;={26%l zeMV@8E!VU}-C2Vdd*)>mJR2$ zA}QyzN3(4+(d$R>rr%84EPCfT&K8jKNO_hrf+NexR3MVtZhsOMS3LgcGk8 zv^vL@K#%+R&iJStVI12~O5a1aD<=BreWN+T&DUglX$5{I_wl>X^R+%`x$Oqp>ujF@ z9DlW-{P*#dhvq=YxdK81^v5e~S1|;BiM|PcVB;ubCw^b}^J(_BHI?}Q@mGe$)T38EfXqwbSdDi4&~_GgBXrb1JcmuD(L3;?xSAWlp8X}(7?(EK zPQ&cDY2*{`#3oYwEo5QWr^rIKK6axmA1j{fNCUpbCQ)up<5Ty?9yF}k zl{4|v#acV@A-4|VV?8^eW0Kx^m+c8QW9y=E!B<%eI=Ke|Y4woJ9($pwUVXHvQu}Pj zP2~3AOX0<=J-zxhWU{@!mQL5dhNhqNW#4f9#a^{Xf1u~epZog{Q%9u!;OOI_oM9qU8>uoJ>`BL+lemE z>0X7_9E3>Irbgl+hahr5M=3`wvOB5YVQ?4kK=!{rjAUl$FCDQ3VcPpG)|U(%s8yiH zd62sMhf$oPe}azpV(bwVb<>u{p4A4LQfYWT)}A$vgOz*2P(R`XB2GIA^+!)Y{ZT#p zr0o&Th}_7cdbir`&m>37=i!5gT!sESgV8>IxC-u(F3>AnICp!NmUV^RS=Yd*wZ^Cp zxOuBadDjtb&<3MAy54}unleU`@c%ZH!orMteQ*=p1)~fu+`$c_qvH+kh5~T!FSn1Q zi?@;Fp7)UCh&u>7-UMNA3|Eu3-bHGwnt~B|4~%*HVfILc7;fVRm^`Xh&KH6|<1bq+ z%I;-74(SID2*KQAP=e>87%F*sTxmqc7%vi;i*Li{c9ow&NF(5Aeg^DZ%yw z@Y80rNw~!uK~Xb|9@91yTuL%pz^E{M)bM1K`hzeq>Yq1S0G#H9Q-|_U8ha5fz+2va zmUcdi0aIFRK?N`_J!h18|BA@l-V7Ul-dD+P$KA>Aj3R}Ly+KrX$SBRksz~JCKN!oN817&KQ+ELA^pf>wE1tF+7Fo4(dy6aW7!8F_T`&{|Ibg|>zSKwQ+pA6o7-p6^?n$_;To_G z9d7}FE&b8DVp`g_(3}An$Ia1pSZDG&vXvdPv%D^7ZIAT5?rCGM?t8t})(*RoDG?muGSO~jXp{a!B!c*LpSo>yk?^5d*_ds(Pd;vLv zpTefp%nqp|SBxAjv*R=SUycjYpK;hTOzQPWyuF_9)tqQwikke~sPJmZh`wG&P0mS1 zj$Yk?$vPp${yPrwsvA|YLBr>`YG5dA=ECQsKEeP42Z+O{%45{_FR2K7?KGMOydYMm zRz0CG=?oOU-xG{38ie5#u@YVD1xBC?F?#g|@$#xoojr%V<5iZ!Yr)bt%K};;pbxOFjdQ_4EKtI zsn-Wc=gttM^G_%;1s{v$sm(BGI1+|TtsDl%%yMABwS-!B|(xsN2_{ zwGXAx8fd^WHU^CVmxde7yXSL=mYQL3cRz=Gm)6H+a3|=$4a(uM5f^kvLaOd|D32S3 z=qC;t`5d0 zhZOAc^mv^82j-NgSNq$`QP&XxA#V@uR!)C1-j2Ps2J?)e3cexXL3{$V-kXQa^m!4< zjTwl6IXxz}H~Wj6Oq~Xy?=+Zb-(q@SKQqzZ&ji}?6?-kF+9Z1&rkRuNHJL7$f_?+~ z(Nuc`)9+qImjb>1n!O>@(CPLtGi!v2oo&BEV+I%%xpD^bP-`eEQbvVxGwqw{3 z^dmFvt<2POrcprfQaOyK%{IoT!a2zC2k#j}Bb-)Nqi(N5*PHL7k8OAz-2K;4>hNJX zjNZP1Z%p?f?3fMp1xJ?UY5hD1f11!EJm*dOH!u^vebc@T&J21RwGAJaRp{{o2(9XG zRO;xrpu&0&hfIY{>^<4}+XF5N)#^6XlsjXa?Wtp2ha3CJO%u zeGfh{Yg5&w5cumORP^knsLDed(D&kV>=$sz_PwEG-7?5j`2kA8-oaS>hgtvn9eYdM z5xZ%8G`wgIqbwXwsRsG;d&tE2H}KK$r#XbWdXO<%fv}KjMzzDU=1@9Q4Ge7+7;P4+ z2DXXzy<@a3^BUwhR^PhD{uTC#-a$*6`+@yOg!KH-UO|N{4aC&E=p&Jf+hDKgle<&~ zP7|{~k>FOJ+Jk+;X`AeqsMRl+V5LLCedh?ObQN=J-CSg$b}0gDJN zKlg|6`SAQ%nUZ%P)@Kh<2A}T$w^2Exz@K~pMqn@s-2EjFC&5^mG}~#vj60+gFd&Kv zl)e$IV$p60E_}%td>-$Hn&ct4pPs+RzKNoTq5*!k7sX(s2`ymLyt2<;wiK;;7RNy- z%IdW78|LXlzqMB~OR$vZssj?*^E-QG70P|N8ZG`of^9$AFJj&BsnI&&k+c%6J%oHj zY%^MC=wamJN>{_^fUD9fH1G&So^&@V_rMW|~GdMDZ z^Uj|*T0^6=wLJ!rb)^l>@Nhbm76hQ6ZXE|hYh*Cs>$D2BJBhffnj1;3J_(US*Np0i z6Vz&S_Y_1nT}K-jcpBVVP0&6G`H;~H9t&Fx3*T zw38!|Y7ey6Tl#_H04@9#(?1-@4y9q&@J)lv2x~}*P8}9R+~8_oGzAe{D6@4WgV+< z8ubM#9o}b0Qv8=t(<8*Og{tqwqP%pd1BWK^IzG%%-uL=;xTB`;^{es@7>gosy@I2P z?=`HFqk`|XU1bN3>M!oatOkF!W9ZO6m`vNMB7y5)!ytRPnj^)eUh}Fuf_$$xYdGrq zUTfBJgsaz_XnSeBM}#BH#~B{!!1^TeuF-$s9~Yju@1g4)tBqoq*UM<@@RU1@vU{UM zJ$1qO;we6MPd&#oOJ|@OyVOU}n-tQ$GV#J=W^T-rsp zFdZh!A8-Xz*%)U3Yz3K1RZw3eT0`cusu*VLw{bi)QDPm#?u1WX+@fj+!F>&lVYXa* zBvoq$l82w(C>q`Y-0L%thr=CE&O2w?!}Pa0I)>mPFu(rW$r0syZQ8|w!?c|Gm{g?G zp4|uKiQN!Aw_&WW2)1>D@^yb0r3{C^&(Xq%DCNu;Fft|>L&A<&M2mhAsn+X(#`d;; zvWKI)nW{Yt0dX7zXTbI7Lp!8?eHK#X9gZ#Lt7d(_!!g3dFHI60jpU_IqNBaM%ujMO zl$Y(vKGx+FM|}ygXpUy`($?izXQGflP(|=DT$P5VA%RPOpqzh9L;lL{Hu6`#7Z_)E zBjxG6kiX%2%iazP){qU2{s>RRf5C)22WEJPZK+RPI_8JWIl0sYAry;blw_xb5$e|YT6AaW&p?oEJgGqq+1_rOX z;_X(v6vca4q0WjomPu*x0*nZ+Dv?u4WSm0pfMkJLUqN>I3lzmD5bk~@!3#_*;^!C1 zk5*`<;^i?ZCBA*}q3qZf=zAqHNb%eXy{k|;CV}F`7s@_olocQjd;udF28iokkdIUh zO$CN1l+L7#`09m7Uq%-3(hHQKB-uSLauKM|aYfEEDJ3p>A-O^!lkl>{6)%{Flqfsl zMH65Tya=>%pp|{^a@K}2DJ4#K5x77F_ECW~nUoVpyD7oqWfu{yDc%cA%8GMcL}$;s z;MGw)@u`cin5iIp(*<*hLQ|Loh!b5zWDmMP!HNg>9*o#=F8a>~MkaBY3o<~V|0wc| zBCQq4R%DtYcYXbDu7Z;kS+B@Xim*G}6y*ySy7#HTUlf_4h*ObNMUE=6NRir#u)kYG zPgW>bkq6TMOycAg%;hSyK#{tNe5ptUMLdeIJ6lBfLLqi!3uIU53=@m^uSH;x3T&gu z97T>O@}cxUlX$CzD7&f!VL!DX?u&-B0K31fb3cRUE zTSW#d;!xx{MZ~8o3MxUtjfyN&WQ`&}D8e3Gk;HaIK33#)CT8*43f^iJI7X35iu6?E zfFkUo6_T43`uSN!*)=OdFDsO!$aqEiDUznh+lsIgRzzs1&~QbLDRNMeU5ebHbt4@% zndgTrac_d})!{PR13VFM4{`v`Smu1Cz`FuM6}TZFPJ#A4Sge`?vjxN}a7+N(1<)21 z$70hJXIvb7M-P|3HUMjvutq3W85_%0R$zdDVG4XGpu7UV3;0ffICugbF8_4^ZC(Lg z73Y!wU4do}7TcqMb*dnE3mN6O+=&160CCU8vqUE)u`-cCfC7=p46f2|qaCi07Aj01 z%wY>D)$M4I)m(*{GdS!e1%^G(fG2b4zC4n_IUi>1r>-%Wf(j88T;c(2mIn`Vx-}ambIn z!O0Jz@PrNU%WDjHz6KaEodHkRRQqs`TA?xzBYeUf4iBLjFW}pGj%CHx`A{5$M~3*l zhggHRSZsyTHESV*E(+v(8Su2qF_$bx%p5#2WK!jzzn38BUpz9zgFOcgB?P78ks&iF z^e4XuEm<;?0!>-LI_szePOW4xQ-OY~8SpF$v8`(u3{)U&9Rr?2!5RAj1D-+wKK_uw z2F3YHz}E`IuV>Bx1(vMOV)P${eiqg<3PgXzoYo3V7m%&MApz4AsJ?;4?kX@!z+44B z7cfbI(jT+fdIfq3_({NE_bNfJDb}9?W(a8HUj7Nn?0q~k#Q!`OBYu7hH`{n*h|_rv zy3Rp2B`8^G>9CPgJ5!3X$2x{59`R|5{0wrn@jwl$QhFC)xJ;2KvI<)nR8bn{3+Sl8 zIRTTY@i<5AES?`B9lf2UT|U(tfZU(pks+Si!8d=-e4Z&ei)lb^H$P_Kks(tjgz`k_ ztkU?0&M{glVB5ifCqsyJ`+~vq0xC3eUjcOg!jHyZva`~+}U0MARTbn$*DUBZtXJTlyGP;jQBX2k>_`_%*BEX5PH#eq5cybO=TYO%FMA48X7>tD^mv}o=LoJo;w)v zRN{5>`i02fqn`aS5JgIoyJdH5oS;gz-d4v&9D_)sM7=0^iMAteyEWjYT}2Q`Jt>9elXe(we~}8{ZM;9)X@)h_CsC$5Zfr+*4Sk6x>shw zN@3VZ8XKD_jM!=cGex1Rf>!&XwSMRWKeXNtZSX^%_@RwhFGzwaiOqh@Eq-XLAKLDR zbU*ZkA7U$uKZ%Vlue-xgg%%3xG!%9uGZpOO$L!{Z;3KqzB!1&t0sy z*qHOWVZI4sYtHLt^No4$2x9Y%5u0;fvEzyn+i?rCz^oynY|$}OAvWn4#5SJS{fn;(*~s&{fAvGx{m@N6R3Ip;kywXbu?Sh|N22D)T$Nympgccx%nzOL zL#O=E89&74C8xmVrdRAtpe!F`OOu)BB|$bd8L{Q*b+fI>sEZ)BH5sw(=@p~17_rgG zXsAfC^;wMA`ef8ccx;9;%2JRGQHIxq$%ZH+{`(}an=MgBY?yl8Y>F~s%hW5jC?hsa zy>2!}8L@5Z6>F3c8>e0|M;WnoiXs0)CAmS(e{7L5lMPg_dx;ORh3a*)NycQ4Y@>SJY?U%%Bh~9>vy>5Asa`kRrHt+hV#ActTs8l(Y08i-Rj-?EQ$}p6 zdc`(n#I~x}&BiGswpG1ioHAl#)hkwNF=8u~(NW>Cxmt|aTxEnkB%c4+aP>hTwpvs3=7%o& zq01#vmitOc=x(s3WKP*$=dw5=U(benF=ES|5gYPeG2I#QW*0sQ<~k!b<-Kk;-Wjni z?{!b#rqE+#faAdjCu=?*8z-pUEp=Q zv-}`04T_n(HemFDMC8Q*qqBl|b-<{lAYL9YDlLdt2aKK<#LI+Y#OsA(wE9cmkodlc z?({JgI^l=z_#q3{6|6={M*5+SeyFD(a{D2yQ`G!tk>q*B!b%n5rAsm5wF@I&%6Mh* z!id*0uoJLUVZ@6WudH4e@oL5^%a~%cXOEJM70G=-GXE*~wI4HZZ%I+j4=wgXyei@( zW{c8kK4cS=<%eeYp;?T0{!^lJ{Fn#*P}tWh2_@Or5B2v$yd2}q@ahbMmk;ss%qt5r z=JEQ>D+{uPOECXECy{1wT`>y% zUU*sZS5aPfxPm^^-w&13dgjd!;yrc&4?a=Zf8t7X^eEYFF+k*(@g)&GYEt%zLWjaR(W;uGAubU~HBb z&vxKvSNcJwsi7ZI}^y-m&Nr|jgh`l>mOzss2d=-tJR zRQ{uzg2j%QVEjwW-dy}hbkpGYP)ZxpGgN%Kpyk zH2nlJo6cZ)Z**DvmmpOa$U>&rpRVn-#)ABiO3oIYI72~QYqGPR)Cjqu_= zon5)NsF2XcM3f!|w{i%m7;0L`rC6Pw)JX`XU3C%~n7TInF?mU&1iJ^D`akO0c8 z4hPt-e-c7iGR$zhQii@5nG{S~YH?5yb^jqzYApm;nG$RPvp8?mBQv1^9C}-*O+rFr z^QWbB)WCQY6swJxj9M49;()vCVn>Kl30R9l9~oS6!ac&3(83zy``*J^LVZfdJu&@= zE1^|Q)6UOdNXQ8YkiGew&1h9YQxYoEcbN&zP5;tQ;m#U**o1_{zyR5==R8%Rqf_7# z{PigbP0d@Sc5CPe85a!S$Q1K>!i%Pg+b5*FW>p!zdm4X{aQO9vR^&|>5};36nDBZa zy)`~Ln1YujOft383#}=?m?>%|nr%cIXE{B4dBWasQ$AO~XwwZ!t?jHq12@7K|Ef(1 zp?cxQgtx5loeORht=yiFWU8*CWoDtZLVNFBPykbm9jVE7uyItkDK9%AvCEv8UbJ> zI5&1xqpULt+f8NZ{%ADM)UydgOs_7TkWzzwyn+Pt&L>#)zt1Lo9|+H+DVa&tDIz3M z`5&b}e@=)tjiW7@NhtA_DUrUmko+^WigyysFw$NrR9p{glTefs#DiO&R^=IcK^Ok5Xe`iRCoO&np;bYyw3FEcHxp&7qrg;yW% z)5P$c*Bx+%ml6|1V=PG@2FN@@-4~-zL!=75JPKKXS0Q*O*`5$cqulUR_4?$55dG+1 zDS@T*oH9uhBTe^t%x%LCr1aD#NxiJ5zN+!NTKPOS(b-l>txZ>Sbj&DUA2)JQRs9=) zyHnDKrVJf=##CZ&Mm;tr;C^gNXHD9cn$*UGyzWMs-$Q^7heQ#9rsFy~QKcZ$dFnen zsV6-e50A$+>?t97a7X7?CC5=o?9rivqfa+1Sr^-XCjCc{NYG#a*kE5%u-tQsHE--K%B z=-~AAeJ8431+sWm8azKKXnpkjq;jTKIx4iE$--MALzYmhRhUw=DR8*7_noA+=9^|3 z9tO|Oq3RIC`4?EAs^`C-W)1qSe@%n((oU^z@vWQ@?Cj!Ir=F%9Id zIo5o^j2~+xw+b}Dq4VVA36z_O5oIh!ZPpe@sZ)~iKYf#vCt0(6$BMoKMc%1_1vEer z-kSm9O&Jj1i6L*p0P+3{$X!L|D&jj65*_oic{rA&tGyda8GzqQyg##$=FovOn;iV6rksx&VuvJD9o*2?w8%$!jjqCD4~1+jjNIpNEQ3zm+BlyVcU|e z`ny|`+gMD?^&?*-$6HJVY{}KoqxU6m3}{nVrTwKM6%_F(!WVsz@D~d4MIRu$*bfsd zfoFU|Y7i0|LjFjjduqZdOHhVf{y}rZt@4D*_`9v-k1eJ)(q_fpkU!7}9g>g}jDna0 z+u>5_vKg{>f;2u9(`Q&fpzq-GuOb5?(+VlxH-Xf9#YRI_OL&HH7TQteD+0#DbgO9{ z8wSGzLno_H-T^_>2|U?{S?lo@2;f9Tc+&$&oq`&No`pqo{)j*d>F>0Z!kr9oYrpJI`~x_c>J*xM-%OOWq8_6qJPTQT@xu51_xnOpjr z)hV|FD}STZ@pcB3t5aEbzdiV)5<#$7_FegUn zN2@!tET$$rAJ(y&Ui6>b8dz!0P-mEaVn9-0AadZBRm3qCHIu)YeY{JKh)H#Cqu z??Hf!;b~_+XSb4)Ju=7nzJ&@$JFQgdKyoD-x7Zn_ub=PyB!EJ)P{VzfIXmeink4TE zKxsZQ>s-gdrk_<4!OXNJ0PUW)G@zWf9YB(Fr#<-ux5Du%px^)RG`4T6^KXkOjS#^_9Gpw#C zjNYH0aVE&-fk)2xJ+gJ+ku!adoaKAu4BsQ$1|B)H_sChjM=pJN z<(VnZhZ5dY-fzfzRe66?o{Q!AtUP^HX{9dekE~y*+ZM=yCHsZ;u=)dfZ!u%Lj@cx#I1S<3x{K@b<`AqQ`whWJb!f zx;%ID-Bgb|MF1Zodfc7mIaZ!!<@u^SPswwfJbAI?ksI9}IYjixeQu9j=k~ZS2)Bkj zN6T}iJbC%zk&E0OIWzRgHSR2r92t7tZehPG&vNo?B+t*~X_jZCJm<^vBYA4_WXs*- zPM7C>dG?j(6?taJlTY|Oa%bD)J}x1Atmny+8`~Z^)$_Pb!r(JKk6hOFxcRQON6z&; za#PzQ7qvZdn&**g+8(*3?U6G)kGrPCy)MsJurl+apJJ9=F`h_Q=Vd z$IUmhJ#ud6aZiy51LeuLvORKU=W#EU5H|cga*@m<2Xr2>`aE(V=MkIFBPO3m4&FRs z@Oi}E^WcDuGgY2!$$8w1Y=?Q=Y=(Kn3iG(x2=mBgYY#4r30Iy$@@yl| zIr2Or&kyCvW|T*+SbM~H^2h~ik626|IcoB_BSdnYJYg(x`_Be?0CV<(=?Nc>@Uyl^88qyJg<7> zMzlv}RgZg&gjAAePkA1YC*Otk$W>_cFA3p^(j)Vv$DI@>K|Du#-2LR4CQqK|JhC|50H zzE*`^|JiAW=%Jsn#1`uexV1usZam}ja=HH@~uR!Je ztMDuweAO8aEsQFdr*WqS9zvkC2;?+C`f zYPqb6xAGQ+S8!ot^H*ngL<+g)9H35LN)EiKi zdEHqK+-cXHgA{iQ)Gb7`hu585RLHhs`SvPAH)K4?P3Z6qe8Det`G(Vh{rdVhogG1j z-gHJ|!+zmSXIGPx4&8LdfrQ>dB0O@r_urz>Zb;-(fwLa%Ug9Vd=ziy+=|7F!PTF$| z`4^#szI2=4an>PMjw6URUvZX&p0Nea-XLEUID09{6SpYs6BI#5a&)5fVJI0Qm|DU1yq=hiCV1#hE}(?mL5M#64$4#d~;*hG!##hwor( zNO)0{T#i~?LQ|2*fBWk8bxQ7_K1_li`C8hw_Z)R8dKtDM#uhq#QJ&r+S8HUe#eHW~ z&I(6Ban|-0I(s5(;rE?MAcO8ZT_7LdciM2ILig@F+c9nMz}d~pHkP~pF`AICRap8& zv(nvFj>fd{fzygZm+cRngFwQ6bJ{@q{^ooJWb<#%mqF_Pj@rLULw|Sn09p0Bvyaj> z{uo6~MY%^zgtBSt9Mywg8vaUA;a{cLKhPhqQuZItejum+aE=3sf9Px)B3YS!4A)lQ zMFXLpe>f}9g7uCHbnl@v5NAD`9y*h(YdODjj?w*#=)xO6LK-5{;!kw;weW-Nd|rvX zd5mV9LpEv!86r>qMAMMyZylp68&MZ&f1xL?rB#19GZbS94CljO;4H(;TWa8q(#uvi#_32{1HlXEq(B> zvxnktJ_g@%=;Oghkxoc1ekFYQUsS5Z{H$d8)!OU`rCPa;vVMiQmS#MXynOu#6}y(g zA3M`kr>scb=e5*V6eX&J-nn_!xbait-lmw5QIt7SWPNY5zF!uP56bt!eBYL-%ofI`_~+ ztQ$O>RebIUEKd8>F*S(g2H@knfzRcu6rQCOPoOY&R!rE^i-x`nMUArqGS%LsJ*zVH z^D$Z!fOMo0>^5n375ppIA4hPcS#zk68^uL{zlh%9s9XH8N}%8vxz?hxLY|GmYS3&X zd>5MDNUcCS+`Z}sJGt#t?2Ra)z>xKEBzY#_3e zUjtto9H3PXGRC1yx>H(9R#K&pt3m(99!G}|-#8`8t;dTBi}l_M(0YT|ELwLJG3+=^ zu(&GFa*I~a{LoBaS+r!P!B%Z3)3H{~ZQ)guyB19d(&EXxzgJkW8h|A@>Nxe>j~4TI zF!DDvQ0roq;JU|ULP=kO&^>`#57uQ0(%hmmNK0pW6ja)E=DR;VNQ9|~TpVvLu_`HPU)M^K6d_}O9%3ALQYcDVz z9HKp=J}HgTLo_=*4bj4trryZ-C{*Oi)hH6l*P|oYdq28Nt74=$AxxXhDHnuki8IfVCeNxeGo+%nOeH<(ICW3e8c@`6henxak>R}8l+4^p z+Hy{)Ze{HarW-43Ynb+|qAh0nYZYx(HE9c;Pnn`w_4+6jK$En4?NH!)$!$Du9)|fKy;_g6L2UYA>YHP1@grRk`=}a%x z(Oy*%j}+&(BWuVWGF#ot3tv@exw4<2e{Q_unPt|uF4Ky3)a9#r~jp>C3+GtfYx4CGX z6xj{UIc%Yk(R=^Xvt$2s)SA`W@(nP~Sci%qMrRk{PKm0p09Hby_ zPOU!SQlXsu(?)72NpGx1p+k+e2^=2NM0MRyn`oJgBbuu4MNL)slcp*>vzbvt6;4pA zpU`LuS0ex2P4QiWi@GDm$;#9s9*souo@b6P4Ifl}YSP~3MoX!7Lahm!KgO=1H%L=i zrPvj{gG-L9HBZpK+o+thMMz|y6XTp{OpokSk@7a<7Dt3lv#R2Zq%G~VMzrrAOqJQC z;=`%1gH}xyOPv!%Rt)|sjf=C}miWrFdAd=Y^-s|Kr5MOAHq@Hasz&j(DLU2QH9A2* zHAYeI%ju1C8uSY;p7GJD81sCzRV!_{N~`UOBIBnkOWtjzJ;OAqwU($Px}Bh*W3}oO zvLptMYl7pOQp-dwkY(<*)?QK{W8;tMS6sc!&2OWPW17}h8_jfQTWuoKR_(N@OgDn6 z6#D*8sjUi&?@XCo2ofu`>jIz6E zmT_!XHFE6ks!dXvnM12$w4udit`BSSC77dy(n7IAaRfaDr-;M~O(@{;TzWS~7$AHY0h7-5SzqnFR`AL@tRx7epRwA zTO=5L;9K+(Ue31o0sZ>@==cUjec)h%HilJnO4Q~s-Iu7%XX;8)(_UVZsy{7Ro2!yI ztG+!a#pr?;iUQ(_iuHbqHiOknbZQG#v|mdWOSGo-WcDmg%Te`LKs}SSQU2|EtxH?N zQk_z@1xm^9CEIsqnif;srj@{-|0R&7g8%V#KzzD`j#k074#NWK(bJe5|8tVU>S62~ zR8I@V$8|4i(k*&vaY~KlBxSF~P_nT{d_xL-R|{0ZK_@Bdc`P(Ar6s74awm&s@lZ-l ziLXm77WKijGu0R(Lr?lysyL?i3569~OOJZ1E|lI!8>Q4%{U5cLSZ!XdJ{3yLN;UpZ z-H;3`vT#@RRbyLNKkYfCy57m69^I1C7xyV&!W?agWE-QkOCIkf#24EIuKwD1uA#mC zmEj&az?iPuoGh|&qy%u{ZP>V~!rSNc(UK|lPQMTu_KY!2bwWx!3Or7Ucgmc=$}c~o z5=k4V4Pm_5M?(gwNn!jTt)Kdcl#?Y)R#Z|WZ2I)Gz)!O3$5Df|)=ID^1bLA(X0X=O z+LYHreNWPrCpdMy*cIOF?&^KQjpwj)Q11ox$-Zal%;gV zkuMI<9A(TN!ntyi#!W_#e>6Tm)W|3<(7rYv2`#4mWplq!fwdm8Q3WdIhs*nVePq7hNPw}G9^sc3>O{7xz zDn>DpNjpVf#iI*Guhy`m%}TP{YgHAmHxlsKT2|6L@$D$zsnu1yey55?KOe6p^)BNZ z+L6M(X|UKNg~9)m&9E~4u$RYs0U|K$RM999ND=em`zl*mc+Z}q@FvLKf((ohL$WXo zN^r)1l}+p7S&|DeB3m1&1YbB+VpWj2T(j^uc2K-=(Cyoi!e+{R#q-&DP~x0{F$Hw~ z4A>Zw>Lip^9=esr+mIX~=dJi)8aGp`KoK*ILYw;ES`DG57Ev;dq8DoQB`{)9d_{_` z*{>QsnQ0V8HcHF42nsfY8XNr*xfwSLt3S}Kv#_rr3O%Tay2w?Y4s$X3-S`%~9>>2e zJ=;$$q*;3UY;B5?UWhiqhI;cAXugH6-u2aDTQn^$kv3(%AK$om>CQ^>=fIExbn z47zu&_M%d{;#AS1Dp*Cl7pc`!yw%0kpFoAPu?Uj1*8NvnO(^U+Ok|g%v|!eq{RTFs zMDSy@4mMgW^Ry1dYd)44@4=uBddq{6S7f)AY%Rg_wCJ3Seo-)Cu@NHt&#C29t-i`3 zujDy)&o{M96?@kyHS|c)tjg$DqeRi{{jXYWPP?PA10`C&{x6=inkVzM5sLji*nBu7 z`>N30ti*C2>F-^j^-zLGPO*<3p*D-z@l;0Qe&S+c=@N)Ui33- zFfv4Yc@w5+==r5&@4w^4j;=(xR-C8as>E+{Yft7yOC^eI1S19c3tJ4+3^aSOYDf1M z8~Od?zw(>HVu#)~n!>-Q43pB=A)i3LF&cCCP4Nk8CkOJimcmj4owgL_2I%dj##mS8 zbcr!bJ~?(vd<9vxvtVA1kxs^gEq8pp;o7O8KYR0OR$PoF{)&$ zomSiZqqoI(70X-&*E~&MUBSWA!C5HdRm-%xl)tifX|>gZ97Vr_?P@96I;Uyn6I9gr zyZtIt*t^&*0{h@Qnp3eGK~K@hbm@K6Rh}0HZbWZY;;+7IOe!r-s|p{x54{@}yJ3t& zo3^-Te+WlD9i%{LHfb%g7OslFB}>KXeU6FKWoi5s< zveNV)<718U3*pX1Vf(heBPjMzd?hhRkn!CgYHpB5>$Qm>@2}UUgVg*;dkMt*5zNi@ z^!G=a2V~X;ZHvm$3KSln+vOd?cV>R9wE}m|$J!#0wx4Kwl+gMT+0NX&N2^MGMYh3F7so%oW5?=+JRedn>Gey(Kaj!BnuajSw24Q7aZG^hHcjZRnGD$YpvFrvUM$p z?uN$Ve=oOVS5ac%8bC=Fy1{m>8gy3s9DP(IZk8OT-oF(eNq1NUw$7NUDtrd4T9XdtjhS@(-&0kp^eHIwpYVTllS9+Ab-ql{>V-Q1)nt_9Dpm zFQl&TegRWl@=^Ls3ESzdFSTwEI`kzh-S(8UQ+q=R1)ouycpDe=Z%3={BC`>n_eXi{ zg+U`)!p^Ab41N&bqUemRJ#F13m04%EHWm8b-;IL>5wD3vi_X2C{u_gx+C5r5h`hW< zn+$Syk2YIL)<08ZHa@398l6#tY|gFtD2l2Pi|ye*al+f4`t8FSsy*%4r}YO3`%23M zneml2N0muB-r?XUj-+AxF<40SzGsRCi$FT^L;ohmiW&|6fH6W0Iz!{1!vvpSDxn|UJ76@F zp(^Q)yOFEB(g~et+;;|RxMF#~lQMkzoi-2onD@Ol7bN@#7>1H~<{7%u1uHw(XBa55 z0~10iJqW+&+J_x7CGgT2YIy^eW4CSSZiYZ5^4>w8YxyJW4^i_;KY!V3LOy7*=0wxgP6UQ~)o zt4jHKIK@TOW27H}@y4uL_AQP)Gg!RwT#Coe+*N?ie<5K#v~7!bDUy zD&V$SmEJstkKR`epX%k?Ny2MdAa+js$_X9l_Hi8AA?DNL*r%vnih7;U1~C2f1XkpH z)zICsfLbj?77|ZuopMfMz)3soD$61>P8uTJ3wX+?Le^8*q5&uU6tW?a?FDMmt$ar7 zL=mU8aw<5XSf{2!l8Xg9)1A{=S&PKiDEcR@8^xZ$+9UrojF_}DT9}HFR-lH)>1Qx9 z5$E*A8Tx7t_M{G;(VE~Fu@BE^(fBQF!?QRv&t-nU0#%z?XSL?$+)}jZtk%~eoWZp3 zJoYR1*2Ay1_EvLQY47yZ07^fHrY`(vvAKF5r$gQgT4h>!PAf~UKe4wjybNevgO5*W zkkCphgu=2AdHi`Tg%jCzUhAh48Aq8&q(aGSF`{5XfjT(OzJQgZgiI`;^l>oh2OJ$x z)9BF;=N%b1tDlO2F&_b+#AvNDHHVn{mN?cN6@e zF8dO)ECR0=s9RI7-NNT&yJE4tZ;W4=T2H$|mB2hyC|{zg);ysOlJfS=d{LHxdCOmI(%!YoE-u6}3z025{dO&sawFJ{PdLbX%FxzNXKCGH;xU7e9 zbQ@(|5tM%gdxG1@`7=8FHv05u?HMcIZgp?=RYuhI&KRf{(*r%_immzA%|y7v~S4XvQ|=n@4MS6Pb$e@#7q z*4j{d2MlYg+9g;hwtYfrX&@@v{$jP&SqjVEOBmK9?)L?}7?46L%e*FXxeKYrT+@bt zynjvWuTuG`D3uBndtIxjLUAH?Uc>LaJ10~tSK=boa@u$uv+8mxa|4@l1?0MceY66i z8`wuHpu!s{B)<0RzK;IH2H41(*t3$5TPU`Fuol>NQ;WAq$Q_l0w?HdT&Rbe}C>VB2 z>j|>umZ9fiaZ_nTX$4w2aEBD2NsER@6nX=h#DA9tQDFgw$8Pjj0k);OQOny}H}i)W znQm)wOh3DgzQnhN-KTFCHTN(|znfe$=N<;b%ruvk6zkcdL`idmfQcW2d(_1Hq} zSlc7E{1$5JWg+m`;N|l(EZ!0ST?InzIzfZ19 zQ9t5}-o8^9Vnv|ZZDrgYxrHtWfhc;Kf-!hwP^#4;0yQb^J{oHBza#Ni*T-SZNN8lq zXlaL%Yts)$G1wvx_kTlqfTsPf*-f9)(%-d?AV+@3{$vb={h=kAZBLf4a#d4f`53$=KBAssYiU-^V-&t@?(TJ4Ca39-w6>J`52l;Q(y3(?tM6@f!gBo|j2$o` z{?*2Vto#={Arf`y?V@on7L4JKaM?i^&lNM;Qq{*=Ig133qzPs5bNBv(658M*)u6J} z;*86Jh;KaBG%MeEcaOVGrmQR;O0TPZWg>PY9x2 zPqYY@x$p!n2ekWBY(0pkX($8V2owr+jp@l#j1n*R28&Cx z@=p%j+iuhF`xv-Z1iEU`dt-c4v_*J2EqIJO6y5^dsg1U}O4FrV=!Y^23;)a8Y8ad} zHleK=falO1tILT5ItRMqL1qNHTp)QsD!CspuJGLV_wD3{v@tc+s)7&Qrrm=upk@cT z>YH}bhe57(AQysM9Zb!sVi{M0`7iv*av7J4>Bcgy-b~G9U89+fE$bT2G_R~H-O4WM z-KFj*JJnUrmCBrzuNnDtRnt!(0wpS>9DqiMG3=7B@A@yPDIJ z^7sPCm#g3!sMuZZsPX?)Wmm(Zh2K`%R>9TNx|Q?w_?+6bfANuSk&kX!n^XNbHQlPj2Y(?o*^+4HJ<6gD7x?OiYKyo6r#)mm=&sI zN~R~kv;Z@_OQA|62+i6n7Mv*=)m|BEdV@Y}uS^5*@1QI&zadJH>#VUcAh>r_767d1 zsH~9mxp1jqMk%C|GD>0!kwWZ7L`mZ5VkgB@qMvjMil@U~$+87O)}+qLY=ASJF#vFu zE6~S2HxwcV!+Gdn(O<_w24bE7R?`AOa3(Al=d8K8G>;`=owKj>Nw%`f(tIw@n@_)o1QEZ^@}^-@^$} z4ikzisrsY!`_cLS$_%rgP&MG99IQV1Z^9tjG62?+(ZLs`w{dy^hEP8W9*AzjgiaS7 z_MkBhI*ekJ9l-=tbYJk92I0FfUw5Zm#M5CyB|74w^z-TmDG3r2eNlGzeuonVQt@C6 zbez8TMMw4bl9+xMWeC7?h!Q3-122+KZ!{>|5TyrhURpW?4XU2L9imJ$*Nd|4#V{g* zRO(PAU1B~&Cl*^cD;$_|trJfhCX8qd?g!(f`!Ga{#bZWS#VA1#{3r$nrk-ZSDsup; zV)0R#_o!273~dV1I=maxaO}M|CZ`W#A>9_7+?WD?M^!NCxMtd8hbuP7TRR+fC0VFF z4ORCL8wzUfBQRVX0e(j3UX&XX)DcQYbD?0&2L@++Xw?X%p9^l7I66WZXBKBE^UmGE z)i)@4%t$5GjWOq`B3{X)UE6Y`+b#G_aqtxZXU8cEWxA`{kTN<&!IJ*zgh+}NSEjLq zYqzAUpOByopbypk`;H=X1pnPnaA^+VZrCBSh4>%#=NLjzq&O~jA~xGoXB zCZDPkl{m9FB%QYjpHu8RicM0w3k=1c(TgxGfe+xutbaSQ{s*TIBsN%-Jb-b@N}&|oxK=d5wp5o4@9}*aoTAL6 z%2=hbi$|@r4@XnrPrgshtmri?-$x^qSebCisyso(!;zwGtz4CR>jFIDs_p3DPtg_y z1J6_Ri-HmVd+MYr38qTQS5f*(+OI0(-NcdCyilrGq+r5oQ##S9=wx@EHk+B$u~u5& zN6#xBf}xK@cd3=TJkIq@9w{B*N{UH^Ij^KmsY;d<8>NZuogB%B7$vqBZB2zkwkZvR z7H847R<1OwOOQoWpJc2i_DOC^57N;3m|;Mz^wc~5k`U^2WL##sQf4~F1aX=@?>BVi z1q#-2ZX^VftvxKlt5lhePWct}$w1TmN-zztrQnanSIj`O|B4=Ez~T6c@-yM_Fg>|e zdM>|Z;=40Osg<^9b{1^WS9B-~z6ldDYNc}oQG;n|Hf$H8vuk+(*`2KU+`~d$#wcl$l2_RaU6hx7O5ZD0Et_gOY4d4;`WxSpdWtpf1Q_4ie-;L$JBHCgH zfsGJ}Dkj2A0Q%%$G-ZaZXnJCy?BYZPv$h;GSw_E6D@VAAOQp;J><+}}!L+w)3tcZwkvjLAiYaLb-hP>?#0hw8s*)z4|1@Q?fJM`k$IT(4)Y~qx0V|n~ z889Q>xDDg?e=AjvIFC#q?Hc%5<6c zc@#y=@ea&WWU8=SIFT&xlB@)lHQ0TMCvATl#hoxq84L*IC2SxQIK zMGBd%jBxW8gj)J~Dmp|?P+}L_JsV!WKYcP=nP6t(U8k~wqbofuQCfpzX#pH9=J=Dd zkEWbt)9`_bUlV?8skR$e)W4 z01Ik*+3^t(2yd6zj=T$}cwk!&;%WXgWS%k!pmd%x5#Z50*iC;LKcB(=`LOvc!~cI| z)K5%oOr>+DU_p5k=CjNd^#5@=&X)Vr#X@B$u1dt`30|O#G>eNL^3K#s7ij4MrJux{ zt)=>Uj4x<(QM9Z>Vl%lI$K2;IY-GVQO zUzm2uISgSGUI^(E<5akdLX9d2)|!VO)ptq^rAN=gZ)e(7s-6P-hWjZydFkgT^)4lg z;KMV|FHRoXwFtev9B2IGH$gd~&f8YkG;A zKZS~aiSnO9#dC^B82QAOKy(=o?5jk1&ZUc+A4SZD8C>cdjT)hM#8zwZNGi7kz z;Bw%rhb6Y43E`+pz6OEm9(4}u+h2hYa)5>HiXrPwatY^>~Io%KqbK)7rA~CTVX3+CWABva` zm#W}jiU-6j`4=K69qH1)&~ZA_kY|-VnIHxFE<#YNASSUj?pB8V6)j29RM6&Yw6;%7 zom7yLJ8!<-YheY_wCt8WrwoVKBhRt)(C6*-Gggyen}J(LAI?Z_Vkq_m$2X5f;@B5h z!>s@^`{~Z|_VGqb&YYh+(~&z(dJ!fQ*Fn69C@1Supt1k{5{lluAi1S|xw9j!cnMxA zKIlt`Q8Vu%jW=?s>PBclL);j>gjW0u-(k^Q%&EBPF}4U_UwAMFS1Xat^h>VTg0T`# z12a9VN#u&}F&_dh#Umiqkpfn6n_967T?L2qB^a`rD{Av<3|*X@wB$H8;70A%*!6s^ zPHg1I;nX$C45aofR+dWsvO340LOH!*M`PA1%{@{wo%K^+jQJwVeoK?RaHSGKs*>pL zi2X46-8w4%41N0aT6kcL*-@wK#W~B8yHJ&i(XZ%@d>HNNWiG+Rm$`Jq*1<>S zw4Z40$+jZ79sRaW@sjBMnhqiB;o^3r+3VqjqcyI_47VetY=CRtkv4AttrVLeF)8E)|9*pV7!^uz0%=hW92p*!-N>ABrT#+&aXC-GK_4eX2_Wu z1@D3>f102vOXyuGr!z-Ou!!Xxtx9nXpE6If3`8ala|SJ*%6BwB&VG=Hlz<)tvHy zW_sQJm5jT*U&j|*x(yRArae|KmsfUgQzCFdXcJ&BN~)Of4_~oO{0`|P=GYr@eb-Xjhem7zw+Nj-KGi6`qaz1r74LxHMua+ zn|?1z_9V3tY%VkOub0LKRV^8eLB=#Heox7v)5EYWOiFx2A7_5-Jn391f zbQb~@%#&F!W6;w#C#O=#Us!4b*=x5_B;cCe=qAiI!6|CA#7wG}Yl^-bljG>(9{BIf zIHg`313~c!6gw$$c@#1yhUo9IrvYZl91 zEE(qigTafc2sOxw7uJh2sff9KfKPCPLO)bqkc6ekU7Qg)_8|gx%(`4JruZY+4@N)Z zEYCo)y#QyV`Ns%n-=M&cv8uoCPA0J~H3z%FE4`D35RF1~bjn0>& z8Fv#UT31hd&%#TzeS$DdH`?+E8Uzzwt*6idDvnnjf^j~*Cb6}c?lEN(TDRB`wREMkgWbq6dt|5dO` z{Ga5eb_3Xr>MGD?nezu{U5O8J@(7k^x>2A1+UeC!`T#08kldtY#N0wh$c9DyR4=za zb?urPP7^+bDwk>6rwBh?rURcsX>pNTUaelE)1@eCaT(h4($6q)Vupr#jO4yF@tT5* zHJJW79!L<&&X8008I~U|Q_knGM$G*u0=Gw%6sp{o=m^a);lcmpv+NCA;Vrxvs(%m7 zWX(~;x0uznL56<*xQj}{XKdq)ui-NJA;<86@`UQ!tK{z7iepI0m|ayeRu=pfR-n9p z#T1$+fK1z4MP<<_NcJ&hB*osr9Jk<0MXsMis{5D93V@YgqKh;8KBp*6_(5Rm&>mQ$ zkR51UyN2hQwXIj2rlQKxBM>YT9LmWVo;;(2?1^7v8lOk+evM`H*QokyEQR!=@Z;!# z{X}WP8yr0lP2+fSH!3~}C8JIt^eHSKm>Z5GP}`5joq+qrY5F!eGSsIDK8dBxel+N$ z@`M}n4JPkz;dB<9#AWY)o`khyY)pfrJ8G$|AK;TzRAHvZ48wKF4(-l$qm!o)P-apb z9l3~JiHrJiYVow**RJqqwL0Og;B;^O|nycsm>w9=cZ_9yz#VPJ9P@v*bYXn@e~l*y83z9<|nOW2Pw zZq|1Q`|;)*PQDPCifQqo3u0-c0%4Pz7cdC&MP|&f*jWZ#uPh||btutSP9vFNX@i_M z!_2@G9LD^2@FhrSe$KApa$WA{FX8%icIP?mGYxXyc;XvH6MpO*Vk=C0PG23+%%2L5 zpiY)QKxmB_UTlz8lV$Bm#4c#W+r@`j@q;p0z{5Wv_~I=pXjOv@69oT=FacwV8ywaY zmqA=YXD|K{^TE37*2XUDob?e!jnBiq;Up#cLUNMRpQ5vd|2NN_11m1x*gA0@0||3) z(yJbIB^leRK7-Rf>nJ9iF&8j6GFK`3{s|b!kc)^XJUZ$$B20bVsmMsl|E80Fu*h%1 zMFa@|4_;I(E?r%z=_SOdyNV)@tCj)JoJ&ei(_UJ4Ny!HI^^!8(ZLgqzgq_N0(e;-R zn^@_h_<(reGQwR<+}|MgCj0)9tjN#I=tB(-bB?=KM9SJq_}_c!VI^AiUYb~iISz9k z)7KRm1nx>X1^W zJb+w~PaRT7G#6U+}!G$JYg@Vkr zzFLfS;W&7Y=DzDHmaKdHq%?D58d20OC6RW1hw$i@pYW*|`x?{{oXlXE3>75PpaiA{oB7_)7QpbGg`vSv${#z{%UF9-@ceQoQf_ddO6$$ z&ijxv={T9-NVVgmVg`E^KFgzBGu-4}GEVZ@|Hpv15q6wNZI6kH8Ar*#D(+I`SJgU$ zy!=vPA3D8jMl)@Og;Qp~VyP6HTW(_0f(z}tiNO=cly6}N3g`DDHPkAj@#G4$*ws|k z%5||?I;Fw2SUq6A%4+E<71tuffKz$3=wnRy*~vPLg03fe**yznU1zVuU#n@4nCpzH zS2`ngQ9afhgGKwfT}?rMDBY;64!7d-HU&oCtJc;|8(`OiX>9|hBf%xN;S%Er`EBfo zU@lx4&W90T*5MM?CU!2V)net6-sp;KUo3p*9k{Zb%#1mj<`5-Gj5{#r;cLd$A^vMS zIm2B>M47wU6*;9@@-@tAeSKnU$5vL{PG5ajv5H&jqwc{30Is>GOc1b6`>otZTNiiH z=3Q!#>xVCFPi8SebZq2!+?&@IlXqsQYLKgzH-3X6Ilm$P2syKUlk!gfhVQ^^zhD>; z8@%9e_Lo}?7=5!rZfP(5UFqP(dPiTepNyaMK*1h{2k8IJ|3GN_68ZjtIjFcyH_yF+ ziXyQ_{p%4F&ies!KJ^Ez!zH@-hce5JS-h$G4`l+MN&tS}pZErssOw+KlK@-)!UnEO zIu%K{>Y!48@SSj+%!dDYZ>oAIKN(MA-MK>Qn ztCe)`fie)U+(bQulTu7e9-_p>g8wcm<{(O3|4>PCW6W=KOhI zG^>-%Cq&r?+$PguggL6rYMdKm22;JC8YNy5- z23iAC6U<2v!e=4FQ4Zk*g$Fld%DAh+DKq0OvJ{)tA$r7E~MAN^mNzJ4` z$s&_=DZV%bH2CKNbym}O2Uh`L|&w=C%k&`O<)? zL*YxeNpTL4MI!rkx8-UI>bjRp5q8P9P_xZUdG)qj#Lw%ErhtTP9cCA7n_Jr1O7$&9 zu+f?hcwIp;rmwV2#I+||4~_HWSbOE*-Tlt?fUM<3`^RA zfft*ZVb}j;n)}-535!KxPDy^7}O-lK`YLv@a z?1uJL)68c@1ODtb?Kyxzw^utgMo`pt>f@5~)oolq2g4N7BMI+jU^jt8pKz)GkGV$@ zF4PG^M;H5&Mf#31i_=#aOKEy8RFa1}I z?V1uwfuT4%!MQv{n-M+*1|Hnv(KTft6?kC|7)HgR7(J@#awtZRY6@+BCP>VyS7r5A4MG)v-9hyM|D_J<1c1RE)ky$bI;zv$IQ5%! zq^oMd6>?}0<2tErrG$4h2?ZV1_VjfpwV6b3M_bTq>P^fL)md#0p|PD&S{AzZDn&QK z_lE+0^arRC{oz%ytrDA|MRn$MQ@cB?%T$`vMV$#5m%FI50IXdZ9FU-UH+6}Wa1;{6 zuGedpqy%cN6g2mg>nEJ+m)JzBPN3SPf|i;GJC#bq)IwR%Q#2=B9aqvF#)>;IC;8^8 z48Xk8T^%EH`0lFoh(mg)*-+%k9%_*!TtJybtaVE;j7mj!lrB;&(7yCkni;MZO1|o= z_Q6U;dRv4#7vR$fG&s)j##P=%ur6^ZhV_5rc;C=SM2Yd#T|y)p>s(qNsg4Dxk5nIb zn=3xA2d(I-rjsoVg9*n~=F*WU)YV*yh*oC+ycVr40PyLl<^e3}$+Ta3!vB~{N-s56 zis?XJL!fxS2$);%$A>qg<=IJ1?dHD;Ht+X_hD}6-fF7pA>Hi_ zy&jUS5Au9S2l}Wp&EkE7yr?^lQ7nM!`>R28tFP+8JK5csp%;}#!`ZTvf{@y?pPDC$ z1IVYJnnmN2bDBzbmXi#=!yZCOe>F~K5_3mRAaeSvnKI#Us_iMIhC!hJ0JJ<#ns`Sy zX6zZ2VYUJq7VZyh6U1~L1+@p zHu{bn!;Vf%>P8m_sVzaRAEZukW9mejq@rS(xN)%B0>oW|Swhnx=&6A;ZU|aZAbmJQ z9cgl>KZc-I-6?t~T){0ui8((>CGJ0w)XhHq8Al%uRWr=v1bzM;xkaFMnA)30$6&39 z(F^HJjGD=lKhrom9)kgw@k{T>g&8##)_^g~@5pWLZ{;QRqreNQzeGQChqo5di^Ef5 zq?g3p&k4CHbYPg;3Ubd3Q^x~D4u|u`M+xB>XWE;6E8pJB&z+);^oJ@)3|T{1+^889|yZt zzck6i(WrLPr9^l|JE?1un&!4s6z_=0c{oKW7}>u55u?Rt4um|wY-YA&&_ZlAvso}y z?WENfd_X3g&|2HUR24VJE=lsFp~*0>J4s1aCj#t}z$=A+%}PNl<#ZSCQ1o0Bxh4h8 zn=zI6!XkPxBU#1VtSHG$i>;-HsyYfxAE{_6uh0WkO*FqEs_m~k6jKOg zEu&I;+PlFkwAqF(^a|D6)J)0N=&tOGsGVp&4Gd~osybRy-S3LUK3`g_st84nfmc*K z2HF+BfCj+PP|m8^UD@(chIpCI`>vc7C5=kyN`I%J6Td>u)6sliq5O1pv>PXDN6n_G z?WkXd+LfARsCX%j+GVI&00kMC>6qz2hMMH^x+|G8)pP;JWuhWp7lrF~mvo!`oxiQN~s@jRVTQn^t(SACd@d5FkNK@-S49!4jd zGRNbKWaF|*_&3=i(G*-Rh8p#rmC}M{wwo`bVc>Xbf;x>Vs}U{EyDN`AJ(>WM%W3ju zWp&j`(Vhd2IqC1u5sC}tf4h%6f&yyLPF2e+DODQ@FPP}`%EO0Upm&q4tANWy@ znm{2xA>$=z%i`YJX|KcgOt^wg@mnUT8KhppyzZI1(y41c8D{(=QIO~E$}w=xWV8gv zym(h`%UC#B#kLGgN=zS7#N+A{lDg)u^j9Dq!JfhtY$L>687v-CFwtWH8?r{0bK$B@|s`(dT8o$!M$@H&=x94L-;>p^wX=j$ixnV>?siQMH!F+O))bqsdegfzRZmH4dQIA$&a+@s{+bE96F^@1 z$Swf4daLP@sl_#M))FrXbF&0R1!@gIoYb7N|CW zWOM?*;Wx#|R| zC$y1+X>&GlRIdNmttOg>eD1IkEAKi zGDkcKlgXJCUXzbi?Riq|DKSr898vTM9iKOB~EnqOpu$!tH9;5_OtPyGbKpJK+e4DRowC1hP526hSDK z@g@yhh|-lUgK-d}Dv0^Z_^VVbW2rtx7{>!>c9E(894dm3k1L*+bAukcoLP1(hjByC zTfv+&SJ+$BQD=(^rOLBOj@O(5FjlMMkYvfzc0Eo}&T`?Meve8Feg?xgYxfO4&LGS% zzM6+hU|Q8*curj~Aoa>;)J2l-2Nbv?zQ&V3B&FHCp8#6=FZD%9zkE$D{dE2zX*fkb zD6}up1kmDV5gZ7h{m;TW1z@i!mr{AoZai*XlN)yrKZhv}CTP!bfrmZMHMIVDwp=Hl zM{KT!JYK*Ar3U+R;LOy}rWerAYpCG`H1ryZc@e(2c*!x(v&Lc0n$z+th$9xgh`m!6 zUPQNLhUPVLR4aZHU!>qgn5aY57|NqwLVIL}7L@vi+C!3-yoBIH4Xu6&9vl;WA%3}v zJ1~Xhl&f%+cFjVIWSW1Cy^Cl$e|^Km0E3EW+<#8;a0;8d62^@=!)nC!i*2cLrP>jyHd=)`tD&K*U`%Rg z=_)lzvh}TzJv!^_ZniqtMN0;#n_ZW44_GOOxx=mNId!q~o$~ob@Xds@KAHL^Ysg z2wRJcPOO9b#jKfj_r2{7SR z1im;yX^q@l{qbM0QT2Zpb|`sPbpyxv*VH)xr(R<#BLb)xn3vN-ZGPC2fcMCkbnRO{1vRJ3|9~DXcX-%oUPk$qr z`_Z?hs*hy;4y{sLP=fKF^YLaE6!}D#!DHsqTyXZg9w3}3gGH{PpsjElYiPz+IFU89 zcPrcA2V3o3;#Q4gkdFa<_v`k8-O)Nb>Lq}hHnp^O_V^jwq^xZ$`QbJ;eBHk4yS6~}$16c<3krDC-fEg$r`>K??u8$VU2box?WGux>kf0@M`FCL z>w0EsGmFnZJC4tFhpFr-leD_7>#a!QMcurxina4CHb@`61=p*FYTtrmynu$jjR3*| zqPNv2ObbfhLEvwJ7?-+Sm$TI8-$7J~F=5x`1gQQUj9rWg2L`cv`k{qogghv?E15kh8g@Ym4o0b=>rwXm?CItbLEt;?m|qS(Ldgm#$eB~6KQOj-FqDfMSLIOP?dzHy$o zD`byd+n?`BrzB<%oRZd5um|2sYf z;Ngl1aTpwxbX z7$Z~q8uI@S#st33iD?7wag3{5xMdh`LvUm4U|Rc;+Mm3`(LZeauvX95n0vDCEGj`b zV9!2u8%7VmCr7pA2jSL)^swN9+VRj(m#$Z-g!k9BG`RHUpp zh;S`aCh4mrr?;i8j2JO(%00ObZ95FV>B~d-ij1Ca%*>O54x^Mz%5$dZCo%cRS%lI= zuZL!s03KHTB&k5FlBWGEk@gSzw@Z0!h5Cmpwl@v@4EFL0z4RI8$yeycXKD^W^5^_( z`{&pfa7BFVH}A>V`dgo=Jt<-sZs^+lBzEzN9 zhT(~Y?7b&V{)7q`5$BDAGw8cxYK(b?$fx%&4wD$}av9fgeW7N0B?(ITJ^Qc|{Q-vg zM{$loA|_H)%M~+l*7)2?ZIa-qGi#bGc5MKGYA|q`#rFW zi|V4jfoqgSMc=4nTx_m%;Tv^|fWy93=bLRpKbQM*(mL*2RdMcE5j+uR)%gOxaTcqm z%`cb)SZvQ4=XA%YxT5t}V9jQRjp{&P?Ly(pb&f3E|7X$94h0 zy6@GwQjp($hlx!PlrPSynI>F|_5(%}SE2D9d;oD`z32zEhv{kB@dIW$UC8xExBy*f z>W}Iia~HwZ?Y^9C|31m0kasZ56Qg_Fm#uF4c}$JF(1G(~QK#jX)Ily+T)goZi%UE(;Ps1)FnDUJ%U;KUPdu+L^ zMw-5%lb10@F(Ku?38ons#4Kcz&xy{O=nYT7}Vyla0DB4{l7X zMi}!#73>_N$2z5TrSNLlI7Ux!a`%>)N%(H!mG@~Uu>3OiOp3c)tz+&fXgI>7ZgNG9 za9QL^{jaD)1YCFp6Yw$g@f8@k1LSrU(ZmA?y~B$;Ac{EKS$){@^%L@D^jwr&bm?h7 z;63?(dE#b5Y(7EC(x1?(ndQm*(vf7ARr4`K^W8`XXz9J|rdewYU^!{kPCayI;W@t^3L$LAXq6;Dgh~YG& zh8pbd+TcpD*YQO+h*HGdkgEW@ucHMsX7~-+#65q-=Cd1%(H;19R-_vLi#l1PKJp8? z1z^+-b&^b@+>lPs?i<*r14{i3?5kmE8BR(s!`42gX5)!<;R&Do70UyR8FNDpXi+!S zenL|2O*LM?y*JgqrbN1aQwRV1K9+$tR2AV2pnE+R5lK?$vp9DVujB6}v?V&+{_iv8OQv~(!4ZUi~PAb3c ze#<~z;H2Vl_S9N6Ks?eu8xRkqudGG(Khb*za zm7ni^+CV+2qhfzCvfD-zBv>NBYZ80{FqQ?>8Uzgf-BI=eq1tT&Rs9Fmghz#)s!i5W zDXLx#6tB~%^{4{Cd=36vgYN>4HF!cum)%>?ZIi^+{sP0ZGo@6uKLAH2{?GCbinFb3m znZ`))B*56oB6sninezjtI3@7wWkCjN_CKgy4AjXwD%Fd87L(Uqv;n+!5`Gs|0hp}8 zT)?sXlFCVgjIsxg@-em3IlXqS4~^6U1J%t*?Mqe281DrWqI-KQ~Yp=%@(2adx#5c;4qO?2?uuyG-ftshI(jJjd1f2vB zuMph&4WAtk2zdOCrbyKFcVtgO#IFVs$DJb92x^^yddf-NBdA%w>TBjtClwoOkpb?5 zKP13Lx+uV}^rrwra0mgJ4-o=3{-_tQ<1rWeK=YQMp1G-~o^w*i3u=WS?Rg!Qijjfo z8QKLPZuUO$2gi}c!CZgZ7^|1@O(6Z7%A|cJ&|Beg^6_9hG7qBAtRwZsMGyhuS33>LtjFy|KFNr16@ z#nhQved(WYbClpEk@p<~b)A!%E2w#w^=V6VRH_&GbR;iVfKuuqfd#!g<9-6LdMMh``PxLqT#5o*5Lg$4oQdWcbt zQ1~x|h^|%o49+@5FtxjZdd^85E7C?9sOO#3Zg^V>*@;-BVC+8pMC?q(%v9k|FJVC-oDmKnCKJb7f-`8t{RD-na$O4X~>#4FDXg z9R=1aFv{Jbz+REXZbKGDPU^>kx~y8C_GulJ_PC*-I7}qLO$pr1Kn7D+fU$f!@T5Wf z6c0z{!9u(^Dd==Lr#q>a1l4Rv`?8a|lFCFrE9sB`@6bg7is?@QtmNASnOlW`rw!u2 za0<{)(dje)+DYY;X+F30)ca2A2`WYg;&{~VCTM48>A3ibvoF7jpE=Z|DYDnjzUW2l z@pP1(&%YcoWN^VrZ4j!Dzp77rSx3b?1t?}FZ4n@h4hT?9=Oy?ZVBAz8px7Y5x0xez zrmizk|NRf@4Fh$xlZt}|bKFtNxwP6Hg~rDJo%ku>*8=@5T?aahx6*gHqc6Z+r;Klf zcEf%$J%*S7E?%_xV^e*y2MQ5LxdOP;^8iEK1zSGYob98#m!lBc-giAU!bu%R)k2bq z9!U`BiC=?gkN|NsT7cuU5Mb8Ln?%aV3Wa6*D#C1~oyv@QTL7e6d%JDcCB7LHsN2pxh9)IW7pS|KDY zpi%*@(Ln*Qm?}VP`U5~L*ZH=v1%&WIQ}{i7HoIFovcXbOMhn|OEWE5~fwVJdrvzUE zh*gjq5P?Mmb4w_!EfMG?O>gCp#MGQ$^wc~jwLMLO2obFZ5TWlaEg{&I_6w{l{V2fG z^c%of4i$H}uNU-}Q_vOBVSY4Z^Y9Cd*dkRt2t4bQJnTc6iiw1Bm~E{`SSzqP3!BkK&vy3UL|VnCV$7}?x_ydjehHy|xR z%-PO>Ec#C{5Z&JSI#o*j#;vEbk%|Wyn~BGbIjAB^cB0(9I140e`eFTuNzdM z+(s;xC3q z-K1y^;%Uq#>*jkbxUY`YWchxarW5{l*}B>aiD`^H5tzs@-zRzB6jGJmNC6Fg<}lp(n76*_PajT%vlf% z?%O*RZfjk%yC=)yNQxuh&)dllmN!o?%i4MX^K!_n^=RuH*)cel;gI`F zgeLbOc#E7iYLzTqvR;BE=SfX4hb!zdtR+$~$06)U%T_ct)-7Kz!urhuMtT^Ks}dOb zRFNKQ$(^N1_+F2;ZkI&{QTG9B)@$GBRXy6;w?7N+q(@r157c-$fM8eH8am+lA~Ak& zKtRKqEMqe@=AR8R2E(GW=!<%^l|E#ozaD8B+*9M_DZ4#C%V)zh(^Kl;7G1(}f27t% zPdo6Ur;LeW(PcWM$$C~=)~k90V{H-3oIHberyoI1wGnY zC`~L+#2hLgy{_>V@f6ICw>~$5bvEfGSVAXjIuFvLtrhXidt8sS++L#b@}$cl_h~uQ z^IXe;Je>Ue`XY29vq3`6Gnzr?X_bSy@!Oo+1U;`cXaytr5SpFSQgKidz%wET+C5&= zEJH7%oz-2MhyXp-a_nF3bR^i;s^}AoCTxL$9*w5QSzptmt<&QeIYWmuS>m2;EO{>* zK5dxnP3+P;lw9_;Cbzv5p*0WdKKWf-b%GzW1U=H)%+q?b^`*hA1UvB#!JAHKg4Y{( z)A};+B0bWQi4Mf*F|I{AyJ>Zmjgj4Rhu~YQHRfgp8M}S8u7dD@&h+MfqH*6g)Wv6E zoZq{8Uh50+XGQb)uK^n>N8M2dWKTJ$JZ3<8N3zh-24rM7BYPT<`z7ac1M<)ia2Bo4 zTWY`tcIWi92ITZKMm}diZtTKH^i^m1t#Q)ve%pWy>&BdC49ExU>=fmFZ>Xp(LCm_u zz?v*|s?Z}XC6sGZb&C{5lo~FZ+F0W$WOzLPxt>`I{#Awu4y=h^@A1=noC( zX>V)jjRtfkmLj+$zZ%eMu?2zA9Slx}wX3Y9eR^hVrF0uw8jvwkM_aGT3Bp@?q~&0x#(Tj~=)}Vo+Qc;{Z$CIQ zb0qU7gW#hf8gpAc+PX|uQGW{cgYgd1(=2gEwIpvC&|jz;8vd%TvU7HG(Mt@-6S9nR z^hnFz{+a+qkG4MFNmkx`12$I9qtgw@h>o1s&(3nA*zFH9@=XKh#!if^*CQ?8Bx(u_ z)uXNLilkNK1wltGe-f!NzprPuJY}DM@;hM;?wyk~?jQBsRz>=kkp|=#*^<9b`q4bR#|5x?Ki0>J1_)-_?A~mkgcP68wag z<1~YeFJ({ds7G2JE7C^R&3d%8axB-rn*ljm8U-Ic(lXi&&IZpA&KdCi5h`UFX$JJ( zLJj?$9&PQ`JPO$*PNc$at<4%Sn{V1G#k&GviCgUz>4{S-@lplo?ftZtQ>~A z={YSyK6dBDfKI`d4Hf~{*V$<-53u0M=vaXcu{R^DBEvWR49vScs3^kL+SPZ43m(5j zcU6{Xsl5$+)%H5uYe2^!+{$^~(wD;W6@tc${+FKHx?9E$iuFj#y(BHe5dvN0P&X=t zCEPU#_RZ3m;YsO=d?7_c|6t%w4AanO4cxzD;gMw<+vcZT;TCaoIct#OXV%!m3{rf0 zXy~~HbON^Sv2b3wv6sfO8LJJ9exR3a^_C4k&>@1mYya6A^Dhp(XfOfNmi0Cud*-m% zaeAbs^CC?^oB{peObtCnkG39?t@8zebk_fia!5@uuwInYjh%X=r5VO^R^k-{`mt47 zZm%2A+xs<>++XU^)}gZD7iH_QmVQ{UX3-xR&_4~(M89W1FFUBApVyk*!(D`?lQjCmy$zxln!6+(za3AKUsjE$=bg_Kdf9d_ zikk(CYypk>n5+}1uE^H5QI5&_61gw81vgr0vaY9a@mGn-x`k}ZZGnx-OxAa3&T?C~ zM(>%d`|!k;t!>i-ChOOx=hv@nLDA3PsKw=%N4YgRf#?ujK-%u#o2-?B>NaAwHFwt3 z^?CRbk0sA%WZ}~FU7dsqid|uAO}nd88e=y${`PYdGZ0O#OI`(TZnt#|XPl3e7BPM5 z{ItSZ^KHMnZbEhE(rH^-2E{yM>r{TUr|n~0(33Q?Kkf0#$NN2NZEoeqV{JQ3u3=%h z)G*xE5?7e!qtX}HT8e8P<86Mpjeb-cs#s@>vm@HCw{^ka4PQ_Cz>XR-5({5p8&>4_ z(wdRBt}@{_BWzfI=^ijGkeV}gb@|a`TWpK}rvtdSyW`=o{2t}$AKLyC>Z&BC zQE2hZcCH!8Q>c2GtzDaG$@9=S8&6bbPqDYn;mNpssmNCP|Mrq`vX@LSS$D}^vd3io zMD~(>CMzme^pej^*5k65oHSW4%U)7tvex~xmo%8Hzsp|or^)K-@;|+#kdek-a#hz$ z_-{WqF(G&KlB=?pFz)~BB}_2(lB=?p;6+08k{$*I*-IGp|MZfp<+FaYtr|d4<$*0xM-ZA!t~YHA3; z^46*CBxps!%WaMQIDyXy(HTV_w@sQqf9l*>^Va93(23Tm9l+brI<;*ZW^idka*%E{@ z)~Wfk=Pt@jPhX#>((G}mZQYpePp0~mz zK1!(Llxj1=i<9cK7T7{6Ym?f(y#M&r_glIBB$RAJsheHe;37fst8is|8det9p}gnZ z)bG3{Lp05KJ+7xq-cRMjo=IKbOdB~LIF&4~#qe_>;)Zy1i1Z2den65!0|so?;RK2PoGwoRys z3rjvrZG)5JslF1?Ng`^0Pw|n6b{ke${mp{8aAh#9csnk*{KuoIquWSoAnn~5*M^i! zsZAxKy+Cv@=dttv@uM}BeH_Qd?@PbhTgMyg+1PU7|W z+^Li1Pt6!PTr2Xn^12(Ts{_Ea%$(N6uH+H7w03mMWc8AWU;@II>dk3Q!T6^+t)ppM zIdU*ZNjffxdXy3bQgZ*au8l-Sw6$Mauq1K`LEEK5qtpG<`fFtirLs@r+BfE+kdKlk z>M=*P>kvexF4hoagJkdenF?rBURq$I0wMZlZdzbl@z+YP!g;x~rVpPwf09<3g7Tet zY5V-rnc9k}=_4Z^pEUFF!kH+xH3@CmNJBdxIcff+__>qB(8@GVdpg-D1g>ypXEHUm zb}p}aHf?x}n^>4$8AJ_7;)2b2{G%Jiej10XVHaClN@}n`gfwOdt%};tLlq zrmY#)P|1c(l%FHr>A(y}Iv_$EQbUe`8shGh3WS{+L1z*UV?p?njRtG95p>!Q#18fG@jxx+!?ey*xFJf`cr+dwT+V_m?CZIE$kxa*wO>3 zG6a{JOHKT!`IM|6tym&MJe`uA!H3wO-yp#in3_IRK>YSEnVJ>;*?5D$skC+$LWVyvMhFI$@kJjCD<>yUWa=D>xA7hZ{Xqoohy zT56x16X3?ebyjYroFeK`oS8ebkg9vl&1ELj@AB4K8Pi$7`M36azEJ=iRIz zDSF6;bYJ;b@hj==wD#GNCYj?qmiH)2zuQ+5&wM9}pDAly{Q)iJQDz2rxz*>=yK7Br zuS*v09Po_C!)r~lG}VzXQYe8mK{)cB(N6o(Pr#6-SzPH#(=4rGLUEr(yq~Vhc)BEc4kIc+yrvJTWWxS_m-73FH?<{4laLwY=nPpwFL$oq? zqlTvOVdcM{Pai%^=oS;05yb6GRy>^X_VIzDt!WmtxNSx-SAwK>lXQFInjM1Fj>ZL9 zS|KJQB^v8I!rWE98Mw+weNCkcwO|&o4HUoE_BwM-8DuOd`RYDJIdzoKYLF`l6p(ha@TlYtwF^&Fg{e@Pud0Ogm-QC#<%3=59uSMoDkm(Zb~RYFs`6V z_YjqVA7PSQ+9o4RW)nzT+hq7tRcU%7!BQKN(NU|)a5@tjA6_0GnvvOCkTz$s$dc@g z&Rk)xo zj}Uk9`XcwB4rEHRc7pQdb)z%B?kh75p@uKAac5ygS~F3s`n4Ij2xDyqOq0Vy2&EM( zGg=C)w_u4~n<0eI&~;$ly;`}Ex|zjh;_}NGY$i!+c*5aUmY0;=OQtHj zp4DDZPpp$)&$K>+%|Bpknt3wL-Ah(cfOsoAcm5*UTbkZBm}{-2hWe+s0QaT&nhak^ zEiYT2(WnDXDZg2s(ZSrEy|73+Gk9old2M;d`3`OZ1&?BDCu}O-SDxY3n0d(bNk+f& z@QWFX+qzvBep+{$G}#(Lb)(`v&3TLoV@%0ieC+EksWMcJYJCYx-ukY1YbDl+j~ke9!pY z=@A8RIo9X-mivs%Eb(v?qIzk{L`V=2$&slE^KY(csusni&pou{5)%>E-g~ zWtnGOaPYeN^~{#$$*fBtMK6pGDsQ(f^G&yw0=3e8dj6!`nGy4*&ce;FlgrP%n;F!~ zG>jTfXU3R@l}8=QtZ3o<8GR=6`M!a$0WhClKwF!*%L;J^VrTY zN&e_3kUS;<@|eUj^kb4tFUBOhByCJW3LcXf&0`X$mHG3Sr28$$B*`j9A|w_gQDcEA zq`gmC!^)?4WEJ@cLi0cjszFa%TWCMJ%AEZJvLXa#MqpOBmTuAtYy0xUfmxkLx^Z4T zY0i2KS<995wt_Qsa@HULCrr+Y5wLV}R#(Z`RWP=p-R&}3N#S+lvm#mON{ZeP-*G_8!gbPujKc*$5HdQ)D?Kr(|(8LmNNb&>&_uET}&* zTg8;D4w|wsYg4j9jT*wel!zX5q%=O5ypz+LYl?2YgEO$j9j!sK2)0S6HsNeKerlqE z>CBHNJQ^i@Xw*W)w5$NF{*DA@btzvkEh{Tg5Gr?PNk3Bx*t#PtTA-tMXN3zmXHOQM z0)h`D^$DS2#n$%B@Bz}vkzY#b;ShkJXh^)7mTtlTCq-d`{c3t^OaPJs|Ef<)jBX@RKl&2X1lRqV{- zju8ER)?lH;?Dyf10d9UjYoJaUb|{4!AD~XzC6GU~8b!q76>G4W^K3PrVmG9>mWg9_ zWVK_oh}P`g7T>=7#}Bef`%2D`LON26kq4r7{hFm4Dg~xm!+1+U4cAep4>qQI$#Qfe zpPHSI$bt9&hoH5Nc>HOs&vx`h0BGb!3lGToo7&%BXria9cK~g62mxyprtGkeT z_-581gEk>$nEHsM1Z}wu+iqnIkSv<8oUNFji_+afanw)6z#@NzG~+x23iV?qqgrYx zbUmWMXW?%{`9Ba|-L9ROCHgTr3jCEE*smv+exHT5k&(j|MNJARJu znQg<*T|Kjxil04(WRErrVTCJGXwsQ@Yx$2uvX^@_5-6ITnEixC%%CHWVq!~@vRjvj zTC#DUZ(o{|mfc6A4#XW=@x98c(y|kpNS!g)>DR)Kmh71p>>5eX>n5 zdBR$je(L(BEEYMwRZCER{k2w>i1x8ai`dpykpR};Yb&z({w#K33AVOxsra6A?lZ|G z`1|Xg`#tBLbDsO$d!PHIXp!8zwd!dlNh+M!qB4Q! z?*-AE-SZx%90JUtY}h838|7UOS8dP<^%=0gNM(cbKPy)}N@XBkQOg;Jr~du9-~su$ z?^Zpkq{83W8wFWf;S}uOQZd0v0PN$EVy5e`eD_n zMD*v(YgKn)@a1b&GnHo_z4g#^@cyFQDR=&~sys#L!XDKV*aKm13#^w}y6y0qz?s=@>zIS(p+TRvaB_q-3Q7APi@dAsu19aZ*Q)MSlw7TvJ4WF#$?ugLk$>%4)huDq zDl}bBEYw6RnidFX>nR*W;n%4EBm*BO72-(gBKh$3s=R3RaVnqt|50U99hc+&Srz&Q z9on&dLA65(@v51R@X`qcf4-pFuH8+A!v!Z6R2#wlkMei{7{L2}xyi=Ngn|`$IN;sW z*FHxKgcAz$7F637P3DVt&!~PpRm2!Lu_Va(XVpFO(R-@DQ%?tpDDW2c^{ne}Q#@kWT(AQ2Znc`NcL)i$P}|%+ z)ixcmrNQ}-Y%iQIe|t~$k;U4>q}Bj)M@o#kfD);gUu}vyJOz42s;xo*YsdU*7h#7- zsx2m#i<_7=$h$C7ZJWds_K}xxy4tLxboA*sQIwk@yH8hl-KV~Z5S-THU^!7ZGnAyp zYnSknI$e!LFq3sPErK)i|_74dQ{EpOjBWiPR-EsTe%4q{f25swL~4HYK@IJ!b=X)g zsocMQEWd<1nCAMfT03jSA3Fc6LK6&?7V722yK8qm6!q6BFm$#S56b(ZJO*zwFHuhk zL_i6|Pd;0luKg=HH3M=+YH?Ozq}HUNxJ|_C&XvcgNdUUf)LK=nF+%_sM;N$twl)n_ z$*T8jarHzDoYmFo!Sk>3ga|r@Zr9alV@RQI|lBp^CapCB!j2 zY-WWNPSt&iQVH(5c;Y56ugg%gGeJ+?Y$0MN5gcY=FO2Y<+HF=88DXloE3!{>r+wxoTQV3~xSJXAsm7Qg*_yVb5DOaq^f&Z$DX= z8eoA0MPO`_meFWJMUCKi62&J@(T>ZBH^K3El8dMv1WJQW991ZE%7c6AO8P9cJb5st zAYb|1>nQ?J)?Y31dnX z*Z&y>&+1k??%)cCk$XnB+Nx(OY8+X>K|7))92GhXxp&DkqgU6hQ9TPoAFXzX06+Ap z_%X$kn~pcHwrOecG`4L?Mz>+_r=EC}ah_XkGcg=rP*7ZsGxvRpFV8~xxz&!zJmJZ+ zu=U((E2@>Zw5(3=$D^RwBnOJgBZ|o*lT02FCK;Y=@`x}wi6=}RVUs%INjMXI*5tlR zK6!3+X+V_<^>3_kiU2zg_`F(L@jZxVeW$sNSa(w)Sg9_4B(E%76WxzL;%tlq#h77&F>Jxe7!GNYG3MQ2 z%piCx*qF*7`;M*oFoY*tdR;^)3vq z{j5F{gK^VLry|6r7YfrHq=V~6h1#gVLgB~4ulHl2@MEFygN4F=P(&KchwVQs%$Ik* zQU6Yz7Wbji3p+8_ZPp380M7p1Z4wbf0pxt)HsWDihs+H#qFF#+umDahU86^E)ZAbg zOLh1kZj+rQ;tLiiIU`CCgDG%hzT2Q7T7vWi?pg9SOT(5nRWE$Ct-&b*<-PU_pH%m| z&4^zbZOFo4+x7;#jX4PglX9L=IJB+7hGJ*7HyAPKzDY4z_3eg-d+m%?utk`_ z-wrZi6DF8*hY3Q337kwN6E-%XBU~E9S9ZK`q5P|x4Z#}i4N`4_{Vx`pbpa((@l2sP zDsTgO%X|(zRcuF@FH6W7pd#0860{lK%ynClJzC~7hSlWlD>U1MnuPHZC-Rk)!-*1~ zSx1yKxELD3LS@FTUVQrSPj4eA#>Nsn+1dT0WbW z_9zS{!~O!dUeH#!dq$}ZJoi*TIsNvZceGVNZlm_ns)%%6_$e+LH z`)!r_6>{tNEuTe86!z@XKQ1&vPnk~(-hcZ{c#c`(m%izOnF8r$ZUaJ|FMW71QkhSa z6j!-oStBm9P+G%RVB42IyOC9mv4jt=z~L`_79FvuvDkmEaFMLJ?fdK*)kV1Wzx~#G zX)ncKO3_MeUni|ZVovfHC%k}XPkn?N3GQ zV9{EOnX##rkvGx~R z_tD;v!Q^Fk<`XlL!i@23V%)wAk_*>5R&XRSEHu_VU^s?hk!uVHD-$~i5t71v^y~ER z*V>)TNMIEa8A&Mp!}b2HFjJoOhqc!OYTCsDJM$aOTB0y_ch|d(ka!kf;fke=MjfNh zBIv!}jrXn-{Jo`(1{=duiz2^AB7G5@wYv@TC-8-93?(T^BAg;z8k`0>w+pAqvzImM zBrWZsL02yO-9|dm&U3WUu7oDh2V?;QTrMlcKVOcdQ3Q`)d<(CL70Fj}x5dGc_>~j? zycsm2#P8fD^CSu3Et;M4Mx%vw;kt*XMvG?1p*I>mUbTyg&;AunPC?~OZE~tyuw!LY z8U_bfHqD~L_bTF=oD>G*n#>3%uWE8RDdAvpb4z=dSLuc;zkaN7PHdA6Q^=R&ngT`Y zPsfZf#YR3AMm`lrK2?lh$VTucOEN;@Uu%T*kP$6W)V)n8nkzrIsws~S>bn?fO2y!I zsA(Dohx1ynvwgZlBj`-Eo!mLphmUB-y9t}_7Ql(z7D{xXzsZ3?UVaNsO-W5tBWNuQ zEomVwsNV?JL+%))S4%9v0Rtx~9yBQ9s^MCqWDBdb!M?sGtx)OGkhp}G05r{#GX|Qj zu8X>X=O13fj1wU?mRFlJTH02H#biV<4Kfu?okWxG+c5 zImQe{OL3)ei(&3W2~k8COAe=sDA6~fWYzU18MIH()1`p_J8pxTXh?db*`#^`u0GOi z5lox~s4R8n1XwcZPR|&R6}a$A(MewEBe}w-Ct%y7&8Da)rT~^BoHEHSvdO=Bw0XtT z>S<*ED|-tam-v9I#i}I$|CLq$wbnX|Y2AuaHnb*$KTY{-rwAXLlww@eXf=? zRB_zZayJH7T`hK@$pG6I7h!GWwD=?VFt*FnAUC~bx_zR$$ffktU|V{NJ)Z@V!uHxj z4b8ohzf)+6-?CHCtADl#&2EP==pJRLG4?4$*J-*wy4SS&fLBjU|5 z<9@v4*!@lMRNo|eI?OBUqX7kG=YV&Ydx4qhsVn;Y-64Nte|r!9*$@O5Z7mjj@QTcq z43Xz5dy5%?otd0(hca7S7(0{MGF`BH?JYBsS();!AsPo8Yag5rL%BuK@|tNae|F&E zmRv>mi7L7;qKYz|2^Vj*YT$4mR^xr5itZzCxQgx*RdioO6&;GU z(vs;U75`K1WDQE~WZI?LxA%I}bjYnQikJ7~x8&~7CR2J7B>uo{3DZHORmqV2ev1Qx zIq$b*sYwd1ooTT+Sw5i**FQ%NlL{?mklySu+a`;Mcg!mMXIjkh%vXz5_Q`uswHZwEq#dEo{X*L>IPd#-a`_F|gvi zxwDkY1jjNcmKhcJ5Zw2+I)$unVXHwohG<*kQcB zx6~LFSPmDV)hI9%ZU!mBjxY;Q)|M}A4vraT1tU+jno&1CbvEo;SEQ9gPq*3{ZM1oF zFd;uYY%_7lC4DiG?X`&4IFkHXUsAXLy z7~NWAo`Ndyl;l=}0QHbJj9>Z7QS$D8xBj>mk4^nXRhw1&XL=qRsE*)p%s6f4ds=i1 zSW$I#3C@I53@=}4n<;QhKFp0Rvncq*Rc)z4K?-btya-nZa$+2{eW?^D+Wsv2tJ{7O zQe{K@du>h;;ExUsGi8$pxPoYBkrB?1HbfJZ9u>%j9q+Z-&CI3$iq^=InvK`zv^g^; zGsTN$R4JL+R5BMa5*^mDC&2Nza9ph46{$q&Wm+k{+2A|XmX02CA z>e#~TVy~h-F#?J(kP@C|^A?n~hx!Ma`{pYNT=2}%(sT{`w)dSjo5+_GP#r79%w#hz z=>2&q?#FtkEm3ey1mK!c;!1-HaJ^K~0{P}hTV-|p1n$>Qf#1h$jL3Yk;Z?@urxQFuE zXNX=5)3en9QhoWM_ACuigOGRAJq-@_H^rmy@iQISB8?Lce(p}tvIws5pWkkVgG<_V z0!SBtd!!>y6_773X}{2+x)-nBZpS6~G%(L}y7peuZ-woLi)^|8N2XE4%KcLm@*HYU z!=UF-yH!nW@E>eXMc^k0V6f#I9T{-xWT`>Eb*Np_h8u)bmVi?PqIe?xfFyNOXST#$)|jl@}N6v>0v7P4G@?PYK0}6u>1PkN0a$<7|a9SEm;_3q zCrx`RV9^qV!-(l`1q`_2zbFp2j@0Pjl@kG@nOX6uKEJaESIvuF1}c2;mjU}^rf>+E z!CwX}sw6<`88FlyNRr?9W#Ht1dYBC6E$&bzCc;sNmMHvY?D(wI5*y%12F^Et|42u= zY8aBf(cu(n(-(Ib1U2ve4u_Q`X=Y+U_>(9+7?!b!+G4h5g7lAyaAb%hX)yXpkqN$axhR%W%sbMNDIO+^ z7&8?qJ0&rIbEF72=!`2d#D?9%20s1MA`_{&e57MqCd(MZGZvFFotdc+|5;HQB`AKi zBV9w71j(Pc@0EY}YDa?|&z>G{c9@>6PNR3g%??qK%}$zVc34hnc332`*I1Vr&;Fr@=V=ezZ&Sl*r9xwp?mCn^kLMN&F%qFFc(5A5l5 zs5roJcKWiioPnAw{9WKk+IagVxO#5C1dXov9T)U+%Ko7*D_f-wAzbLgCU+x@@RQb)d_rX2AOrS|y6+Dbf>*?~~uNJ93*xT4`&@QJPk3?G4ACSA-*LEAV zL=8G%OJbSR7T`z{4QA(0m}~w3dN9>oX2%M)$XP}b6=Zz(HNiL%qH+{x%a3$gUVpEw^HQfo`4Vv$CZvTgGO&9sLtX<+E{G&C{Bpt;p|_1(QQ)`idXV;KtZu-5Vcy(!$%8J=(vb@BsTF zD3egv<8V$^t7I}6)8|9Z8}$YaiJ(6jchAGbbUhaMeX#vEHB{RTebto$X1O5aY{< zH6oP@DoTp+p9dez9h@exnS|lml%!%UH#Y)x5Q;YfdV(=y+A@USP7J=~31Unh@&uDA z@a+EKp`aCmt3yGh*UWS}LW%o>E)3@F56;G5_5NTQ2AlT>iHE85I`MA%;Pw5%R81dd zg#;Hp!F%My=Y!`9)O36dT)GmpjZye>inFUaVhkEPAa8qvNkm*7Fq~TEf_Wn$E%f~< zXcn-c11d^=MiDV}z=`(?O{oD+p3s5sl-@y~^5@Q|zC)CEieN|J`QUwW&Yy$VB)m<) z#rAP@u=xYZqABa-MNllK?!_&}&BSDPOO{#3|yJhZ}M6 z__*K8*K6gJG;pqJDV`?h`+I-8(M~7Y3??qG9BcJOnIRa?eAH`Khbb|Ru38QLk9(aM zZ2h=*reLO?>$PfGj~RyZJXXscI)xLf;nv5!c9z5@^hR4TZgx1|TeDNWjEtpr_L=ai zgX5ijRso#o=rihwHR!;j5!Sn%0?zI1Goaj@u0E@Uxv|T6bXM44Bn2u4iuJJpj+l@Q zsx@w7Dn}C)>G39=U>Zj`F;F~P{-~>O@sIQe$ZBk*H*e`OrL8^yxu%c-PWm>*!ctQR zN2Yz7aPZ6+GH6-Y0jEnmsaB?wM8e3wl>>0d6mqH#z$p>@1%oseP8Pyl{*GohwhPO9 z*6j%}!w8p`mtjBi06b*oq!`$!svdw%2&hR2k_@3#L7g#%OtUzl;_#ML;cOcJpo4I8ENdnV@>cl4go@MYsjc3 zHh7V8ups3CPXmU>=M~xE)=--2X;8I?Oj;JiwPBSW^K7OmC(0)+XJJMRGsN>e4Grxf zqlRz^=2}9t{X{$9wg4pS!FFCEg*wHALp6>?}f zT{_%26*9rTUB$THh!G<$yZ4w$$~zLWQ`j{UvI=Q4^p1q|&~P%O6i@kCk^I+|J@}ya<9Grb|+rj5qzwlZtuWA>0Q1CFF)4r(7r}KU~k~Dex-N$8jL>H zZ?`d?fW{~EE(wLS$NFukD(~@rV>FBDD@6xgM=@H$>VLj?zWmbT{l|j$y+ry`R#bY6 z-QyF@+yVSr4lnH_4ygXsZ`863UP#^MNwqPZG^S~6Zs(;bF#4~4%N*v%3ckn>MiLcd zyagc`_x-eZ=E<$M`U|ES9ONVJ0jtbc{VSu+i{DGUSnU!&5&QWlEf01VECS{O(SCuk9U>r5!rSs%5Sj zw#dbnXiiJp{Bu5Ak}hA0EPR+3R19DRv1;;WxXR$=7OOOi=Y zXJ3*GXrlCGX&MH>mnGv}tR-1!X%FS&`{-`R5m}*YP%+-c1MN5l@UmnUnpVFgO&8Rx zA4}<|%zQwaqi1DG8d0JhP-ST|rTW*_1dCcZj; zDO6t)$FVa1+UD>hCM$3so^3PGJpQ63*!8d{Q{He)dL*Xcil}fcq45gGkRHEk4B@y_ zKdvPd$(a>5&Z0_47(DkY$!cY8e3+}$LuT*$wPeJreZKp)WY@Bk1$v+GC{>Pu#Bj2) zDt84gy^ZDn3jFJBDOE#45?p!|9nbxZ^l6lhQ<1S1Z8XOt2H1s^_q!fD?EADhMs9pp zx;aINPO6ohJeg~yj#J^PPSt0{Hu;4SX+@lxAW=bC@M|mR6;VO2hziO9SI{e>f?g37 z^a@u{#sBU5(X-&6isR&rkEI_@VKfB0Iy@%Gy;f|L|9MfGp~pw&%6mmrUUopKyi8B7 zyzDDi-YcT=veeWGmG_FMye!I<_ll^zS48DyoGUL=TzOfGQhBccwp%vXb**@+eEo0I zBRcUGBMUkw^yAouZhu#MBYp;u1!*e>Oj(?Y{TFSMkG_ricf z1ZF|BD01`|ysf3iCR%7{FrMfl#-3on6~047(2E7L86AHm|dp7>dtd zsSG2CH`oc6&FdWVCh>$(22;ioMEn4B%6D7V{k|vKNLEbVm9RV2W6~)x@GUMeX#y03 zU5~D_;%@zh$JS-38AyF}oyEz53Eq|AK^fsnIQik|4QAV95#bT5*!>7TGEvy0_0Pj$ zz@*IlSoxceuls%lT{AX(*LpLBqaUp^+bYPxq!swg^qn97pFsYtyVj@AVt!(nKUPl| zj$v5%hVotK)|vGY4B-(nf_JYsph5Y-xph$$QEw|AV8|Z4{XckseD;9(cY45Zqz5R^ z9z-yN2go1~RBywMq4jg*BX_U=uiivDzjRQuLR#C5l^1VS8{W5Guj6j6h*;8CBAF#7 zW(_lNlg%$YskKZejR}qA596@{7a7Dzia;j*sYJ>Oj|qXZ&#iapnHR(IV({zVQS#2A z^|43QpHS&}u4aQpOBDWFz>K_jQ2mASiDl`N9~uW#eQN7P<2o%6?yc&^ixjheA&nwA*2RASo)9)~~= z|8ZlsK&{}dEwO0=oHpT)cp?W2+hL@x#1YN#pdMQb9G=&Sm<94a^w=yc7FiGopnO4x z?w3>kv~k}$RTiA}ZNeFCn)YTo6@weTO->9F{F`P*XOUyZ$|_z0V&_<5W!2bYi?>5C z)cZEsEq4fre940S{!MmOmi%-7rt@tJ-Y2EWRTCE6az*+&2LCR;52xPUWY#g?Ud0P< zvpJF&)-qO)7>;3Bc=tZcJGsd+GXfV*F_6H55zX-Xa`5D)_yN^1*pj!|DFQ6Pw7ugP z=LKy4Z;x5fxMTRgJv_pWa$n_bwwqZ5buOQ7meG&PL>NCNZ(FkY z*)8g)C`0GIx!I&83I~_-{^T(@nNF?>FX$d`d0D*o&CM>6u;R_l1}h843Sp5CLRA%9 bE?ldh9my8i!APP=5aH5OxXijh;2a diff --git a/finalSphinxDocs/_build/html/PAMI.correlatedPattern.basic.html b/finalSphinxDocs/_build/html/PAMI.correlatedPattern.basic.html index 711b13cf..7d555096 100644 --- a/finalSphinxDocs/_build/html/PAMI.correlatedPattern.basic.html +++ b/finalSphinxDocs/_build/html/PAMI.correlatedPattern.basic.html @@ -281,7 +281,21 @@

Submodules
recursive(item, nodes, root)[source]
-
+

Recursively build the tree structure for itemsets and find patterns that meet +the minimum support and all-confidence thresholds.

+
+
Parameters:
+
    +
  • item (Any) – The current item being processed.

  • +
  • nodes (list of _Node) – The list of nodes to be processed.

  • +
  • root (_Node) – The root node of the current tree.

  • +
+
+
Returns:
+

None

+
+
+
@@ -314,43 +328,47 @@

Submodules_correlatedPatterns

Description:
-

CoMine is one of the fundamental algorithm to discover correlated patterns in a transactional database. It is based on the traditional FP-Growth algorithm. This algorithm uses depth-first search technique to find all correlated patterns in a transactional database.

+

CoMinePlus is one of the fundamental algorithm to discover correlated patterns in a transactional database. It is based on the traditional FP-Growth algorithm. This algorithm uses depth-first search technique to find all correlated patterns in a transactional database.

Reference:

Lee, Y.K., Kim, W.Y., Cao, D., Han, J. (2003). CoMine: efficient mining of correlated patterns. In ICDM (pp. 581–584).

Parameters:
-

iFile (str) – Name of the Input file to mine complete set of correlated patterns -oFile (str) – Name of the output file to store complete set of correlated patterns -minSup (int or float or str) – The user can specify minSup either in count or proportion of database size. If the program detects the data type of minSup is integer, then it treats minSup is expressed in count. -minAllConf (float) – The user can specify minAllConf values within the range (0, 1). -sep (str) – This variable is used to distinguish items from one another in a transaction. The default seperator is tab space. However, the users can override their default separator.

+
    +
  • iFile (str) – Name of the Input file to mine complete set of correlated patterns.

  • +
  • oFile (str) – Name of the output file to store complete set of correlated patterns.

  • +
  • minSup (int or float or str) – The user can specify minSup either in count or proportion of database size. If the program detects the data type of minSup is integer, then it treats minSup is expressed in count.

  • +
  • minAllConf (float) – The user can specify minAllConf values within the range (0, 1).

  • +
  • sep (str) – This variable is used to distinguish items from one another in a transaction. The default seperator is tab space. However, the users can override their default separator.

  • +
Attributes:
-

memoryUSS (float) – To store the total amount of USS memory consumed by the program -memoryRSS (float) – To store the total amount of RSS memory consumed by the program -startTime (float) – To record the start time of the mining process -endTime (float) – To record the completion time of the mining process -minSup (int) – The user given minSup -minAllConf (float) – The user given minimum all confidence Ratio(should be in range of 0 to 1) -Database (list) – To store the transactions of a database in list -mapSupport (Dictionary) – To maintain the information of item and their frequency -lno (int) – it represents the total no of transactions -tree (class) – it represents the Tree class -itemSetCount (int) – it represents the total no of patterns -finalPatterns (dict) – it represents to store the patterns -itemSetBuffer (list) – it represents the store the items in mining -maxPatternLength (int) – it represents the constraint for pattern length

+
    +
  • memoryUSS (float) – To store the total amount of USS memory consumed by the program.

  • +
  • memoryRSS (float) – To store the total amount of RSS memory consumed by the program.

  • +
  • startTime (float) – To record the start time of the mining process.

  • +
  • endTime (float) – To record the completion time of the mining process.

  • +
  • minSup (int) – The user given minSup.

  • +
  • minAllConf (float) – The user given minimum all confidence Ratio(should be in range of 0 to 1).

  • +
  • Database (list) – To store the transactions of a database in list.

  • +
  • mapSupport (Dictionary) – To maintain the information of item and their frequency.

  • +
  • lno (int) – it represents the total no of transactions.

  • +
  • tree (class) – it represents the Tree class.

  • +
  • itemSetCount (int) – it represents the total no of patterns.

  • +
  • finalPatterns (dict) – it represents to store the patterns.

  • +
  • itemSetBuffer (list) – it represents the store the items in mining.

  • +
  • maxPatternLength (int) – it represents the constraint for pattern length.

  • +

Terminal command

Format:
 
-(.venv) $ python3 CoMine.py <inputFile> <outputFile> <minSup> <minAllConf> <sep>
+(.venv) $ python3 CoMinePlus.py <inputFile> <outputFile> <minSup> <minAllConf> <sep>
 
 Example Usage:
 
-(.venv) $ python3 CoMine.py sampleTDB.txt output.txt 0.25 0.2
+(.venv) $ python3 CoMinePlus.py sampleTDB.txt output.txt 0.25 0.2
 

@@ -503,7 +533,7 @@

Submodules
startMine() None[source]
-

main method to start

+

Code for the mining process will start from this function

diff --git a/finalSphinxDocs/_build/html/_modules/PAMI/correlatedPattern/basic/CoMine.html b/finalSphinxDocs/_build/html/_modules/PAMI/correlatedPattern/basic/CoMine.html index 4f7a2451..d9035771 100644 --- a/finalSphinxDocs/_build/html/_modules/PAMI/correlatedPattern/basic/CoMine.html +++ b/finalSphinxDocs/_build/html/_modules/PAMI/correlatedPattern/basic/CoMine.html @@ -396,13 +396,43 @@

Source code for PAMI.correlatedPattern.basic.CoMine

self.mine()
def _maxSup(self, itemSet, item): + """ + Calculate the maximum support value for a given itemSet and item. + + :param itemSet: A set of items to compare. + :type itemSet: list or set + :param item: An individual item to compare. + :type item: Any + :return: The maximum support value from the itemSet and the individual item. + :rtype: float or int + """ sups = [self._mapSupport[i] for i in itemSet] + [self._mapSupport[item]] return max(sups) def _allConf(self, itemSet): + """ + Calculate the all-confidence value for a given itemSet. + + :param itemSet: A set of items for which to calculate the all-confidence. + :type itemSet: list or set + :return: The all-confidence value for the itemSet. + :rtype: float + """ return self._finalPatterns[itemSet] / max([self._mapSupport[i] for i in itemSet])
[docs] def recursive(self, item, nodes, root): + """ + Recursively build the tree structure for itemsets and find patterns that meet + the minimum support and all-confidence thresholds. + + :param item: The current item being processed. + :type item: Any + :param nodes: The list of nodes to be processed. + :type nodes: list of _Node + :param root: The root node of the current tree. + :type root: _Node + :return: None + """ if root.item is None: newRoot = _Node([item], 0, None) @@ -423,7 +453,7 @@

Source code for PAMI.correlatedPattern.basic.CoMine

itemCounts = {k:v for k, v in itemCounts.items() if v >= self._minSup} if len(itemCounts) == 0: return - + itemNodes = {} for transaction, count in transactions: transaction = [i for i in transaction if i in itemCounts] @@ -436,8 +466,8 @@

Source code for PAMI.correlatedPattern.basic.CoMine

itemNodes[item][0].add(node) itemNodes[item][1] += count - itemNodes = {k:v for k, v in sorted(itemNodes.items(), key=lambda x: x[1][1], reverse=True)} - + itemNodes = {k:v for k, v in sorted(itemNodes.items(), key=lambda x: x[1][1], reverse=True)} + for item in itemCounts: conf = itemNodes[item][1] / self._maxSup(newRoot.item, item) diff --git a/finalSphinxDocs/_build/html/_modules/PAMI/correlatedPattern/basic/CoMinePlus.html b/finalSphinxDocs/_build/html/_modules/PAMI/correlatedPattern/basic/CoMinePlus.html index f9f1fe15..76e1870c 100644 --- a/finalSphinxDocs/_build/html/_modules/PAMI/correlatedPattern/basic/CoMinePlus.html +++ b/finalSphinxDocs/_build/html/_modules/PAMI/correlatedPattern/basic/CoMinePlus.html @@ -94,12 +94,11 @@

Source code for PAMI.correlatedPattern.basic.CoMinePlus

-# CoMine is one of the fundamental algorithm to discover correlated patterns in a transactional database.
+# CoMinePlus is one of the fundamental algorithm to discover correlated patterns in a transactional database.
 #
 # **Importing this algorithm into a python program**
-# --------------------------------------------------------
 #
-#             from PAMI.correlatedPattern.basic import CoMine as alg
+#             from PAMI.correlatedPattern.basic import CoMinePlus as alg
 #
 #             iFile = 'sampleTDB.txt'
 #
@@ -107,13 +106,13 @@ 

Source code for PAMI.correlatedPattern.basic.CoMinePlus

# # minAllConf = 0.2 # can be specified between 0 and 1 # -# obj = alg.CoMine(iFile, minSup, minAllConf, sep) +# obj = alg.CoMinePlus(iFile, minSup, minAllConf, sep) # # obj.mine() # -# Rules = obj.getPatterns() +# frequentPatterns = obj.getPatterns() # -# print("Total number of Patterns:", len(Patterns)) +# print("Total number of Patterns:", len(frequentPatterns)) # # obj.save(oFile) # @@ -215,30 +214,30 @@

Source code for PAMI.correlatedPattern.basic.CoMinePlus

About this algorithm ==================== - :**Description**: CoMine is one of the fundamental algorithm to discover correlated patterns in a transactional database. It is based on the traditional FP-Growth algorithm. This algorithm uses depth-first search technique to find all correlated patterns in a transactional database. + :**Description**: CoMinePlus is one of the fundamental algorithm to discover correlated patterns in a transactional database. It is based on the traditional FP-Growth algorithm. This algorithm uses depth-first search technique to find all correlated patterns in a transactional database. :**Reference**: Lee, Y.K., Kim, W.Y., Cao, D., Han, J. (2003). CoMine: efficient mining of correlated patterns. In ICDM (pp. 581–584). - :**parameters**: **iFile** (*str*) -- **Name of the Input file to mine complete set of correlated patterns** - **oFile** (*str*) -- **Name of the output file to store complete set of correlated patterns** - **minSup** (*int or float or str*) -- **The user can specify minSup either in count or proportion of database size. If the program detects the data type of minSup is integer, then it treats minSup is expressed in count.** - **minAllConf** (*float*) -- **The user can specify minAllConf values within the range (0, 1).** - **sep** (*str*) -- **This variable is used to distinguish items from one another in a transaction. The default seperator is tab space. However, the users can override their default separator.** - - :**Attributes**: **memoryUSS** (*float*) -- **To store the total amount of USS memory consumed by the program** - **memoryRSS** (*float*) -- **To store the total amount of RSS memory consumed by the program** - **startTime** (*float*) -- **To record the start time of the mining process** - **endTime** (*float*) -- **To record the completion time of the mining process** - **minSup** (*int*) -- **The user given minSup** - **minAllConf** (*float*) -- **The user given minimum all confidence Ratio(should be in range of 0 to 1)** - **Database** (*list*) -- **To store the transactions of a database in list** - **mapSupport** (*Dictionary*) -- **To maintain the information of item and their frequency** - **lno** (*int*) -- **it represents the total no of transactions** - **tree** (*class*) -- **it represents the Tree class** - **itemSetCount** (*int*) -- **it represents the total no of patterns** - **finalPatterns** (*dict*) -- **it represents to store the patterns** - **itemSetBuffer** (*list*) -- **it represents the store the items in mining** - **maxPatternLength** (*int*) -- **it represents the constraint for pattern length** + :**parameters**: - **iFile** (*str*) -- *Name of the Input file to mine complete set of correlated patterns.* + - **oFile** (*str*) -- *Name of the output file to store complete set of correlated patterns.* + - **minSup** (*int or float or str*) -- *The user can specify minSup either in count or proportion of database size. If the program detects the data type of minSup is integer, then it treats minSup is expressed in count.* + - **minAllConf** (*float*) -- *The user can specify minAllConf values within the range (0, 1).* + - **sep** (*str*) -- *This variable is used to distinguish items from one another in a transaction. The default seperator is tab space. However, the users can override their default separator.* + + :**Attributes**: - **memoryUSS** (*float*) -- *To store the total amount of USS memory consumed by the program.* + - **memoryRSS** (*float*) -- *To store the total amount of RSS memory consumed by the program.* + - **startTime** (*float*) -- *To record the start time of the mining process.* + - **endTime** (*float*) -- *To record the completion time of the mining process.* + - **minSup** (*int*) -- *The user given minSup.* + - **minAllConf** (*float*) -- *The user given minimum all confidence Ratio(should be in range of 0 to 1).* + - **Database** (*list*) -- *To store the transactions of a database in list.* + - **mapSupport** (*Dictionary*) -- *To maintain the information of item and their frequency.* + - **lno** (*int*) -- *it represents the total no of transactions.* + - **tree** (*class*) -- *it represents the Tree class.* + - **itemSetCount** (*int*) -- *it represents the total no of patterns.* + - **finalPatterns** (*dict*) -- *it represents to store the patterns.* + - **itemSetBuffer** (*list*) -- *it represents the store the items in mining.* + - **maxPatternLength** (*int*) -- *it represents the constraint for pattern length.* Execution methods ================= @@ -249,11 +248,11 @@

Source code for PAMI.correlatedPattern.basic.CoMinePlus

Format: - (.venv) $ python3 CoMine.py <inputFile> <outputFile> <minSup> <minAllConf> <sep> + (.venv) $ python3 CoMinePlus.py <inputFile> <outputFile> <minSup> <minAllConf> <sep> Example Usage: - (.venv) $ python3 CoMine.py sampleTDB.txt output.txt 0.25 0.2 + (.venv) $ python3 CoMinePlus.py sampleTDB.txt output.txt 0.25 0.2 .. note:: minSup can be specified in support count or a value between 0 and 1. @@ -261,7 +260,7 @@

Source code for PAMI.correlatedPattern.basic.CoMinePlus

.. code-block:: python - from PAMI.correlatedPattern.basic import CoMine as alg + from PAMI.correlatedPattern.basic import CoMinePlus as alg iFile = 'sampleTDB.txt' @@ -269,13 +268,13 @@

Source code for PAMI.correlatedPattern.basic.CoMinePlus

minAllConf = 0.2 # can be specified between 0 and 1 - obj = alg.CoMine(iFile, minSup, minAllConf,sep) + obj = alg.CoMinePlus(iFile, minSup, minAllConf,sep) obj.mine() - patterns = obj.getPatterns() + frequentPatterns = obj.getPatterns() - print("Total number of Patterns:", len(patterns)) + print("Total number of Patterns:", len(frequentPatterns)) obj.savePatterns(oFile) @@ -296,7 +295,7 @@

Source code for PAMI.correlatedPattern.basic.CoMinePlus

Credits ======= - The complete program was written by B.Sai Chitra under the supervision of Professor Rage Uday Kiran. + The complete program was written by B.Sai Chitra and revised by Tarun Sreepads under the supervision of Professor Rage Uday Kiran. """ @@ -390,20 +389,46 @@

Source code for PAMI.correlatedPattern.basic.CoMinePlus

[docs] @deprecated("It is recommended to use 'mine()' instead of 'startMine()' for mining process. Starting from January 2025, 'startMine()' will be completely terminated.") def startMine(self) -> None: - """ - main method to start - """ self.mine()
def _maxSup(self, itemSet, item): + """ + Calculate the maximum support value for a given itemSet and item. + + :param itemSet: A set of items to compare. + :type itemSet: list or set + :param item: An individual item to compare. + :type item: Any + :return: The maximum support value from the itemSet and the individual item. + :rtype: float or int + """ sups = [self._mapSupport[i] for i in itemSet] + [self._mapSupport[item]] return max(sups) def _allConf(self, itemSet): + """ + Calculate the all-confidence value for a given itemSet. + + :param itemSet: A set of items for which to calculate the all-confidence. + :type itemSet: list or set + :return: The all-confidence value for the itemSet. + :rtype: float + """ return self._finalPatterns[itemSet] / max([self._mapSupport[i] for i in itemSet])
[docs] def recursive(self, item, nodes, root): - + """ + Recursively build the tree structure for itemsets and find patterns that meet + the minimum support and all-confidence thresholds. + + :param item: The current item being processed. + :type item: Any + :param nodes: The list of nodes to be processed. + :type nodes: list of _Node + :param root: The root node of the current tree. + :type root: _Node + :return: None + """ newRoot = _Node(root.item + [item], 0, None) diff --git a/finalSphinxDocs/_build/html/correlatedPatternBasicCoMine.html b/finalSphinxDocs/_build/html/correlatedPatternBasicCoMine.html index 0db468f8..e537d938 100644 --- a/finalSphinxDocs/_build/html/correlatedPatternBasicCoMine.html +++ b/finalSphinxDocs/_build/html/correlatedPatternBasicCoMine.html @@ -296,7 +296,21 @@
recursive(item, nodes, root)[source]
-
+

Recursively build the tree structure for itemsets and find patterns that meet +the minimum support and all-confidence thresholds.

+
+
Parameters:
+
    +
  • item (Any) – The current item being processed.

  • +
  • nodes (list of _Node) – The list of nodes to be processed.

  • +
  • root (_Node) – The root node of the current tree.

  • +
+
+
Returns:
+

None

+
+
+
diff --git a/finalSphinxDocs/_build/html/correlatedPatternBasicCoMinePlus.html b/finalSphinxDocs/_build/html/correlatedPatternBasicCoMinePlus.html index 26ce1479..1a63bb5e 100644 --- a/finalSphinxDocs/_build/html/correlatedPatternBasicCoMinePlus.html +++ b/finalSphinxDocs/_build/html/correlatedPatternBasicCoMinePlus.html @@ -122,43 +122,47 @@

Bases: _correlatedPatterns

Description:
-

CoMine is one of the fundamental algorithm to discover correlated patterns in a transactional database. It is based on the traditional FP-Growth algorithm. This algorithm uses depth-first search technique to find all correlated patterns in a transactional database.

+

CoMinePlus is one of the fundamental algorithm to discover correlated patterns in a transactional database. It is based on the traditional FP-Growth algorithm. This algorithm uses depth-first search technique to find all correlated patterns in a transactional database.

Reference:

Lee, Y.K., Kim, W.Y., Cao, D., Han, J. (2003). CoMine: efficient mining of correlated patterns. In ICDM (pp. 581–584).

Parameters:
-

iFile (str) – Name of the Input file to mine complete set of correlated patterns -oFile (str) – Name of the output file to store complete set of correlated patterns -minSup (int or float or str) – The user can specify minSup either in count or proportion of database size. If the program detects the data type of minSup is integer, then it treats minSup is expressed in count. -minAllConf (float) – The user can specify minAllConf values within the range (0, 1). -sep (str) – This variable is used to distinguish items from one another in a transaction. The default seperator is tab space. However, the users can override their default separator.

+
    +
  • iFile (str) – Name of the Input file to mine complete set of correlated patterns.

  • +
  • oFile (str) – Name of the output file to store complete set of correlated patterns.

  • +
  • minSup (int or float or str) – The user can specify minSup either in count or proportion of database size. If the program detects the data type of minSup is integer, then it treats minSup is expressed in count.

  • +
  • minAllConf (float) – The user can specify minAllConf values within the range (0, 1).

  • +
  • sep (str) – This variable is used to distinguish items from one another in a transaction. The default seperator is tab space. However, the users can override their default separator.

  • +
Attributes:
-

memoryUSS (float) – To store the total amount of USS memory consumed by the program -memoryRSS (float) – To store the total amount of RSS memory consumed by the program -startTime (float) – To record the start time of the mining process -endTime (float) – To record the completion time of the mining process -minSup (int) – The user given minSup -minAllConf (float) – The user given minimum all confidence Ratio(should be in range of 0 to 1) -Database (list) – To store the transactions of a database in list -mapSupport (Dictionary) – To maintain the information of item and their frequency -lno (int) – it represents the total no of transactions -tree (class) – it represents the Tree class -itemSetCount (int) – it represents the total no of patterns -finalPatterns (dict) – it represents to store the patterns -itemSetBuffer (list) – it represents the store the items in mining -maxPatternLength (int) – it represents the constraint for pattern length

+
    +
  • memoryUSS (float) – To store the total amount of USS memory consumed by the program.

  • +
  • memoryRSS (float) – To store the total amount of RSS memory consumed by the program.

  • +
  • startTime (float) – To record the start time of the mining process.

  • +
  • endTime (float) – To record the completion time of the mining process.

  • +
  • minSup (int) – The user given minSup.

  • +
  • minAllConf (float) – The user given minimum all confidence Ratio(should be in range of 0 to 1).

  • +
  • Database (list) – To store the transactions of a database in list.

  • +
  • mapSupport (Dictionary) – To maintain the information of item and their frequency.

  • +
  • lno (int) – it represents the total no of transactions.

  • +
  • tree (class) – it represents the Tree class.

  • +
  • itemSetCount (int) – it represents the total no of patterns.

  • +
  • finalPatterns (dict) – it represents to store the patterns.

  • +
  • itemSetBuffer (list) – it represents the store the items in mining.

  • +
  • maxPatternLength (int) – it represents the constraint for pattern length.

  • +

Terminal command

Format:
 
-(.venv) $ python3 CoMine.py <inputFile> <outputFile> <minSup> <minAllConf> <sep>
+(.venv) $ python3 CoMinePlus.py <inputFile> <outputFile> <minSup> <minAllConf> <sep>
 
 Example Usage:
 
-(.venv) $ python3 CoMine.py sampleTDB.txt output.txt 0.25 0.2
+(.venv) $ python3 CoMinePlus.py sampleTDB.txt output.txt 0.25 0.2
 
@@ -166,7 +170,7 @@

minSup can be specified in support count or a value between 0 and 1.

Calling from a python program

-
from PAMI.correlatedPattern.basic import CoMine as alg
+
from PAMI.correlatedPattern.basic import CoMinePlus as alg
 
 iFile = 'sampleTDB.txt'
 
@@ -174,13 +178,13 @@
 
 minAllConf = 0.2 # can  be specified between 0 and 1
 
-obj = alg.CoMine(iFile, minSup, minAllConf,sep)
+obj = alg.CoMinePlus(iFile, minSup, minAllConf,sep)
 
 obj.mine()
 
-patterns = obj.getPatterns()
+frequentPatterns = obj.getPatterns()
 
-print("Total number of  Patterns:", len(patterns))
+print("Total number of  Patterns:", len(frequentPatterns))
 
 obj.savePatterns(oFile)
 
@@ -199,9 +203,7 @@
 print("Total ExecutionTime in seconds:", run)
 
-
-

The complete program was written by B.Sai Chitra under the supervision of Professor Rage Uday Kiran.

-
+

The complete program was written by B.Sai Chitra and revised by Tarun Sreepads under the supervision of Professor Rage Uday Kiran.

getMemoryRSS() float[source]
@@ -292,7 +294,21 @@
recursive(item, nodes, root)[source]
-
+

Recursively build the tree structure for itemsets and find patterns that meet +the minimum support and all-confidence thresholds.

+
+
Parameters:
+
    +
  • item (Any) – The current item being processed.

  • +
  • nodes (list of _Node) – The list of nodes to be processed.

  • +
  • root (_Node) – The root node of the current tree.

  • +
+
+
Returns:
+

None

+
+
+
@@ -311,7 +327,7 @@
startMine() None[source]
-

main method to start

+

Code for the mining process will start from this function

diff --git a/finalSphinxDocs/_build/html/searchindex.js b/finalSphinxDocs/_build/html/searchindex.js index d8e78974..47b4d360 100644 --- a/finalSphinxDocs/_build/html/searchindex.js +++ b/finalSphinxDocs/_build/html/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["ContiguousFrequentPatterns1", "CorrelatedPatternMining1", "CoveragePatternMining1", "FaultTolerantPatternMining1", "FrequentPatternWithMultipleMinimumSupport1", "FuzzyCorrelatedPatternMining1", "FuzzyFrequentPatternMining1", "FuzzyGeoReferencedFrequentPatternMining1", "FuzzyGeoReferencedPeriodicFrequentPatternMining1", "FuzzyPeriodicFrequentPatternMining1", "GeoReferencedFrequentPatternMining1", "GeoReferencedFrequentSequencePatternMining1", "GeoReferencedPartialPeriodicPatternMining1", "GeoReferencedPeriodicFrequentPatternMining1", "HighUtilityFrequentPatternMining1", "HighUtilityGeo-referencedFrequentPatternMining1", "HighUtilityPatternMining1", "HighUtilitySpatialPatternMining1", "LocalPeriodicPatternMining1", "MultiplePartialPeriodicPatternMining1", "PAMI", "PAMI.AssociationRules", "PAMI.AssociationRules.basic", "PAMI.correlatedPattern", "PAMI.correlatedPattern.basic", "PAMI.coveragePattern", "PAMI.coveragePattern.basic", "PAMI.extras", "PAMI.extras.DF2DB", "PAMI.extras.calculateMISValues", "PAMI.extras.dbStats", "PAMI.extras.fuzzyTransformation", "PAMI.extras.generateDatabase", "PAMI.extras.graph", "PAMI.extras.image2Database", "PAMI.extras.imageProcessing", "PAMI.extras.messaging", "PAMI.extras.neighbours", "PAMI.extras.sampleDatasets", "PAMI.extras.stats", "PAMI.extras.syntheticDataGenerator", "PAMI.extras.visualize", "PAMI.faultTolerantFrequentPattern", "PAMI.faultTolerantFrequentPattern.basic", "PAMI.frequentPattern", "PAMI.frequentPattern.basic", "PAMI.frequentPattern.closed", "PAMI.frequentPattern.cuda", "PAMI.frequentPattern.maximal", "PAMI.frequentPattern.pyspark", "PAMI.frequentPattern.topk", "PAMI.fuzzyCorrelatedPattern", "PAMI.fuzzyCorrelatedPattern.basic", "PAMI.fuzzyFrequentPattern", "PAMI.fuzzyFrequentPattern.basic", "PAMI.fuzzyGeoreferencedFrequentPattern", "PAMI.fuzzyGeoreferencedFrequentPattern.basic", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic", "PAMI.fuzzyPartialPeriodicPatterns", "PAMI.fuzzyPartialPeriodicPatterns.basic", "PAMI.fuzzyPeriodicFrequentPattern", "PAMI.fuzzyPeriodicFrequentPattern.basic", "PAMI.geoReferencedPeriodicFrequentPattern", "PAMI.geoReferencedPeriodicFrequentPattern.basic", "PAMI.georeferencedFrequentPattern", "PAMI.georeferencedFrequentPattern.basic", "PAMI.georeferencedFrequentSequencePattern", "PAMI.georeferencedPartialPeriodicPattern", "PAMI.georeferencedPartialPeriodicPattern.basic", "PAMI.highUtilityFrequentPattern", "PAMI.highUtilityFrequentPattern.basic", "PAMI.highUtilityGeoreferencedFrequentPattern", "PAMI.highUtilityGeoreferencedFrequentPattern.basic", "PAMI.highUtilityPattern", "PAMI.highUtilityPattern.basic", "PAMI.highUtilityPattern.parallel", "PAMI.highUtilityPatternsInStreams", "PAMI.highUtilitySpatialPattern", "PAMI.highUtilitySpatialPattern.basic", "PAMI.highUtilitySpatialPattern.topk", "PAMI.localPeriodicPattern", "PAMI.localPeriodicPattern.basic", "PAMI.multipleMinimumSupportBasedFrequentPattern", "PAMI.multipleMinimumSupportBasedFrequentPattern.basic", "PAMI.partialPeriodicFrequentPattern", "PAMI.partialPeriodicFrequentPattern.basic", "PAMI.partialPeriodicPattern", "PAMI.partialPeriodicPattern.basic", "PAMI.partialPeriodicPattern.closed", "PAMI.partialPeriodicPattern.maximal", "PAMI.partialPeriodicPattern.pyspark", "PAMI.partialPeriodicPattern.topk", "PAMI.partialPeriodicPatternInMultipleTimeSeries", "PAMI.periodicCorrelatedPattern", "PAMI.periodicCorrelatedPattern.basic", "PAMI.periodicFrequentPattern", "PAMI.periodicFrequentPattern.basic", "PAMI.periodicFrequentPattern.closed", "PAMI.periodicFrequentPattern.cuda", "PAMI.periodicFrequentPattern.maximal", "PAMI.periodicFrequentPattern.pyspark", "PAMI.periodicFrequentPattern.topk", "PAMI.periodicFrequentPattern.topk.TopkPFP", "PAMI.periodicFrequentPattern.topk.kPFPMiner", "PAMI.recurringPattern", "PAMI.recurringPattern.basic", "PAMI.relativeFrequentPattern", "PAMI.relativeFrequentPattern.basic", "PAMI.relativeHighUtilityPattern", "PAMI.relativeHighUtilityPattern.basic", "PAMI.sequence", "PAMI.sequentialPatternMining", "PAMI.sequentialPatternMining.basic", "PAMI.sequentialPatternMining.closed", "PAMI.stablePeriodicFrequentPattern", "PAMI.stablePeriodicFrequentPattern.basic", "PAMI.stablePeriodicFrequentPattern.topK", "PAMI.subgraphMining", "PAMI.subgraphMining.basic", "PAMI.subgraphMining.topK", "PAMI.uncertainFaultTolerantFrequentPattern", "PAMI.uncertainFrequentPattern", "PAMI.uncertainFrequentPattern.basic", "PAMI.uncertainGeoreferencedFrequentPattern", "PAMI.uncertainGeoreferencedFrequentPattern.basic", "PAMI.uncertainPeriodicFrequentPattern", "PAMI.uncertainPeriodicFrequentPattern.basic", "PAMI.weightedFrequentNeighbourhoodPattern", "PAMI.weightedFrequentNeighbourhoodPattern.basic", "PAMI.weightedFrequentPattern", "PAMI.weightedFrequentPattern.basic", "PAMI.weightedFrequentRegularPattern", "PAMI.weightedFrequentRegularPattern.basic", "PAMI.weightedUncertainFrequentPattern", "PAMI.weightedUncertainFrequentPattern.basic", "PartialPeriodicFrequentPatternMining1", "PartialPeriodicPatternMining1", "PeriodicCorrelatedPatternMining1", "PeriodicFrequentPatternMining1", "RecurringPatternMining1", "RelativeHighUtilityPatternMining1", "SequentialFrequentPatternMining1", "StablePeriodicPatternMining1", "UncertainFrequentPatternMining1", "UncertainGeoReferencedFrequentPatternMining1", "UncertainPeriodicFrequentPatternMining1", "WeightedFrequentNeighbourhoodPatternMining1", "WeightedFrequentPatternMining1", "WeightedFrequentRegularPatternMining1", "contiguousFrequentPatterns", "contiguousPatternMining", "correlatedPatternBasicCoMine", "correlatedPatternBasicCoMinePlus", "correlatedPatternMining", "coveragePatternBasicCMine", "coveragePatternBasicCPPG", "coveragePatternMining", "faultTolerantFrequentPatternBasicFTApriori", "faultTolerantFrequentPatternBasicFTFPGrowth", "faultTolerantPatternMining", "frequent1", "frequentPatternBasicApriori", "frequentPatternBasicECLAT", "frequentPatternBasicECLATDiffset", "frequentPatternBasicECLATbitset", "frequentPatternBasicFPGrowth", "frequentPatternCUDAcuApriori", "frequentPatternCUDAcuAprioriBit", "frequentPatternCUDAcuAprioriGCT", "frequentPatternCUDAcuAprioriTID", "frequentPatternCUDAcuECLAT", "frequentPatternCUDAcuECLATBit", "frequentPatternCUDAcuECLATGCT", "frequentPatternMaximalmaxFPGrowth", "frequentPatternMining", "frequentPatternPysparkParallelApriori", "frequentPatternPysparkParallelECLAT", "frequentPatternPysparkParallelFPGrowth", "frequentPatternTopkFAE", "frequentPatternWithMultipleMinimumSupport", "frequentPatternclosedCHARM", "fuzzyCorrelatedPatternMining", "fuzzyCorrelatedPatternbasicFCPGrowth", "fuzzyFrequentPatternMining", "fuzzyFrequentPatternbasicFFIMiner", "fuzzyGeoReferencedFrequentPatternMining", "fuzzyGeoReferencedPeriodicFrequentPatternMining", "fuzzyGeoreferencedFrequentPatternbasicFFSPMiner", "fuzzyGeoreferencedPeriodicFrequentPatternbasicFGPFPMiner", "fuzzyPatternMining", "fuzzyPeriodicFrequentPatternMining", "fuzzyPeriodicFrequentPatternbasicFPFPMiner", "geoReferencedFrequentPatternMining", "geoReferencedFrequentSequencePatternMining", "geoReferencedPartialPeriodicPatternMining", "geoReferencedPatternMining", "geoReferencedPeriodicFrequentPatternMining", "geoReferencedPeriodicFrequentPatternbasicGPFPMiner", "georeferencedFrequentPatternbasicFSPGrowth", "georeferencedFrequentPatternbasicSpatialECLAT", "georeferencedPartialPeriodicPatternbasicSTEclat", "highUtilityFrequentPatternBasicHUFIM", "highUtilityFrequentPatternMining", "highUtilityGeo-referencedFrequentPatternMining", "highUtilityGeoreferencedFrequentPatternBasicSHUFIM", "highUtilityPatternBasicEFIM", "highUtilityPatternBasicHMiner", "highUtilityPatternBasicUPGrowth", "highUtilityPatternMining", "highUtilitySpatialPatternBasicHDSHUIM", "highUtilitySpatialPatternBasicSHUIM", "highUtilitySpatialPatternMining", "highUtilitySpatialPatternTopkTKSHUIM", "index", "localPeriodicPatternMining", "localPeriodicPatternbasicLPPGrowth", "localPeriodicPatternbasicLPPMBreadth", "localPeriodicPatternbasicLPPMDepth", "modules", "multipleMinimumSupportBasedFrequentPatternBasicCFPGrowth", "multipleMinimumSupportBasedFrequentPatternBasicCFPGrowthPlus", "multiplePartialPeriodicPatternMining", "multipleTimeseriesPatternMining", "partialPeriodicFrequentPatternMining", "partialPeriodicFrequentPatternbasicGPFgrowth", "partialPeriodicFrequentPatternbasicPPF_DFS", "partialPeriodicPatternInMultipleTimeSeriesPPGrowth", "partialPeriodicPatternMining", "partialPeriodicPatternbasicGThreePGrowth", "partialPeriodicPatternbasicPPPGrowth", "partialPeriodicPatternbasicPPP_ECLAT", "partialPeriodicPatternclosedPPPClose", "partialPeriodicPatternmaximalMax3PGrowth", "partialPeriodicPatterntopkk3PMiner", "periodicCorrelatedPatternMining", "periodicCorrelatedPatternbasicEPCPGrowth", "periodicFrequentPatternMining", "periodicFrequentPatternbasicPFECLAT", "periodicFrequentPatternbasicPFPGrowth", "periodicFrequentPatternbasicPFPGrowthPlus", "periodicFrequentPatternbasicPFPMC", "periodicFrequentPatternbasicPSGrowth", "periodicFrequentPatternclosedCPFPMiner", "periodicFrequentPatternmaximalMaxPFGrowth", "periodicFrequentPatterntopkTopkPFPTopkPFP", "periodicFrequentPatterntopkkPFPMinerkPFPMiner", "recurringPatternMining", "recurringPatternbasicRPGrowth", "relativeFrequent", "relativeFrequentPattern", "relativeFrequentPatternBasicRSFPGrowth", "relativeHighUtilityPatternBasicRHUIM", "relativeHighUtilityPatternMining", "sequentialFrequentPatternMining", "sequentialPatternMining", "sequentialPatternMiningBasicSPADE", "sequentialPatternMiningBasicSPAM", "sequentialPatternMiningBasicprefixSpan", "sequentialPatternMiningClosedbide", "stablePeriodicFrequentPatternbasicSPPEclat", "stablePeriodicFrequentPatternbasicSPPGrowth", "stablePeriodicFrequentPatterntopKTSPIN", "stablePeriodicPatternMining", "temporalPatternMining", "transactionalPatternMining", "uncertainFrequentPatternBasicCUFPTree", "uncertainFrequentPatternBasicPUFGrowth", "uncertainFrequentPatternBasicTUFP", "uncertainFrequentPatternBasicTubeP", "uncertainFrequentPatternBasicTubeS", "uncertainFrequentPatternBasicUFGrowth", "uncertainFrequentPatternBasicUVECLAT", "uncertainFrequentPatternMining", "uncertainGeoReferencedFrequentPatternMining", "uncertainGeoreferencedFrequentPatternBasicGFPGrowth", "uncertainPatternMining", "uncertainPeriodicFrequentPatternBasicUPFPGrowth", "uncertainPeriodicFrequentPatternBasicUPFPGrowthPlus", "uncertainPeriodicFrequentPatternMining", "utilityPatternMining", "weightedFrequentNeighbourhoodPatternBasicSWFPGrowth", "weightedFrequentNeighbourhoodPatternMining", "weightedFrequentPatternBasicWFIM", "weightedFrequentPatternMining", "weightedFrequentRegularPatternBasicWFRIMiner", "weightedFrequentRegularPatternMining"], "filenames": ["ContiguousFrequentPatterns1.rst", "CorrelatedPatternMining1.rst", "CoveragePatternMining1.rst", "FaultTolerantPatternMining1.rst", "FrequentPatternWithMultipleMinimumSupport1.rst", "FuzzyCorrelatedPatternMining1.rst", "FuzzyFrequentPatternMining1.rst", "FuzzyGeoReferencedFrequentPatternMining1.rst", "FuzzyGeoReferencedPeriodicFrequentPatternMining1.rst", "FuzzyPeriodicFrequentPatternMining1.rst", "GeoReferencedFrequentPatternMining1.rst", "GeoReferencedFrequentSequencePatternMining1.rst", "GeoReferencedPartialPeriodicPatternMining1.rst", "GeoReferencedPeriodicFrequentPatternMining1.rst", "HighUtilityFrequentPatternMining1.rst", "HighUtilityGeo-referencedFrequentPatternMining1.rst", "HighUtilityPatternMining1.rst", "HighUtilitySpatialPatternMining1.rst", "LocalPeriodicPatternMining1.rst", "MultiplePartialPeriodicPatternMining1.rst", "PAMI.rst", "PAMI.AssociationRules.rst", "PAMI.AssociationRules.basic.rst", "PAMI.correlatedPattern.rst", "PAMI.correlatedPattern.basic.rst", "PAMI.coveragePattern.rst", "PAMI.coveragePattern.basic.rst", "PAMI.extras.rst", "PAMI.extras.DF2DB.rst", "PAMI.extras.calculateMISValues.rst", "PAMI.extras.dbStats.rst", "PAMI.extras.fuzzyTransformation.rst", "PAMI.extras.generateDatabase.rst", "PAMI.extras.graph.rst", "PAMI.extras.image2Database.rst", "PAMI.extras.imageProcessing.rst", "PAMI.extras.messaging.rst", "PAMI.extras.neighbours.rst", "PAMI.extras.sampleDatasets.rst", "PAMI.extras.stats.rst", "PAMI.extras.syntheticDataGenerator.rst", "PAMI.extras.visualize.rst", "PAMI.faultTolerantFrequentPattern.rst", "PAMI.faultTolerantFrequentPattern.basic.rst", "PAMI.frequentPattern.rst", "PAMI.frequentPattern.basic.rst", "PAMI.frequentPattern.closed.rst", "PAMI.frequentPattern.cuda.rst", "PAMI.frequentPattern.maximal.rst", "PAMI.frequentPattern.pyspark.rst", "PAMI.frequentPattern.topk.rst", "PAMI.fuzzyCorrelatedPattern.rst", "PAMI.fuzzyCorrelatedPattern.basic.rst", "PAMI.fuzzyFrequentPattern.rst", "PAMI.fuzzyFrequentPattern.basic.rst", "PAMI.fuzzyGeoreferencedFrequentPattern.rst", "PAMI.fuzzyGeoreferencedFrequentPattern.basic.rst", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.rst", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.rst", "PAMI.fuzzyPartialPeriodicPatterns.rst", "PAMI.fuzzyPartialPeriodicPatterns.basic.rst", "PAMI.fuzzyPeriodicFrequentPattern.rst", "PAMI.fuzzyPeriodicFrequentPattern.basic.rst", "PAMI.geoReferencedPeriodicFrequentPattern.rst", "PAMI.geoReferencedPeriodicFrequentPattern.basic.rst", "PAMI.georeferencedFrequentPattern.rst", "PAMI.georeferencedFrequentPattern.basic.rst", "PAMI.georeferencedFrequentSequencePattern.rst", "PAMI.georeferencedPartialPeriodicPattern.rst", "PAMI.georeferencedPartialPeriodicPattern.basic.rst", "PAMI.highUtilityFrequentPattern.rst", "PAMI.highUtilityFrequentPattern.basic.rst", "PAMI.highUtilityGeoreferencedFrequentPattern.rst", "PAMI.highUtilityGeoreferencedFrequentPattern.basic.rst", "PAMI.highUtilityPattern.rst", "PAMI.highUtilityPattern.basic.rst", "PAMI.highUtilityPattern.parallel.rst", "PAMI.highUtilityPatternsInStreams.rst", "PAMI.highUtilitySpatialPattern.rst", "PAMI.highUtilitySpatialPattern.basic.rst", "PAMI.highUtilitySpatialPattern.topk.rst", "PAMI.localPeriodicPattern.rst", "PAMI.localPeriodicPattern.basic.rst", "PAMI.multipleMinimumSupportBasedFrequentPattern.rst", "PAMI.multipleMinimumSupportBasedFrequentPattern.basic.rst", "PAMI.partialPeriodicFrequentPattern.rst", "PAMI.partialPeriodicFrequentPattern.basic.rst", "PAMI.partialPeriodicPattern.rst", "PAMI.partialPeriodicPattern.basic.rst", "PAMI.partialPeriodicPattern.closed.rst", "PAMI.partialPeriodicPattern.maximal.rst", "PAMI.partialPeriodicPattern.pyspark.rst", "PAMI.partialPeriodicPattern.topk.rst", "PAMI.partialPeriodicPatternInMultipleTimeSeries.rst", "PAMI.periodicCorrelatedPattern.rst", "PAMI.periodicCorrelatedPattern.basic.rst", "PAMI.periodicFrequentPattern.rst", "PAMI.periodicFrequentPattern.basic.rst", "PAMI.periodicFrequentPattern.closed.rst", "PAMI.periodicFrequentPattern.cuda.rst", "PAMI.periodicFrequentPattern.maximal.rst", "PAMI.periodicFrequentPattern.pyspark.rst", "PAMI.periodicFrequentPattern.topk.rst", "PAMI.periodicFrequentPattern.topk.TopkPFP.rst", "PAMI.periodicFrequentPattern.topk.kPFPMiner.rst", "PAMI.recurringPattern.rst", "PAMI.recurringPattern.basic.rst", "PAMI.relativeFrequentPattern.rst", "PAMI.relativeFrequentPattern.basic.rst", "PAMI.relativeHighUtilityPattern.rst", "PAMI.relativeHighUtilityPattern.basic.rst", "PAMI.sequence.rst", "PAMI.sequentialPatternMining.rst", "PAMI.sequentialPatternMining.basic.rst", "PAMI.sequentialPatternMining.closed.rst", "PAMI.stablePeriodicFrequentPattern.rst", "PAMI.stablePeriodicFrequentPattern.basic.rst", "PAMI.stablePeriodicFrequentPattern.topK.rst", "PAMI.subgraphMining.rst", "PAMI.subgraphMining.basic.rst", "PAMI.subgraphMining.topK.rst", "PAMI.uncertainFaultTolerantFrequentPattern.rst", "PAMI.uncertainFrequentPattern.rst", "PAMI.uncertainFrequentPattern.basic.rst", "PAMI.uncertainGeoreferencedFrequentPattern.rst", "PAMI.uncertainGeoreferencedFrequentPattern.basic.rst", "PAMI.uncertainPeriodicFrequentPattern.rst", "PAMI.uncertainPeriodicFrequentPattern.basic.rst", "PAMI.weightedFrequentNeighbourhoodPattern.rst", "PAMI.weightedFrequentNeighbourhoodPattern.basic.rst", "PAMI.weightedFrequentPattern.rst", "PAMI.weightedFrequentPattern.basic.rst", "PAMI.weightedFrequentRegularPattern.rst", "PAMI.weightedFrequentRegularPattern.basic.rst", "PAMI.weightedUncertainFrequentPattern.rst", "PAMI.weightedUncertainFrequentPattern.basic.rst", "PartialPeriodicFrequentPatternMining1.rst", "PartialPeriodicPatternMining1.rst", "PeriodicCorrelatedPatternMining1.rst", "PeriodicFrequentPatternMining1.rst", "RecurringPatternMining1.rst", "RelativeHighUtilityPatternMining1.rst", "SequentialFrequentPatternMining1.rst", "StablePeriodicPatternMining1.rst", "UncertainFrequentPatternMining1.rst", "UncertainGeoReferencedFrequentPatternMining1.rst", "UncertainPeriodicFrequentPatternMining1.rst", "WeightedFrequentNeighbourhoodPatternMining1.rst", "WeightedFrequentPatternMining1.rst", "WeightedFrequentRegularPatternMining1.rst", "contiguousFrequentPatterns.rst", "contiguousPatternMining.rst", "correlatedPatternBasicCoMine.rst", "correlatedPatternBasicCoMinePlus.rst", "correlatedPatternMining.rst", "coveragePatternBasicCMine.rst", "coveragePatternBasicCPPG.rst", "coveragePatternMining.rst", "faultTolerantFrequentPatternBasicFTApriori.rst", "faultTolerantFrequentPatternBasicFTFPGrowth.rst", "faultTolerantPatternMining.rst", "frequent1.rst", "frequentPatternBasicApriori.rst", "frequentPatternBasicECLAT.rst", "frequentPatternBasicECLATDiffset.rst", "frequentPatternBasicECLATbitset.rst", "frequentPatternBasicFPGrowth.rst", "frequentPatternCUDAcuApriori.rst", "frequentPatternCUDAcuAprioriBit.rst", "frequentPatternCUDAcuAprioriGCT.rst", "frequentPatternCUDAcuAprioriTID.rst", "frequentPatternCUDAcuECLAT.rst", "frequentPatternCUDAcuECLATBit.rst", "frequentPatternCUDAcuECLATGCT.rst", "frequentPatternMaximalmaxFPGrowth.rst", "frequentPatternMining.rst", "frequentPatternPysparkParallelApriori.rst", "frequentPatternPysparkParallelECLAT.rst", "frequentPatternPysparkParallelFPGrowth.rst", "frequentPatternTopkFAE.rst", "frequentPatternWithMultipleMinimumSupport.rst", "frequentPatternclosedCHARM.rst", "fuzzyCorrelatedPatternMining.rst", "fuzzyCorrelatedPatternbasicFCPGrowth.rst", "fuzzyFrequentPatternMining.rst", "fuzzyFrequentPatternbasicFFIMiner.rst", "fuzzyGeoReferencedFrequentPatternMining.rst", "fuzzyGeoReferencedPeriodicFrequentPatternMining.rst", "fuzzyGeoreferencedFrequentPatternbasicFFSPMiner.rst", "fuzzyGeoreferencedPeriodicFrequentPatternbasicFGPFPMiner.rst", "fuzzyPatternMining.rst", "fuzzyPeriodicFrequentPatternMining.rst", "fuzzyPeriodicFrequentPatternbasicFPFPMiner.rst", "geoReferencedFrequentPatternMining.rst", "geoReferencedFrequentSequencePatternMining.rst", "geoReferencedPartialPeriodicPatternMining.rst", "geoReferencedPatternMining.rst", "geoReferencedPeriodicFrequentPatternMining.rst", "geoReferencedPeriodicFrequentPatternbasicGPFPMiner.rst", "georeferencedFrequentPatternbasicFSPGrowth.rst", "georeferencedFrequentPatternbasicSpatialECLAT.rst", "georeferencedPartialPeriodicPatternbasicSTEclat.rst", "highUtilityFrequentPatternBasicHUFIM.rst", "highUtilityFrequentPatternMining.rst", "highUtilityGeo-referencedFrequentPatternMining.rst", "highUtilityGeoreferencedFrequentPatternBasicSHUFIM.rst", "highUtilityPatternBasicEFIM.rst", "highUtilityPatternBasicHMiner.rst", "highUtilityPatternBasicUPGrowth.rst", "highUtilityPatternMining.rst", "highUtilitySpatialPatternBasicHDSHUIM.rst", "highUtilitySpatialPatternBasicSHUIM.rst", "highUtilitySpatialPatternMining.rst", "highUtilitySpatialPatternTopkTKSHUIM.rst", "index.rst", "localPeriodicPatternMining.rst", "localPeriodicPatternbasicLPPGrowth.rst", "localPeriodicPatternbasicLPPMBreadth.rst", "localPeriodicPatternbasicLPPMDepth.rst", "modules.rst", "multipleMinimumSupportBasedFrequentPatternBasicCFPGrowth.rst", "multipleMinimumSupportBasedFrequentPatternBasicCFPGrowthPlus.rst", "multiplePartialPeriodicPatternMining.rst", "multipleTimeseriesPatternMining.rst", "partialPeriodicFrequentPatternMining.rst", "partialPeriodicFrequentPatternbasicGPFgrowth.rst", "partialPeriodicFrequentPatternbasicPPF_DFS.rst", "partialPeriodicPatternInMultipleTimeSeriesPPGrowth.rst", "partialPeriodicPatternMining.rst", "partialPeriodicPatternbasicGThreePGrowth.rst", "partialPeriodicPatternbasicPPPGrowth.rst", "partialPeriodicPatternbasicPPP_ECLAT.rst", "partialPeriodicPatternclosedPPPClose.rst", "partialPeriodicPatternmaximalMax3PGrowth.rst", "partialPeriodicPatterntopkk3PMiner.rst", "periodicCorrelatedPatternMining.rst", "periodicCorrelatedPatternbasicEPCPGrowth.rst", "periodicFrequentPatternMining.rst", "periodicFrequentPatternbasicPFECLAT.rst", "periodicFrequentPatternbasicPFPGrowth.rst", "periodicFrequentPatternbasicPFPGrowthPlus.rst", "periodicFrequentPatternbasicPFPMC.rst", "periodicFrequentPatternbasicPSGrowth.rst", "periodicFrequentPatternclosedCPFPMiner.rst", "periodicFrequentPatternmaximalMaxPFGrowth.rst", "periodicFrequentPatterntopkTopkPFPTopkPFP.rst", "periodicFrequentPatterntopkkPFPMinerkPFPMiner.rst", "recurringPatternMining.rst", "recurringPatternbasicRPGrowth.rst", "relativeFrequent.rst", "relativeFrequentPattern.rst", "relativeFrequentPatternBasicRSFPGrowth.rst", "relativeHighUtilityPatternBasicRHUIM.rst", "relativeHighUtilityPatternMining.rst", "sequentialFrequentPatternMining.rst", "sequentialPatternMining.rst", "sequentialPatternMiningBasicSPADE.rst", "sequentialPatternMiningBasicSPAM.rst", "sequentialPatternMiningBasicprefixSpan.rst", "sequentialPatternMiningClosedbide.rst", "stablePeriodicFrequentPatternbasicSPPEclat.rst", "stablePeriodicFrequentPatternbasicSPPGrowth.rst", "stablePeriodicFrequentPatterntopKTSPIN.rst", "stablePeriodicPatternMining.rst", "temporalPatternMining.rst", "transactionalPatternMining.rst", "uncertainFrequentPatternBasicCUFPTree.rst", "uncertainFrequentPatternBasicPUFGrowth.rst", "uncertainFrequentPatternBasicTUFP.rst", "uncertainFrequentPatternBasicTubeP.rst", "uncertainFrequentPatternBasicTubeS.rst", "uncertainFrequentPatternBasicUFGrowth.rst", "uncertainFrequentPatternBasicUVECLAT.rst", "uncertainFrequentPatternMining.rst", "uncertainGeoReferencedFrequentPatternMining.rst", "uncertainGeoreferencedFrequentPatternBasicGFPGrowth.rst", "uncertainPatternMining.rst", "uncertainPeriodicFrequentPatternBasicUPFPGrowth.rst", "uncertainPeriodicFrequentPatternBasicUPFPGrowthPlus.rst", "uncertainPeriodicFrequentPatternMining.rst", "utilityPatternMining.rst", "weightedFrequentNeighbourhoodPatternBasicSWFPGrowth.rst", "weightedFrequentNeighbourhoodPatternMining.rst", "weightedFrequentPatternBasicWFIM.rst", "weightedFrequentPatternMining.rst", "weightedFrequentRegularPatternBasicWFRIMiner.rst", "weightedFrequentRegularPatternMining.rst"], "titles": ["Contiguous Frequent Patterns", "Correlated Pattern Mining", "Coverage Pattern Mining", "Fault-Tolerant Frequent Pattern Mining", "Frequent pattern With Multiple Minimum Support", "Fuzzy Correlated Pattern Mining", "Fuzzy Frequent Pattern Mining", "Fuzzy Geo-referenced Frequent Pattern Mining", "Fuzzy Geo-referenced Periodic Frequent Pattern Mining", "Fuzzy Periodic Frequent Pattern Mining", "Geo-referenced Frequent Pattern Mining", "Geo-referenced Frequent Sequence Pattern mining", "Geo-referenced Partial Periodic Pattern Mining", "Geo-referenced Periodic Frequent Pattern Mining", "High-Utility Frequent Pattern Mining", "High-Utility Geo-referenced Frequent Pattern Mining", "High-Utility Pattern mining", "High-Utility Spatial Pattern Mining", "Local Periodic Pattern Mining", "Multiple Partial Periodic Pattern Mining", "PAMI package", "PAMI.AssociationRules package", "PAMI.AssociationRules.basic package", "PAMI.correlatedPattern package", "PAMI.correlatedPattern.basic package", "PAMI.coveragePattern package", "PAMI.coveragePattern.basic package", "PAMI.extras package", "PAMI.extras.DF2DB package", "PAMI.extras.calculateMISValues package", "PAMI.extras.dbStats package", "PAMI.extras.fuzzyTransformation package", "PAMI.extras.generateDatabase package", "PAMI.extras.graph package", "PAMI.extras.image2Database package", "PAMI.extras.imageProcessing package", "PAMI.extras.messaging package", "PAMI.extras.neighbours package", "PAMI.extras.sampleDatasets package", "PAMI.extras.stats package", "PAMI.extras.syntheticDataGenerator package", "PAMI.extras.visualize package", "PAMI.faultTolerantFrequentPattern package", "PAMI.faultTolerantFrequentPattern.basic package", "PAMI.frequentPattern package", "PAMI.frequentPattern.basic package", "PAMI.frequentPattern.closed package", "PAMI.frequentPattern.cuda package", "PAMI.frequentPattern.maximal package", "PAMI.frequentPattern.pyspark package", "PAMI.frequentPattern.topk package", "PAMI.fuzzyCorrelatedPattern package", "PAMI.fuzzyCorrelatedPattern.basic package", "PAMI.fuzzyFrequentPattern package", "PAMI.fuzzyFrequentPattern.basic package", "PAMI.fuzzyGeoreferencedFrequentPattern package", "PAMI.fuzzyGeoreferencedFrequentPattern.basic package", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern package", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic package", "PAMI.fuzzyPartialPeriodicPatterns package", "PAMI.fuzzyPartialPeriodicPatterns.basic package", "PAMI.fuzzyPeriodicFrequentPattern package", "PAMI.fuzzyPeriodicFrequentPattern.basic package", "PAMI.geoReferencedPeriodicFrequentPattern package", "PAMI.geoReferencedPeriodicFrequentPattern.basic package", "PAMI.georeferencedFrequentPattern package", "PAMI.georeferencedFrequentPattern.basic package", "PAMI.georeferencedFrequentSequencePattern package", "PAMI.georeferencedPartialPeriodicPattern package", "PAMI.georeferencedPartialPeriodicPattern.basic package", "PAMI.highUtilityFrequentPattern package", "PAMI.highUtilityFrequentPattern.basic package", "PAMI.highUtilityGeoreferencedFrequentPattern package", "PAMI.highUtilityGeoreferencedFrequentPattern.basic package", "PAMI.highUtilityPattern package", "PAMI.highUtilityPattern.basic package", "PAMI.highUtilityPattern.parallel package", "PAMI.highUtilityPatternsInStreams package", "PAMI.highUtilitySpatialPattern package", "PAMI.highUtilitySpatialPattern.basic package", "PAMI.highUtilitySpatialPattern.topk package", "PAMI.localPeriodicPattern package", "PAMI.localPeriodicPattern.basic package", "PAMI.multipleMinimumSupportBasedFrequentPattern package", "PAMI.multipleMinimumSupportBasedFrequentPattern.basic package", "PAMI.partialPeriodicFrequentPattern package", "PAMI.partialPeriodicFrequentPattern.basic package", "PAMI.partialPeriodicPattern package", "PAMI.partialPeriodicPattern.basic package", "PAMI.partialPeriodicPattern.closed package", "PAMI.partialPeriodicPattern.maximal package", "PAMI.partialPeriodicPattern.pyspark package", "PAMI.partialPeriodicPattern.topk package", "PAMI.partialPeriodicPatternInMultipleTimeSeries package", "PAMI.periodicCorrelatedPattern package", "PAMI.periodicCorrelatedPattern.basic package", "PAMI.periodicFrequentPattern package", "PAMI.periodicFrequentPattern.basic package", "PAMI.periodicFrequentPattern.closed package", "PAMI.periodicFrequentPattern.cuda package", "PAMI.periodicFrequentPattern.maximal package", "PAMI.periodicFrequentPattern.pyspark package", "PAMI.periodicFrequentPattern.topk package", "PAMI.periodicFrequentPattern.topk.TopkPFP package", "PAMI.periodicFrequentPattern.topk.kPFPMiner package", "PAMI.recurringPattern package", "PAMI.recurringPattern.basic package", "PAMI.relativeFrequentPattern package", "PAMI.relativeFrequentPattern.basic package", "PAMI.relativeHighUtilityPattern package", "PAMI.relativeHighUtilityPattern.basic package", "PAMI.sequence package", "PAMI.sequentialPatternMining package", "PAMI.sequentialPatternMining.basic package", "PAMI.sequentialPatternMining.closed package", "PAMI.stablePeriodicFrequentPattern package", "PAMI.stablePeriodicFrequentPattern.basic package", "PAMI.stablePeriodicFrequentPattern.topK package", "PAMI.subgraphMining package", "PAMI.subgraphMining.basic package", "PAMI.subgraphMining.topK package", "PAMI.uncertainFaultTolerantFrequentPattern package", "PAMI.uncertainFrequentPattern package", "PAMI.uncertainFrequentPattern.basic package", "PAMI.uncertainGeoreferencedFrequentPattern package", "PAMI.uncertainGeoreferencedFrequentPattern.basic package", "PAMI.uncertainPeriodicFrequentPattern package", "PAMI.uncertainPeriodicFrequentPattern.basic package", "PAMI.weightedFrequentNeighbourhoodPattern package", "PAMI.weightedFrequentNeighbourhoodPattern.basic package", "PAMI.weightedFrequentPattern package", "PAMI.weightedFrequentPattern.basic package", "PAMI.weightedFrequentRegularPattern package", "PAMI.weightedFrequentRegularPattern.basic package", "PAMI.weightedUncertainFrequentPattern package", "PAMI.weightedUncertainFrequentPattern.basic package", "Partial Periodic Frequent Pattern Mining", "Partial Periodic Pattern Mining", "Periodic correlated pattern mining", "Periodic Frequent Pattern Mining", "Recurring Pattern Mining", "Relative High-Utility Pattern Mining", "Sequential Frequent Pattern mining", "Stable Periodic Pattern Mining", "Uncertain Frequent Pattern mining", "Uncertain Geo-Referenced Frequent Pattern mining", "Uncertain Periodic Frequent Pattern mining", "Weighted Frequent Neighbourhood Pattern Mining", "Weighted Frequent Pattern Mining", "Weighted Frequent Regular Pattern Mining", "<no title>", "Contiguous Patterns", "CoMine", "CoMinePlus", "Basic", "CMine", "CPPG", "Basic", "FTApriori", "FTFPGrowth", "Basic", "Frequent Pattern mining", "Apriori", "ECLAT", "ECLATDiffset", "ECLATbitset", "FPGrowth", "cuApriori", "cuAprioriBit", "cudaAprioriGCT", "cudaAprioriTID", "cuEclat", "cuEclatBit", "cudaEclatGCT", "MaxFPGrowth", "Basic", "parallelApriori", "parallelECLAT", "parallelFPGrowth", "FAE", "Basic", "CHARM", "Basic", "FCPGrowth", "Basic", "FFIMiner", "Basic", "Basic", "FFSPMiner", "FGPFPMiner", "Fuzzy Pattern Mining", "Basic", "FPFPMiner", "Basic", "<no title>", "Basic", "Geo-referenced Pattern Mining", "Basic", "GPFPMiner", "FSPGrowth", "SpatialECLAT", "STEclat", "HUFIM", "Basic", "Basic", "SHUFIM", "EFIM", "HMiner", "UPGrowth", "Basic", "HDSHUIM", "SHUIM", "Basic", "TKSHUIM", "Welcome to PAMI\u2019s documentation!", "Basic", "LPPGrowth", "LPPMBreadth", "LPPMDepth", "PAMI", "CFPGrowth", "CFPGrowthPlus", "Basic", "Multiple Timeseries", "Basic", "GPFgrowth", "PPF_DFS", "PPGrowth", "Basic", "GThreePGrowth", "PPPGrowth", "PPP_ECLAT", "PPPClose", "Max3PGrowth", "k3PMiner", "Basic", "EPCPGrowth", "Basic", "PFECLAT", "PFPGrowth", "PFPGrowthPlus", "PFPMC", "PSGrowth", "CPFPMiner", "MaxPFGrowth", "TopkPFP", "kPFPMiner", "Basic", "RPGrowth", "Relative Frequent Pattern", "Basic", "RSFPGrowth", "RHUIM", "Basic", "Basic", "Sequential Database", "SPADE", "SPAM", "prefixSpan", "bide", "SPPEclat", "SPPGrowth", "TSPIN", "Basic", "Temporal Database", "Transactional Database", "CUFPTree", "PUFGrowth", "TUFP", "TubeP", "TubeS", "UFGrowth", "UVECLAT", "Basic", "Basic", "GFPGrowth", "Uncertain Database", "UPFPGrowth", "UPFPGrowthPlus", "Basic", "Utility Pattern mining", "SWFPGrowth", "Basic", "WFIM", "Basic", "WFRIMiner", "Basic"], "terms": {"ar": [1, 2, 6, 7, 8, 9, 11, 14, 15, 18, 46, 54, 56, 58, 62, 71, 73, 75, 79, 80, 82, 86, 88, 90, 91, 97, 100, 110, 113, 116, 119, 123, 125, 127, 135, 136, 138, 142, 147, 148, 149, 154, 157, 181, 184, 185, 186, 187, 188, 189, 190, 191, 192, 194, 196, 202, 203, 204, 205, 206, 211, 213, 215, 216, 217, 218, 223, 224, 225, 229, 230, 231, 233, 235, 238, 240, 241, 242, 244, 252, 254, 255, 257, 260, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 282, 284, 286], "specif": [1, 13, 119, 120, 136, 138, 139, 140, 143, 154, 197, 224, 235, 237, 247, 263], "type": [1, 5, 24, 26, 28, 29, 30, 32, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 154, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 182, 183, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "regular": [1, 13, 18, 19, 133, 136, 137, 139, 147, 154, 197, 214, 215, 222, 224, 228, 237, 264, 280, 282, 285, 286], "associ": [1, 5, 8, 10, 15, 45, 66, 75, 84, 139, 144, 145, 146, 154, 161, 162, 163, 165, 182, 187, 193, 200, 204, 208, 220, 237, 273, 274, 276, 279], "exist": [1, 19, 46, 80, 154, 181, 190, 213, 222, 264, 276, 280], "within": [1, 2, 12, 18, 24, 26, 52, 82, 86, 97, 98, 100, 101, 103, 108, 119, 136, 137, 138, 139, 140, 143, 152, 153, 154, 155, 156, 157, 161, 183, 190, 195, 215, 216, 217, 218, 223, 224, 225, 226, 228, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 247, 251, 263, 276, 280], "dataset": [1, 2, 3, 4, 10, 11, 12, 14, 15, 17, 18, 19, 30, 39, 43, 71, 73, 75, 79, 80, 84, 88, 90, 91, 92, 93, 95, 97, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 123, 125, 127, 129, 131, 133, 135, 137, 139, 140, 141, 142, 144, 145, 146, 147, 148, 149, 154, 157, 159, 160, 161, 180, 193, 194, 195, 202, 203, 204, 205, 206, 211, 212, 213, 215, 220, 221, 222, 227, 228, 229, 230, 233, 234, 236, 237, 239, 240, 242, 244, 245, 246, 247, 248, 251, 252, 253, 254, 258, 261, 262, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 279, 281, 282, 283, 284, 285, 286], "where": [1, 2, 4, 8, 9, 11, 12, 14, 15, 17, 19, 82, 88, 91, 97, 110, 113, 119, 120, 123, 125, 127, 129, 135, 136, 137, 139, 141, 142, 144, 145, 146, 147, 148, 149, 154, 157, 180, 187, 190, 191, 194, 195, 203, 204, 212, 216, 217, 218, 222, 224, 228, 229, 230, 237, 240, 249, 250, 252, 253, 254, 256, 257, 258, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 281, 282, 284, 286], "occurr": [1, 2, 5, 8, 9, 12, 136, 138, 143, 145, 154, 157, 182, 187, 190, 191, 195, 224, 235, 249, 250, 263, 274, 276], "certain": [1, 3, 18, 119, 154, 160, 215], "item": [1, 4, 6, 14, 15, 17, 24, 26, 27, 28, 29, 30, 31, 32, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 145, 146, 148, 149, 152, 153, 154, 155, 156, 158, 159, 161, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 180, 181, 183, 184, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 210, 211, 212, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 255, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 274, 275, 276, 277, 278, 279, 280, 281, 283, 284, 285, 286], "attribut": [1, 7, 8, 9, 10, 24, 26, 27, 28, 30, 31, 32, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 139, 144, 145, 146, 152, 153, 154, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 186, 187, 188, 189, 191, 192, 193, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 279, 281, 283, 285], "statist": [1, 88, 91, 154, 229, 230], "other": [1, 10, 12, 71, 82, 106, 110, 113, 116, 141, 147, 148, 154, 193, 195, 196, 202, 216, 217, 218, 223, 248, 249, 250, 252, 253, 256, 260, 264, 265, 282, 284], "These": [1, 2, 7, 8, 9, 13, 14, 15, 17, 119, 136, 137, 138, 141, 143, 148, 154, 157, 186, 187, 191, 197, 203, 204, 212, 224, 228, 235, 253, 263, 284], "repres": [1, 15, 19, 24, 28, 43, 45, 46, 48, 52, 54, 56, 58, 60, 62, 80, 82, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 116, 117, 119, 120, 123, 125, 127, 129, 131, 133, 135, 136, 139, 141, 148, 152, 153, 154, 159, 166, 174, 181, 183, 185, 188, 189, 190, 192, 196, 204, 213, 216, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 233, 236, 237, 238, 239, 240, 241, 242, 244, 248, 249, 250, 251, 253, 255, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 284, 285], "meaning": [1, 5, 16, 140, 154, 182, 209, 247], "relationship": [1, 5, 7, 8, 9, 10, 113, 138, 154, 182, 186, 187, 191, 193, 235, 257], "depend": [1, 32, 40, 71, 73, 75, 79, 80, 110, 154, 202, 205, 206, 211, 213, 223, 252], "between": [1, 5, 6, 7, 8, 9, 24, 30, 39, 45, 46, 56, 75, 76, 82, 97, 108, 119, 121, 123, 125, 127, 129, 131, 133, 135, 138, 143, 152, 153, 154, 162, 163, 164, 165, 166, 181, 182, 184, 186, 187, 188, 190, 191, 216, 217, 218, 235, 238, 239, 251, 263, 264, 266, 267, 268, 269, 270, 272, 275, 276, 277, 278, 281, 283, 285], "differ": [1, 4, 18, 113, 147, 148, 149, 154, 180, 215, 249, 250, 256, 282, 284, 286], "set": [1, 14, 24, 26, 28, 29, 31, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 154, 155, 156, 158, 159, 161, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 203, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "discoveri": [1, 3, 8, 15, 43, 45, 75, 97, 108, 113, 116, 123, 139, 141, 143, 144, 145, 146, 147, 148, 149, 154, 159, 160, 164, 166, 187, 204, 208, 237, 238, 240, 251, 253, 257, 261, 263, 267, 271, 273, 274, 276, 279, 282, 284, 286], "can": [1, 2, 24, 26, 27, 29, 31, 32, 37, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 140, 152, 153, 154, 155, 156, 157, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "provid": [1, 2, 119, 139, 140, 154, 157, 237, 247], "valuabl": [1, 154], "insight": [1, 2, 139, 140, 154, 157, 161, 237, 247], "underli": [1, 140, 154, 247], "structur": [1, 82, 86, 119, 123, 141, 147, 149, 154, 161, 216, 225, 253, 267, 271, 282, 286], "behavior": [1, 13, 18, 82, 136, 137, 138, 139, 140, 143, 154, 197, 215, 216, 217, 218, 224, 228, 235, 237, 247, 263], "data": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 19, 24, 27, 28, 29, 30, 31, 32, 33, 35, 39, 40, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 104, 106, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 138, 139, 140, 141, 142, 143, 144, 145, 146, 149, 152, 153, 154, 157, 158, 159, 160, 162, 163, 164, 165, 166, 174, 176, 177, 178, 180, 181, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 205, 207, 208, 210, 211, 213, 216, 217, 218, 222, 223, 227, 229, 230, 231, 232, 233, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 252, 253, 254, 256, 257, 258, 260, 261, 262, 263, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 279, 280, 281, 283, 285, 286], "applic": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 79, 116, 121, 123, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 154, 157, 160, 161, 180, 182, 184, 186, 187, 191, 193, 194, 195, 197, 203, 204, 209, 210, 212, 215, 222, 224, 228, 235, 237, 247, 249, 250, 253, 254, 260, 263, 266, 273, 274, 279, 280, 282, 284, 286], "fraud": [1, 14, 154, 203], "detect": [1, 14, 18, 24, 29, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 82, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 137, 140, 152, 153, 154, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 203, 205, 207, 210, 211, 215, 216, 217, 218, 227, 228, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 247, 248, 249, 250, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "suppli": [1, 154, 249, 250], "chain": [1, 154, 249, 250], "manag": [1, 12, 13, 17, 18, 136, 145, 154, 195, 197, 212, 215, 224, 274], "healthcar": [1, 2, 4, 5, 7, 14, 19, 137, 138, 139, 142, 144, 146, 148, 149, 154, 157, 180, 182, 186, 203, 222, 228, 235, 237, 254, 273, 279, 284, 286], "analysi": [1, 2, 3, 4, 5, 6, 8, 9, 14, 19, 50, 137, 138, 139, 141, 143, 148, 149, 154, 157, 160, 179, 180, 182, 184, 187, 191, 203, 222, 228, 235, 237, 249, 250, 253, 263, 284, 286], "retail": [1, 2, 4, 7, 138, 139, 141, 149, 154, 157, 180, 186, 235, 237, 253, 286], "market": [1, 4, 5, 7, 14, 19, 141, 142, 143, 148, 154, 180, 182, 186, 203, 222, 249, 250, 253, 254, 263, 284], "basic": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 28, 42, 44, 48, 51, 53, 55, 57, 59, 61, 63, 65, 68, 70, 72, 74, 78, 81, 83, 85, 87, 89, 91, 93, 94, 96, 98, 100, 101, 105, 107, 109, 112, 115, 117, 118, 121, 122, 124, 126, 128, 130, 132, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 155, 156, 158, 159, 161, 162, 163, 164, 165, 166, 174, 183, 185, 188, 189, 192, 196, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 236, 238, 239, 240, 241, 242, 243, 244, 248, 249, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "techniqu": [2, 3, 11, 12, 19, 24, 45, 46, 54, 56, 58, 62, 84, 113, 137, 142, 152, 153, 157, 160, 162, 181, 185, 188, 189, 192, 194, 195, 221, 222, 228, 254, 256, 257, 258], "focus": [2, 11, 12, 19, 119, 138, 139, 142, 143, 157, 194, 195, 222, 235, 237, 254, 263], "identifi": [2, 7, 12, 19, 119, 139, 142, 143, 157, 161, 186, 190, 195, 222, 237, 254, 255, 263, 265, 276, 280], "cover": [2, 12, 19, 157, 195, 222], "substanti": [2, 157], "portion": [2, 157], "irrespect": [2, 157], "frequenc": [2, 5, 24, 30, 39, 43, 45, 46, 48, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 136, 147, 149, 152, 153, 157, 158, 159, 165, 166, 174, 181, 182, 220, 221, 224, 226, 227, 229, 230, 231, 233, 236, 238, 239, 240, 241, 242, 244, 248, 249, 250, 251, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 282, 283, 285, 286], "unlik": [2, 3, 4, 6, 18, 136, 137, 138, 139, 143, 144, 146, 157, 160, 180, 184, 215, 224, 228, 235, 237, 263, 273, 279], "tradit": [2, 3, 4, 6, 18, 24, 52, 137, 138, 139, 143, 144, 146, 152, 153, 157, 160, 180, 183, 184, 215, 228, 235, 237, 263, 273, 279], "frequent": [2, 12, 17, 26, 28, 29, 31, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 143, 150, 151, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 180, 181, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 210, 211, 212, 213, 214, 216, 217, 218, 220, 221, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286], "which": [2, 3, 4, 6, 14, 18, 26, 27, 54, 56, 58, 62, 64, 66, 71, 75, 82, 86, 88, 97, 98, 100, 101, 103, 108, 110, 113, 116, 119, 120, 123, 136, 138, 139, 144, 146, 148, 155, 156, 157, 160, 180, 184, 185, 188, 189, 192, 198, 200, 202, 203, 206, 215, 216, 217, 218, 224, 225, 226, 231, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 251, 252, 256, 258, 260, 270, 273, 279, 284], "priorit": [2, 157], "high": [2, 48, 52, 54, 56, 62, 71, 73, 75, 76, 79, 80, 110, 148, 157, 174, 183, 190, 192, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 252, 253, 280, 284], "emphas": [2, 157], "have": [2, 18, 49, 75, 79, 80, 82, 86, 113, 116, 119, 144, 146, 148, 157, 178, 190, 206, 210, 211, 213, 215, 216, 217, 218, 225, 249, 250, 255, 256, 257, 258, 260, 261, 264, 273, 276, 279, 280, 284], "wide": [2, 157], "across": [2, 18, 157, 215], "consid": [2, 4, 5, 8, 18, 26, 40, 43, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 84, 97, 98, 100, 101, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 138, 139, 156, 157, 158, 159, 174, 176, 177, 178, 179, 180, 182, 183, 185, 187, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 215, 220, 221, 235, 237, 238, 239, 240, 241, 242, 243, 244, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 271, 275, 277, 278, 281, 283, 285], "signific": [2, 4, 17, 40, 147, 148, 149, 157, 180, 212, 282, 284, 286], "thei": [2, 119, 157], "overal": [2, 14, 157, 203], "characterist": [2, 4, 157, 180], "trend": [2, 13, 116, 139, 157, 197, 237, 261], "present": [2, 142, 157, 249, 250, 254], "understand": [2, 157], "broad": [2, 157], "inform": [2, 3, 6, 11, 24, 26, 43, 45, 46, 48, 82, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 103, 106, 108, 116, 117, 119, 120, 123, 125, 127, 129, 131, 133, 135, 152, 153, 156, 157, 159, 160, 166, 174, 181, 184, 194, 216, 217, 218, 220, 221, 226, 227, 229, 230, 231, 233, 236, 238, 239, 240, 241, 242, 244, 245, 248, 251, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "decis": [2, 16, 157, 209], "make": [2, 6, 16, 113, 137, 143, 157, 184, 209, 228, 256, 257, 258, 263], "process": [2, 4, 7, 9, 10, 24, 26, 31, 35, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 142, 143, 149, 152, 153, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 180, 181, 183, 185, 186, 188, 189, 191, 192, 193, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 254, 256, 257, 258, 260, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285, 286], "optim": [2, 4, 142, 143, 149, 157, 180, 254, 263, 286], "oper": [2, 43, 45, 75, 79, 84, 108, 119, 131, 157, 159, 166, 207, 210, 211, 220, 221, 251, 283], "improv": [2, 97, 157, 240], "effici": [2, 24, 26, 46, 54, 56, 58, 62, 66, 71, 75, 76, 97, 108, 113, 116, 121, 127, 135, 152, 153, 155, 157, 181, 185, 188, 189, 192, 200, 202, 206, 208, 238, 240, 242, 251, 256, 261, 278], "effect": [2, 43, 45, 49, 97, 113, 121, 131, 133, 157, 158, 159, 162, 166, 176, 177, 178, 190, 240, 256, 257, 258, 276, 280, 283, 285], "web": [2, 14, 138, 142, 157, 203, 235, 249, 250, 254], "usag": [2, 14, 24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 97, 100, 101, 106, 108, 110, 113, 116, 120, 121, 123, 125, 127, 129, 131, 133, 135, 138, 152, 153, 155, 156, 157, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 203, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 235, 238, 239, 241, 244, 248, 249, 250, 251, 252, 256, 257, 258, 260, 261, 266, 267, 268, 269, 270, 272, 275, 276, 277, 278, 280, 281, 283, 285], "manufactur": [2, 4, 6, 9, 143, 149, 157, 180, 184, 191, 249, 250, 263, 286], "social": [2, 157], "network": [2, 4, 9, 49, 137, 139, 148, 157, 176, 180, 191, 228, 237, 249, 250, 284], "approach": [3, 4, 5, 43, 45, 88, 91, 97, 113, 121, 123, 143, 159, 160, 166, 180, 182, 229, 230, 231, 238, 240, 241, 258, 263, 266], "aim": [3, 12, 16, 26, 73, 79, 80, 116, 138, 143, 155, 160, 195, 205, 209, 211, 213, 235, 260, 261, 263], "discov": [3, 7, 10, 11, 12, 14, 16, 24, 26, 43, 45, 46, 48, 49, 50, 52, 56, 60, 62, 66, 69, 73, 75, 76, 78, 79, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 138, 139, 140, 143, 152, 153, 155, 156, 158, 159, 160, 162, 163, 165, 166, 174, 176, 177, 178, 179, 181, 183, 186, 188, 192, 193, 194, 195, 200, 201, 203, 205, 209, 210, 211, 213, 220, 225, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 239, 240, 242, 243, 244, 245, 246, 247, 248, 252, 256, 257, 258, 260, 262, 263, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "larg": [3, 45, 56, 66, 79, 80, 90, 97, 98, 100, 104, 110, 160, 161, 162, 188, 200, 210, 213, 233, 240, 243, 244, 246, 252], "contain": [3, 10, 33, 71, 73, 75, 76, 79, 80, 110, 119, 144, 145, 146, 160, 193, 196, 202, 205, 206, 211, 213, 223, 252, 264, 265, 273, 274, 279, 280], "both": [3, 12, 80, 113, 138, 139, 160, 195, 213, 235, 237, 256], "uncertain": [3, 6, 40, 84, 121, 123, 125, 127, 135, 160, 184, 214, 220, 221, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 279], "record": [3, 24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 139, 152, 153, 155, 156, 158, 159, 160, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 220, 221, 227, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "reli": [3, 5, 160, 182], "exact": [3, 6, 160, 184], "match": [3, 6, 32, 40, 160, 184], "base": [3, 4, 7, 10, 15, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 145, 147, 148, 149, 152, 153, 155, 156, 158, 159, 160, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 180, 181, 183, 185, 186, 188, 189, 192, 193, 198, 200, 201, 202, 204, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 274, 275, 277, 278, 281, 282, 283, 284, 285, 286], "support": [3, 16, 24, 29, 45, 46, 49, 52, 54, 56, 58, 60, 62, 71, 73, 78, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 103, 106, 108, 113, 116, 117, 119, 120, 123, 125, 127, 129, 131, 133, 135, 139, 152, 153, 160, 162, 163, 164, 165, 166, 178, 180, 181, 183, 185, 188, 189, 192, 202, 205, 209, 214, 220, 221, 225, 226, 227, 229, 230, 231, 233, 236, 237, 238, 239, 240, 241, 242, 244, 245, 248, 251, 257, 258, 260, 261, 262, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 281, 283, 285], "confid": [3, 24, 152, 153, 160], "valu": [3, 14, 15, 24, 27, 28, 29, 30, 32, 33, 35, 37, 39, 40, 45, 46, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 86, 91, 93, 95, 97, 101, 106, 110, 113, 116, 117, 119, 123, 125, 127, 129, 135, 144, 152, 153, 160, 162, 163, 164, 165, 166, 178, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 223, 225, 227, 236, 239, 248, 252, 257, 261, 262, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 280, 281], "emploi": [3, 43, 45, 46, 49, 78, 80, 86, 92, 101, 113, 121, 131, 133, 158, 159, 160, 162, 166, 176, 177, 178, 181, 256, 257, 258, 283, 285], "approxim": [3, 160], "find": [3, 24, 27, 37, 45, 46, 52, 54, 56, 58, 60, 62, 71, 75, 76, 79, 80, 82, 84, 86, 101, 108, 113, 119, 120, 123, 125, 127, 129, 131, 135, 152, 153, 160, 161, 162, 181, 183, 185, 188, 189, 192, 202, 207, 210, 213, 216, 220, 221, 225, 251, 256, 257, 258, 266, 275, 277, 278, 281, 283], "therebi": [3, 160], "accommod": [3, 6, 160, 184], "error": [3, 121, 160], "miss": [3, 160], "chang": [3, 13, 113, 160, 197, 258], "thi": [3, 4, 5, 24, 26, 27, 28, 29, 30, 31, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 139, 152, 153, 155, 156, 158, 159, 160, 161, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 180, 181, 182, 183, 185, 188, 189, 192, 196, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "allow": [3, 4, 6, 12, 82, 160, 180, 184, 195, 216, 217, 218], "even": [3, 160], "presenc": [3, 138, 160, 235], "uncertainti": [3, 6, 7, 8, 9, 144, 145, 146, 160, 184, 186, 187, 191, 273, 274, 279], "geo": [3, 40, 64, 66, 69, 71, 73, 125, 160, 186, 187, 190, 193, 194, 195, 197, 198, 200, 201, 202, 205, 214, 255, 274, 275, 276, 280], "spatial": [3, 7, 8, 10, 11, 12, 13, 15, 52, 54, 56, 58, 60, 62, 66, 69, 73, 75, 79, 80, 129, 147, 160, 183, 185, 186, 187, 188, 189, 190, 192, 193, 194, 195, 196, 197, 200, 201, 204, 205, 208, 210, 211, 212, 213, 214, 276, 280, 281, 282], "remot": [3, 160], "sens": [3, 160], "imag": [3, 160], "weather": [3, 160], "forecast": [3, 5, 18, 139, 140, 146, 160, 182, 215, 237, 247, 279], "refer": [4, 7, 9, 24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 140, 145, 147, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 180, 181, 183, 185, 186, 188, 189, 191, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 274, 275, 277, 278, 281, 282, 283, 285], "occur": [4, 7, 11, 12, 13, 14, 15, 17, 19, 137, 139, 140, 142, 147, 148, 149, 161, 180, 186, 194, 195, 197, 203, 204, 212, 222, 228, 237, 247, 254, 264, 282, 284, 286], "meet": [4, 180], "threshold": [4, 27, 28, 29, 35, 75, 76, 79, 80, 84, 103, 110, 119, 123, 125, 127, 129, 131, 135, 180, 210, 211, 213, 220, 221, 245, 252, 266, 275, 277, 278, 281, 283], "mine": [4, 20, 24, 26, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 151, 152, 153, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 192, 193, 194, 195, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 281, 282, 283, 284, 285, 286], "us": [4, 14, 15, 24, 26, 27, 29, 30, 31, 32, 33, 35, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 180, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 255, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "singl": [4, 45, 71, 75, 80, 110, 119, 120, 165, 180, 202, 206, 213, 252], "uniform": [4, 180, 264], "all": [4, 24, 26, 28, 30, 35, 39, 49, 54, 56, 58, 60, 62, 71, 73, 75, 78, 79, 80, 82, 84, 86, 89, 90, 91, 92, 106, 108, 110, 116, 119, 127, 152, 153, 155, 176, 178, 180, 185, 188, 189, 190, 192, 202, 205, 206, 207, 210, 211, 213, 216, 220, 221, 225, 226, 232, 233, 248, 249, 250, 251, 252, 260, 261, 264, 265, 276, 278], "vari": [4, 18, 136, 143, 145, 180, 215, 224, 263, 274, 280], "level": [4, 33, 101, 180], "By": [4, 180], "more": [4, 18, 66, 113, 143, 180, 200, 215, 256, 257, 258, 263, 264], "nuanc": [4, 180], "each": [4, 12, 14, 17, 19, 30, 39, 49, 73, 75, 79, 80, 82, 86, 113, 119, 139, 141, 145, 146, 176, 177, 178, 180, 190, 195, 203, 205, 208, 210, 211, 212, 213, 216, 217, 218, 222, 225, 226, 237, 249, 250, 253, 255, 256, 257, 264, 265, 274, 276, 279, 280], "evalu": [4, 180], "individu": [4, 180, 190, 276, 280], "its": [4, 17, 29, 30, 39, 54, 56, 58, 62, 82, 86, 113, 119, 136, 147, 149, 180, 185, 188, 189, 192, 212, 216, 217, 218, 224, 225, 257, 265, 280, 282, 286], "import": [4, 14, 15, 17, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 180, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 210, 211, 212, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "context": [4, 14, 15, 17, 139, 180, 203, 204, 212, 237], "traffic": [4, 8, 9, 19, 136, 137, 139, 143, 148, 180, 187, 191, 222, 224, 228, 237, 263, 284], "involv": [5, 7, 8, 9, 10, 11, 14, 15, 17, 19, 79, 137, 139, 141, 142, 144, 145, 146, 147, 148, 149, 182, 186, 187, 191, 193, 194, 203, 204, 210, 212, 222, 228, 237, 253, 254, 273, 274, 279, 282, 284, 286], "explor": [5, 71, 110, 113, 119, 182, 202, 252, 257], "itemset": [5, 45, 46, 48, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 86, 88, 91, 101, 110, 123, 129, 131, 133, 135, 141, 149, 165, 174, 181, 182, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 226, 229, 230, 252, 253, 255, 270, 272, 281, 283, 285, 286], "exhibit": [5, 7, 8, 9, 12, 136, 137, 138, 139, 143, 147, 149, 182, 186, 187, 191, 195, 224, 228, 235, 237, 263, 282, 286], "linear": [5, 182], "assess": [5, 182], "through": [5, 119, 123, 182, 270], "instead": [5, 182], "sole": [5, 138, 182, 235], "co": [5, 182], "strength": [5, 182], "uncov": [5, 182], "basket": [5, 14, 91, 101, 141, 148, 182, 203, 249, 250, 253, 284], "analyt": [5, 14, 104, 148, 149, 182, 203, 246, 284, 286], "financi": [5, 6, 9, 137, 140, 141, 143, 146, 182, 184, 191, 228, 247, 253, 263, 279], "ffp": [6, 184], "captur": [6, 8, 136, 184, 187, 224], "inher": [6, 184], "partial": [6, 60, 69, 86, 88, 89, 90, 91, 92, 101, 184, 195, 196, 201, 214, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 264], "event": [6, 8, 9, 10, 11, 12, 13, 15, 17, 19, 82, 136, 139, 142, 145, 147, 184, 187, 191, 193, 194, 195, 197, 204, 212, 216, 217, 218, 222, 223, 224, 237, 254, 274, 282], "requir": [6, 40, 73, 75, 136, 184, 205, 208, 224], "variat": [6, 12, 137, 184, 195, 228], "degre": [6, 136, 137, 184, 224, 228], "membership": [6, 54, 184, 185], "similar": [6, 184, 196], "them": [6, 113, 119, 137, 143, 184, 228, 257, 263], "suitabl": [6, 143, 184, 263], "imprecis": [6, 8, 9, 184, 187, 191], "medic": [6, 16, 184, 209], "qualiti": [6, 184], "control": [6, 26, 82, 86, 97, 98, 100, 101, 103, 108, 155, 156, 184, 216, 217, 218, 225, 226, 238, 239, 240, 241, 242, 243, 244, 245, 251], "geograph": [7, 8, 10, 11, 13, 145, 186, 187, 193, 194, 197, 274], "mai": [7, 9, 12, 13, 18, 19, 120, 136, 137, 143, 145, 146, 186, 191, 195, 197, 215, 222, 224, 228, 263, 264, 274, 279], "object": [7, 27, 28, 29, 30, 32, 33, 35, 36, 37, 39, 40, 41, 49, 52, 80, 82, 86, 91, 97, 101, 116, 119, 120, 147, 178, 183, 186, 190, 213, 216, 225, 242, 261, 276, 280, 282], "epidemiolog": [7, 8, 186, 187], "environment": [7, 8, 10, 11, 12, 13, 15, 136, 144, 146, 147, 186, 187, 193, 194, 195, 197, 204, 224, 273, 279, 282], "monitor": [7, 8, 10, 11, 12, 13, 15, 19, 136, 137, 138, 139, 142, 146, 147, 186, 187, 193, 194, 195, 197, 204, 222, 224, 228, 235, 237, 254, 279, 282], "recur": [8, 9, 12, 13, 19, 106, 136, 137, 138, 139, 187, 191, 195, 197, 214, 222, 224, 228, 235, 237, 247, 248, 264], "tempor": [8, 9, 10, 11, 12, 13, 18, 28, 31, 32, 40, 62, 79, 86, 88, 89, 90, 91, 92, 95, 97, 98, 100, 103, 104, 116, 127, 136, 138, 139, 187, 190, 191, 192, 193, 194, 195, 196, 197, 210, 214, 215, 223, 224, 225, 229, 230, 232, 233, 234, 235, 236, 237, 238, 240, 242, 243, 244, 245, 246, 260, 261, 276, 277, 278, 280], "locat": [8, 10, 15, 145, 187, 193, 196, 204, 274], "repetit": [8, 136, 143, 187, 224, 263], "natur": [8, 9, 123, 138, 145, 187, 191, 235, 268, 269, 274, 280], "phenomena": [8, 11, 13, 139, 187, 194, 197, 237], "over": [8, 18, 80, 119, 136, 138, 139, 142, 143, 187, 196, 213, 215, 223, 224, 235, 237, 254, 263], "time": [8, 9, 11, 12, 13, 18, 24, 26, 28, 30, 32, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 142, 143, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 187, 188, 189, 191, 192, 194, 195, 196, 197, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 215, 216, 217, 218, 220, 221, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 251, 252, 254, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "space": [8, 12, 24, 26, 27, 29, 30, 31, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 187, 188, 189, 190, 192, 195, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 255, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "while": [8, 11, 43, 64, 66, 69, 75, 82, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 158, 159, 187, 194, 198, 200, 201, 208, 216, 217, 218, 227, 229, 230, 231, 232, 233, 236, 240, 241, 242, 243, 244, 248, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 281, 283, 285], "entiti": [8, 187], "flow": [8, 143, 187, 263], "studi": [8, 187], "character": [9, 14, 15, 18, 138, 191, 203, 204, 215, 235], "seri": [9, 11, 18, 28, 30, 93, 97, 106, 137, 140, 191, 194, 215, 223, 227, 228, 242, 247, 248], "product": [9, 191, 280], "among": [10, 193], "It": [10, 11, 19, 24, 27, 28, 30, 35, 39, 40, 43, 45, 46, 49, 66, 79, 82, 86, 89, 90, 92, 97, 98, 101, 103, 104, 106, 113, 119, 123, 131, 133, 135, 142, 152, 153, 159, 166, 178, 181, 193, 194, 196, 200, 210, 216, 222, 232, 233, 234, 238, 239, 240, 243, 245, 246, 248, 254, 258, 266, 267, 268, 269, 271, 272, 280, 283, 285], "analyz": [10, 11, 19, 142, 161, 193, 194, 222, 254], "coordin": [10, 193], "timestamp": [10, 32, 46, 82, 86, 88, 97, 101, 116, 127, 139, 181, 190, 193, 196, 216, 223, 225, 231, 237, 238, 241, 242, 260, 264, 276, 278, 280], "possibl": [10, 106, 193, 248], "relat": [10, 106, 119, 139, 147, 193, 237, 248, 282], "servic": [10, 15, 145, 193, 204, 274], "conserv": [10, 13, 193, 197], "tourism": [10, 193], "hospit": [10, 193], "sequenti": [11, 30, 39, 113, 120, 194, 214, 254, 256, 257, 258], "preserv": [11, 194], "order": [11, 54, 60, 73, 79, 80, 119, 142, 185, 194, 205, 211, 213, 223, 254, 255, 264], "instanc": [11, 119, 142, 194, 254], "transport": [11, 13, 147, 194, 197, 282], "urban": [11, 13, 15, 145, 147, 194, 197, 204, 274, 282], "plan": [11, 13, 15, 16, 145, 147, 194, 197, 204, 209, 274, 282], "alwai": [12, 195, 264], "entir": [12, 19, 195, 222, 280], "interest": [12, 78, 79, 80, 116, 195, 210, 260, 261], "In": [12, 24, 30, 39, 45, 75, 113, 116, 119, 121, 123, 127, 131, 135, 139, 145, 147, 149, 152, 153, 162, 195, 196, 208, 223, 237, 257, 261, 264, 270, 274, 277, 280, 282, 283, 286], "word": [12, 113, 195, 196, 223, 256, 258, 264], "agricultur": [12, 17, 195, 212], "crop": [12, 195], "public": [12, 54, 185, 195], "health": [12, 195], "surveil": [12, 195], "disast": [12, 17, 145, 195, 212, 274], "describ": [13, 197, 276], "consist": [13, 14, 17, 18, 143, 190, 197, 203, 212, 215, 263, 276, 280], "activ": [13, 120, 197], "area": [13, 197], "interv": [13, 18, 19, 28, 82, 136, 137, 138, 139, 140, 143, 197, 215, 216, 217, 218, 222, 224, 228, 235, 237, 247, 263], "reveal": [13, 197], "movement": [13, 197], "human": [13, 197], "logist": [13, 197], "infrastructur": [13, 197], "transact": [14, 24, 26, 27, 28, 29, 30, 31, 32, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 141, 142, 143, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 203, 205, 206, 207, 208, 210, 211, 213, 214, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "databas": [14, 16, 24, 26, 27, 28, 29, 30, 31, 32, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 136, 138, 139, 143, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 203, 205, 206, 207, 208, 209, 210, 211, 213, 214, 216, 220, 221, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 263, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 280, 281, 283, 285], "contribut": [14, 16, 17, 141, 203, 209, 212, 253], "significantli": [14, 17, 141, 203, 212, 253], "reflect": [14, 15, 17, 203, 204, 212], "domain": [14, 15, 17, 203, 204, 212], "georeferenc": [15, 204], "combin": [15, 45, 46, 66, 86, 88, 92, 103, 104, 108, 148, 165, 181, 196, 200, 204, 226, 231, 234, 245, 246, 251, 284], "distribut": [15, 17, 30, 39, 49, 101, 176, 204, 212], "lb": [15, 204], "develop": [15, 145, 204, 274], "The": [16, 24, 26, 27, 29, 30, 31, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 136, 139, 140, 148, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 205, 206, 207, 208, 209, 210, 211, 213, 216, 217, 218, 220, 221, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 251, 252, 255, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 284, 285], "hupm": [16, 20, 209, 219], "maxim": [16, 20, 44, 82, 87, 96, 137, 139, 161, 174, 209, 216, 217, 218, 233, 244], "from": [16, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 144, 145, 146, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 209, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 283, 285], "perspect": [16, 209], "diagnosi": [16, 209], "howev": [16, 24, 26, 27, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 209, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "pai": [16, 209], "less": [16, 37, 116, 190, 209, 260, 261], "attent": [16, 209], "interpret": [16, 209], "explain": [16, 209], "scenario": [16, 209], "clinic": [16, 209], "drug": [16, 161, 209], "prescript": [16, 209], "therapi": [16, 209], "diseas": [16, 209], "predict": [16, 27, 136, 140, 143, 209, 224, 247, 263], "identif": [17, 137, 212, 228], "ha": [17, 46, 86, 97, 106, 141, 181, 212, 226, 241, 248, 253], "predefin": [17, 18, 82, 141, 212, 215, 216, 217, 218, 253], "measur": [17, 82, 110, 113, 136, 141, 212, 216, 217, 218, 224, 252, 253, 256, 257, 258], "resourc": [17, 18, 212, 215], "precis": [17, 144, 212, 273], "emerg": [17, 145, 212, 274], "respons": [17, 91, 101, 119, 145, 212, 274], "top": [17, 27, 50, 79, 80, 92, 103, 104, 117, 123, 139, 161, 179, 210, 213, 234, 245, 246, 262, 268, 269], "k": [17, 24, 27, 50, 56, 69, 71, 79, 80, 92, 93, 97, 103, 104, 110, 117, 120, 123, 127, 129, 133, 139, 152, 153, 161, 179, 188, 201, 202, 210, 213, 227, 234, 242, 245, 246, 252, 262, 268, 269, 277, 281, 285], "lpp": [18, 215], "some": [18, 30, 39, 82, 106, 137, 215, 216, 217, 218, 228, 248, 264], "non": [18, 82, 106, 123, 125, 135, 190, 215, 216, 217, 218, 223, 248, 264, 266, 267, 268, 269, 270, 271, 275, 276, 280], "A": [18, 20, 26, 40, 43, 45, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 86, 91, 97, 101, 110, 113, 123, 127, 156, 159, 162, 166, 183, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 215, 216, 217, 218, 223, 225, 242, 252, 255, 256, 264, 265, 267, 271, 276, 277, 280], "said": [18, 82, 196, 215, 216, 217, 218], "appear": [18, 26, 82, 97, 98, 100, 101, 108, 110, 113, 155, 156, 161, 215, 216, 217, 218, 240, 241, 242, 243, 244, 251, 252, 256, 257, 258], "regularli": [18, 82, 215, 216, 217, 218], "continu": [18, 82, 215, 216, 217, 218], "s": [18, 26, 33, 56, 71, 73, 75, 76, 79, 82, 86, 88, 89, 90, 91, 92, 93, 97, 98, 100, 101, 103, 104, 108, 110, 113, 116, 117, 120, 156, 188, 202, 205, 206, 207, 208, 210, 211, 215, 216, 217, 218, 225, 226, 227, 229, 230, 231, 232, 233, 234, 240, 241, 242, 243, 244, 245, 246, 251, 252, 257, 261, 262], "demonstr": [18, 136, 140, 143, 215, 224, 247, 263], "one": [18, 24, 26, 27, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 215, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 281, 283, 285], "distinct": [18, 215, 264], "indic": [18, 119, 120, 215], "segment": [18, 215], "assum": [18, 215], "anomali": [18, 140, 215, 247], "sequenc": [19, 20, 30, 39, 71, 73, 82, 113, 137, 141, 142, 149, 161, 194, 202, 205, 214, 216, 217, 218, 219, 222, 223, 228, 253, 254, 255, 256, 257, 258, 286], "durat": [19, 82, 216, 217, 218, 222, 223], "cycl": [19, 222], "subset": [19, 148, 222, 284], "stock": [19, 222], "internet": [19, 222], "associationrul": [20, 219], "submodul": [20, 21, 23, 25, 42, 44, 51, 53, 55, 57, 59, 61, 63, 65, 68, 70, 72, 74, 81, 83, 85, 87, 94, 96, 102, 105, 107, 109, 112, 115, 118, 122, 124, 126, 128, 130, 132, 134, 219], "arwithconfid": [20, 21], "arwithleverag": [20, 21], "arwithlift": [20, 21], "rulemin": [20, 21], "abstract": [20, 21, 23, 25, 27, 42, 44, 51, 53, 55, 57, 59, 61, 63, 65, 68, 70, 72, 74, 81, 83, 85, 87, 94, 96, 102, 105, 107, 109, 112, 115, 118, 122, 124, 126, 128, 130, 132, 134, 219], "correlatedpattern": [20, 152, 153, 219], "comin": [20, 23, 153, 154], "comineplu": [20, 23, 154], "coveragepattern": [20, 155, 156, 219], "cmine": [20, 25, 157], "cppg": [20, 25, 157], "extra": [20, 219], "df2db": [20, 27], "df2dbplu": [20, 27], "denseformatdf": [20, 27], "sparseformatdf": [20, 27], "createtdb": [20, 27], "densedf2dbplu": [20, 27], "densedf2db_dump": [20, 27], "sparsedf2dbplu": [20, 27], "calculatemisvalu": [20, 27], "usingbeta": [20, 27], "usingsd": [20, 27], "dbstat": [20, 27, 39], "fuzzydatabas": [20, 27], "multipletimeseriesfuzzydatabasestat": [20, 27], "sequentialdatabas": [20, 27], "temporaldatabas": [20, 27, 32], "transactionaldatabas": [20, 27], "uncertaintemporaldatabas": [20, 27], "uncertaintransactionaldatabas": [20, 27], "utilitydatabas": [20, 27], "fuzzytransform": [20, 27], "temporaltofuzzi": [20, 27], "transactionaltofuzzi": [20, 27], "utilitytofuzzi": [20, 27], "generatedatabas": [20, 27], "generatespatiotemporaldatabas": [20, 27], "generatetemporaldatabas": [20, 27], "generatetransactionaldatabas": [20, 27], "graph": [20, 27, 30, 118], "df2fig": [20, 27], "df2tex": [20, 27], "plotlinegraphfromdictionari": [20, 27], "plotlinegraphsfromdatafram": [20, 27], "visualizefuzzypattern": [20, 27], "visualizepattern": [20, 27], "image2databas": [20, 27], "imageprocess": [20, 27], "imagery2databas": [20, 27], "messag": [20, 27], "discord": [20, 27], "gmail": [20, 27], "neighbour": [20, 27, 56, 58, 64, 66, 69, 73, 75, 79, 80, 188, 189, 198, 200, 201, 205, 208, 210, 211, 213], "findneighborsusingeuclideandistanceforpointinfo": [20, 27], "findneighboursusingeuclidean": [20, 27], "findneighboursusinggeodes": [20, 27], "sampledataset": [20, 27], "stat": [20, 27, 30, 49, 176], "graphdatabas": [20, 27, 41], "syntheticdatagener": [20, 27], "createsyntheticgeoreferentialtempor": [20, 27], "createsyntheticgeoreferentialtransact": [20, 27], "createsyntheticgeoreferentialuncertaintransact": [20, 27], "createsynthetictempor": [20, 27], "createsynthetictransact": [20, 27], "createsyntheticuncertaintempor": [20, 27], "createsyntheticuncertaintransact": [20, 27], "createsyntheticutil": [20, 27], "generatetempor": [20, 27], "generatetransact": [20, 27], "generateuncertaintempor": [20, 27], "generateuncertaintransact": [20, 27], "generateutilitytempor": [20, 27], "generateutilitytransact": [20, 27], "georeferencedtemporaldatabas": [20, 27], "georeferencedtransactionaldatabas": [20, 27], "syntheticutilitydatabas": [20, 27], "temporaldatabasegen": [20, 27], "visual": [20, 27, 33], "convertmultitsintofuzzi": [20, 219], "generatelatexgraphfil": [20, 219], "plotpointonmap": [20, 219], "plotpointonmap_dump": [20, 219], "scatterplotspatialpoint": [20, 219], "topkpattern": [20, 219], "uncertaindb_convert": [20, 219], "faulttolerantfrequentpattern": [20, 121, 158, 159, 219], "ftapriori": [20, 42, 160], "ftfpgrowth": [20, 42, 160], "frequentpattern": [20, 28, 79, 84, 86, 108, 110, 113, 123, 129, 131, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 211, 219, 220, 221, 226, 251, 252, 256, 257, 258, 266, 267, 268, 269, 270, 271, 272, 281, 283], "apriori": [20, 43, 44, 49, 66, 121, 158, 175, 176, 177, 200], "eclat": [20, 44, 66, 175, 200, 264], "eclatdiffset": [20, 44, 175], "eclatbitset": [20, 44, 175], "fpgrowth": [20, 28, 43, 44, 49, 159, 175, 178], "close": [20, 44, 75, 79, 86, 87, 96, 97, 112, 137, 139, 142, 161, 181, 190, 207, 210, 226, 232, 238, 241, 243], "charm": [20, 44, 175], "cuda": [20, 44, 96, 137, 161], "cuapriori": [20, 44, 175], "cuaprioribit": [20, 44, 175], "cueclat": [20, 44, 175], "cueclatbit": [20, 44, 175], "cudaapriorigct": [20, 44, 175], "cudaaprioritid": [20, 44, 175], "cudaeclatgct": [20, 44, 175], "maxfpgrowth": [20, 44, 175], "pyspark": [20, 44, 87, 96, 161, 176, 177, 178], "parallelapriori": [20, 44, 175], "paralleleclat": [20, 44, 175], "parallelfpgrowth": [20, 44, 175], "topk": [20, 33, 44, 78, 87, 96, 115, 116, 118, 137, 143, 179, 213, 234, 245, 246, 261, 262], "fae": [20, 44, 175], "fuzzycorrelatedpattern": [20, 183, 219], "fcpgrowth": [20, 51, 182], "fuzzyfrequentpattern": [20, 185, 219], "ffimin": [20, 53, 184], "ffiminer_old": [20, 53], "fuzzygeoreferencedfrequentpattern": [20, 188, 219], "ffspminer": [20, 55, 58, 186, 189], "ffspminer_old": [20, 55], "fuzzygeoreferencedperiodicfrequentpattern": [20, 189, 219], "fgpfpminer": [20, 57, 187], "fgpfpminer_old": [20, 57], "fuzzypartialperiodicpattern": [20, 219], "f3pminer": [20, 59], "fuzzyperiodicfrequentpattern": [20, 192, 219], "fpfpminer": [20, 61, 191], "fpfpminer_old": [20, 61], "georeferencedperiodicfrequentpattern": [20, 198, 219], "gpfpminer": [20, 63, 197], "georeferencedfrequentpattern": [20, 200, 219], "fspgrowth": [20, 65, 193], "spatialeclat": [20, 65, 193], "georeferencedfrequentsequencepattern": [20, 219], "georeferencedpartialperiodicpattern": [20, 201, 219], "steclat": [20, 68, 195], "highutilityfrequentpattern": [20, 202, 219], "hufim": [20, 70, 203], "highutilitygeoreferencedfrequentpattern": [20, 79, 205, 210, 219], "shufim": [20, 72, 204], "highutilitypattern": [20, 206, 207, 208, 219], "efim": [20, 74, 76, 253], "hminer": [20, 74, 253], "upgrowth": [20, 74, 253], "efimparallel": [20, 74], "parallel": [20, 49, 74, 101, 106, 176, 177, 178, 248], "highutilitypatternsinstream": [20, 219], "shugrowth": [20, 219], "highutilityspatialpattern": [20, 210, 211, 213, 219], "hdshuim": [20, 78, 212], "shuim": [20, 78, 210, 212], "tkshuim": [20, 78, 212], "localperiodicpattern": [20, 216, 217, 218, 219], "lppgrowth": [20, 81, 215], "lppmbreadth": [20, 81, 215], "lppmdepth": [20, 81, 215], "multipleminimumsupportbasedfrequentpattern": [20, 219, 220, 221], "cfpgrowth": [20, 83, 180], "cfpgrowthplu": [20, 83, 180], "partialperiodicfrequentpattern": [20, 219, 225, 226], "gpfgrowth": [20, 85, 224], "ppf_df": [20, 85, 224], "partialperiodicpattern": [20, 86, 219, 225, 226, 229, 230, 231, 232, 233, 234], "gthreepgrowth": [20, 87, 228], "gabstract": [20, 87], "pppgrowth": [20, 87, 228, 229], "ppp_eclat": [20, 87, 228], "pppclose": [20, 87, 228], "max3pgrowth": [20, 87, 228], "parallel3pgrowth": [20, 87], "k3pminer": [20, 87, 228], "partialperiodicpatterninmultipletimeseri": [20, 219, 227], "ppgrowth": [20, 219, 222], "periodiccorrelatedpattern": [20, 219, 236], "epcpgrowth": [20, 94, 235], "periodicfrequentpattern": [20, 62, 88, 89, 90, 93, 106, 127, 192, 219, 227, 229, 230, 231, 232, 233, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 277, 278], "pfeclat": [20, 96, 237], "pfpgrowth": [20, 95, 96, 236, 237, 240], "pfpgrowthplu": [20, 96, 237], "pfpmc": [20, 96, 237], "psgrowth": [20, 96, 237], "parallelpfpgrowth": [20, 96], "cpfpminer": [20, 96, 237], "cugpfmin": [20, 96], "gpfminerbit": [20, 96], "maxpfgrowth": [20, 96, 237], "recurringpattern": [20, 219, 248], "rpgrowth": [20, 105, 247], "relativefrequentpattern": [20, 219, 251], "rsfpgrowth": [20, 107, 250], "relativehighutilitypattern": [20, 219, 252], "rhuim": [20, 109, 209], "sequentialpatternmin": [20, 219, 256, 257, 258], "spade": [20, 112, 254], "spam": [20, 112, 254], "prefixspan": [20, 112, 254], "bide": [20, 112, 254], "stableperiodicfrequentpattern": [20, 219, 260, 261, 262], "sppeclat": [20, 115, 263], "sppgrowth": [20, 115, 263], "sppgrowthdump": [20, 115], "tspin": [20, 115, 263], "subgraphmin": [20, 219], "dfscode": [20, 118], "edg": [20, 118], "extendededg": [20, 118], "frequentsubgraph": [20, 118], "gspan": [20, 118, 120], "sparsetriangularmatrix": [20, 118], "vertex": [20, 118], "dfsthread": [20, 118], "tkg": [20, 118], "uncertainfaulttolerantfrequentpattern": [20, 219], "vbftmine": [20, 219], "uncertainfrequentpattern": [20, 219, 266, 267, 268, 269, 270, 271, 272], "cufptre": [20, 122, 273], "pufgrowth": [20, 122, 271, 273], "tufp": [20, 122, 269, 273], "tubep": [20, 122, 273], "tube": [20, 122, 273], "ufgrowth": [20, 122, 273], "uveclat": [20, 122, 273], "uncertaingeoreferencedfrequentpattern": [20, 219, 275], "gfpgrowth": [20, 124, 274], "uncertainperiodicfrequentpattern": [20, 219, 277, 278], "upfpgrowth": [20, 126, 279], "upfpgrowthplu": [20, 126, 279], "weightedfrequentneighbourhoodpattern": [20, 219, 281], "swfpgrowth": [20, 128, 282], "weightedfrequentpattern": [20, 219, 283], "wfim": [20, 130, 284], "weightedfrequentregularpattern": [20, 219, 285], "wfrimin": [20, 132, 286], "weighteduncertainfrequentpattern": [20, 219], "wufim": [20, 134], "pattern": [20, 24, 26, 27, 28, 29, 31, 33, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 197, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 281, 282, 283, 284, 285, 286], "python": [20, 24, 26, 45, 46, 50, 56, 58, 86, 88, 92, 97, 98, 101, 103, 116, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 162, 163, 164, 165, 166, 179, 181, 188, 189, 225, 226, 231, 234, 238, 239, 243, 245, 260, 266, 267, 268, 269, 270, 275, 277, 278, 281, 283, 285], "librari": 20, "class": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "ifil": [24, 26, 27, 29, 30, 31, 33, 37, 39, 41, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "union": [24, 28, 30, 39, 43, 62, 71, 82, 88, 100, 101, 108, 129, 152, 153, 159, 192, 202, 217, 218, 229, 244, 251, 281], "str": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "datafram": [24, 26, 27, 28, 29, 30, 32, 33, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "minsup": [24, 26, 33, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 71, 73, 75, 79, 84, 86, 93, 95, 97, 98, 100, 101, 103, 108, 110, 113, 116, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 139, 152, 153, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 181, 183, 185, 188, 189, 192, 198, 200, 202, 205, 207, 210, 211, 220, 221, 225, 226, 227, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 251, 252, 256, 257, 258, 260, 261, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "int": [24, 26, 27, 28, 29, 30, 32, 33, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "float": [24, 26, 27, 28, 30, 32, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "minallconf": [24, 52, 95, 152, 153, 183, 236], "sep": [24, 26, 27, 29, 30, 31, 32, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 255, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "t": [24, 26, 27, 30, 31, 32, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "sourc": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "_correlatedpattern": [24, 152, 153], "descript": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 280, 281, 283, 285], "fundament": [24, 43, 45, 48, 49, 69, 84, 88, 91, 93, 97, 100, 101, 106, 113, 121, 123, 131, 133, 152, 153, 158, 159, 162, 163, 165, 166, 174, 178, 201, 220, 227, 229, 230, 231, 238, 239, 240, 241, 242, 244, 248, 256, 257, 258, 266, 267, 268, 269, 271, 272, 283, 285], "algorithm": [24, 26, 33, 43, 45, 46, 48, 49, 50, 52, 54, 60, 64, 66, 69, 71, 75, 76, 78, 79, 80, 82, 84, 86, 89, 90, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 198, 200, 201, 202, 206, 207, 208, 210, 211, 216, 217, 218, 220, 221, 225, 226, 227, 232, 233, 234, 236, 239, 240, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 278, 281, 283, 285], "correl": [24, 52, 95, 152, 153, 154, 182, 183, 190, 214, 235, 236, 264, 265], "fp": [24, 28, 43, 45, 49, 131, 152, 153, 159, 166, 178, 283], "growth": [24, 48, 49, 75, 82, 86, 90, 97, 100, 113, 127, 152, 153, 174, 178, 208, 216, 225, 233, 242, 244, 258, 278], "depth": [24, 46, 82, 89, 98, 113, 119, 152, 153, 181, 216, 217, 218, 232, 243, 256, 258], "first": [24, 45, 46, 49, 75, 80, 82, 86, 89, 98, 110, 113, 119, 152, 153, 162, 178, 181, 206, 213, 216, 217, 218, 223, 225, 232, 243, 252, 256, 257, 258, 264, 276], "search": [24, 43, 45, 46, 49, 54, 56, 58, 62, 75, 76, 82, 84, 89, 98, 113, 119, 121, 131, 133, 152, 153, 158, 159, 162, 166, 176, 177, 178, 181, 185, 188, 189, 192, 214, 216, 217, 218, 221, 232, 243, 256, 257, 258, 283, 285], "lee": [24, 97, 127, 152, 153, 239, 277], "y": [24, 32, 33, 43, 45, 71, 97, 104, 116, 117, 119, 120, 152, 153, 159, 166, 202, 238, 246, 261, 262], "kim": [24, 152, 153], "w": [24, 79, 116, 127, 152, 153, 211, 260, 277], "cao": [24, 152, 153], "d": [24, 152, 153, 255, 264, 265], "han": [24, 43, 45, 84, 113, 152, 153, 158, 159, 166, 220, 258], "j": [24, 43, 45, 46, 48, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 91, 97, 110, 113, 116, 119, 120, 123, 127, 131, 152, 153, 159, 166, 174, 181, 202, 205, 206, 211, 213, 216, 217, 218, 220, 225, 231, 232, 240, 252, 256, 257, 258, 260, 266, 277, 283], "2003": [24, 45, 152, 153, 164], "icdm": [24, 123, 152, 153, 270], "pp": [24, 45, 49, 56, 62, 69, 79, 80, 93, 97, 110, 116, 129, 131, 133, 152, 153, 162, 176, 188, 192, 201, 210, 213, 227, 242, 252, 260, 281, 283, 285], "581": [24, 152, 153], "584": [24, 152, 153], "paramet": [24, 26, 27, 28, 29, 31, 32, 33, 35, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 272, 275, 277, 278, 281, 283, 285], "name": [24, 26, 27, 28, 29, 30, 31, 32, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 281, 283, 285], "input": [24, 26, 27, 29, 30, 31, 32, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "file": [24, 26, 27, 28, 29, 30, 31, 32, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "complet": [24, 26, 28, 29, 30, 31, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 136, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 281, 283, 285], "ofil": [24, 26, 27, 28, 29, 30, 31, 32, 35, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "output": [24, 26, 27, 28, 29, 30, 31, 32, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "store": [24, 26, 27, 29, 30, 31, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "user": [24, 26, 27, 28, 29, 31, 37, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 139, 142, 143, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 254, 256, 257, 258, 260, 261, 262, 263, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "specifi": [24, 29, 32, 33, 37, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "either": [24, 29, 40, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 207, 210, 211, 225, 226, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 248, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 280, 281, 283, 285], "count": [24, 29, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 110, 113, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 207, 210, 211, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "proport": [24, 29, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 136, 152, 153, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 207, 210, 211, 224, 225, 226, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 248, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "size": [24, 29, 30, 32, 33, 39, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 207, 210, 211, 225, 226, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 248, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "If": [24, 29, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 207, 210, 211, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 248, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 281, 283, 285], "program": [24, 26, 29, 30, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "integ": [24, 29, 30, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 207, 210, 211, 216, 223, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 248, 252, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "treat": [24, 29, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 207, 210, 211, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 248, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "express": [24, 29, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 207, 210, 211, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 248, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "rang": [24, 30, 39, 40, 52, 84, 123, 125, 127, 129, 131, 135, 152, 153, 183, 220, 221, 266, 275, 276, 277, 278, 281, 283], "0": [24, 26, 27, 30, 32, 33, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 64, 66, 69, 75, 76, 80, 82, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 188, 190, 196, 198, 200, 201, 206, 213, 216, 217, 218, 225, 226, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "1": [24, 30, 39, 43, 45, 46, 52, 56, 62, 75, 76, 79, 82, 84, 86, 88, 91, 97, 108, 113, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 162, 163, 164, 165, 166, 181, 183, 188, 190, 192, 196, 211, 216, 217, 218, 220, 223, 225, 226, 229, 230, 238, 239, 242, 251, 255, 256, 257, 258, 264, 265, 266, 267, 268, 269, 270, 272, 275, 276, 277, 278, 280, 281, 283, 285], "variabl": [24, 26, 27, 29, 30, 31, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 137, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "distinguish": [24, 26, 27, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "anoth": [24, 26, 27, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "default": [24, 26, 27, 29, 30, 31, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "seper": [24, 26, 27, 29, 31, 32, 37, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 255, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "tab": [24, 26, 27, 29, 30, 31, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 255, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "overrid": [24, 26, 27, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "separ": [24, 26, 27, 29, 30, 31, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "memoryuss": [24, 26, 43, 45, 46, 48, 49, 50, 64, 66, 69, 75, 76, 78, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 198, 200, 201, 213, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "To": [24, 26, 28, 29, 30, 32, 33, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "total": [24, 26, 28, 30, 32, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "amount": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "uss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "memori": [24, 26, 28, 33, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "consum": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "memoryrss": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "rss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "starttim": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "start": [24, 26, 33, 43, 45, 46, 48, 49, 50, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "endtim": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "given": [24, 27, 28, 29, 32, 33, 40, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 86, 90, 108, 110, 119, 152, 153, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 233, 249, 250, 251, 252], "minimum": [24, 26, 27, 29, 30, 32, 39, 43, 50, 54, 56, 58, 60, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 97, 98, 100, 101, 106, 108, 110, 113, 116, 119, 121, 123, 125, 127, 129, 131, 135, 139, 152, 153, 155, 156, 158, 179, 180, 185, 188, 189, 205, 208, 210, 211, 213, 214, 216, 217, 218, 220, 221, 225, 229, 230, 231, 232, 233, 234, 237, 240, 241, 242, 243, 244, 248, 251, 252, 256, 257, 258, 260, 261, 265, 266, 275, 277, 278, 281, 283], "ratio": [24, 52, 86, 136, 152, 153, 183, 224, 226], "should": [24, 52, 119, 152, 153, 183], "list": [24, 26, 27, 28, 30, 32, 35, 39, 40, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 90, 91, 92, 93, 95, 97, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 178, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 220, 221, 225, 227, 229, 230, 231, 233, 234, 236, 238, 239, 240, 241, 242, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "mapsupport": [24, 43, 45, 46, 48, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 152, 153, 159, 166, 174, 181, 220, 221, 226, 227, 229, 230, 231, 233, 236, 238, 239, 240, 241, 242, 244, 248, 251, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "dictionari": [24, 26, 27, 30, 31, 39, 43, 45, 46, 48, 49, 50, 54, 64, 66, 69, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 185, 198, 200, 201, 205, 211, 213, 216, 220, 221, 225, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "maintain": [24, 43, 45, 46, 48, 49, 82, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 152, 153, 159, 166, 174, 178, 181, 216, 220, 221, 225, 226, 227, 229, 230, 231, 233, 236, 238, 239, 240, 241, 242, 244, 248, 251, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "lno": [24, 43, 48, 49, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 104, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 152, 153, 159, 174, 176, 177, 178, 220, 221, 226, 227, 229, 230, 231, 233, 236, 238, 239, 240, 241, 242, 244, 246, 248, 251, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 278, 281, 283, 285], "tree": [24, 43, 45, 46, 48, 49, 71, 73, 75, 79, 80, 82, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 110, 116, 117, 123, 125, 127, 129, 131, 133, 135, 152, 153, 159, 166, 174, 178, 181, 202, 205, 206, 208, 211, 213, 216, 220, 221, 225, 227, 229, 230, 231, 233, 236, 238, 239, 240, 241, 242, 244, 248, 251, 252, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "itemsetcount": [24, 46, 48, 90, 93, 95, 97, 100, 101, 106, 108, 116, 117, 123, 125, 127, 135, 152, 153, 174, 181, 227, 233, 236, 238, 239, 240, 241, 242, 244, 248, 251, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 278], "finalpattern": [24, 26, 31, 43, 45, 46, 48, 49, 50, 64, 66, 69, 78, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 198, 200, 201, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "dict": [24, 26, 27, 30, 31, 33, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "itemsetbuff": [24, 54, 56, 58, 60, 62, 108, 152, 153, 185, 188, 189, 251], "maxpatternlength": [24, 108, 152, 153, 251], "constraint": [24, 73, 79, 101, 108, 110, 113, 116, 139, 143, 152, 153, 205, 211, 237, 251, 252, 256, 257, 258, 260, 261, 263], "length": [24, 27, 30, 32, 39, 40, 43, 75, 79, 82, 108, 113, 121, 123, 125, 127, 135, 152, 153, 158, 207, 210, 216, 217, 218, 251, 256, 257, 258, 266, 267, 268, 269, 270, 271, 272, 275, 278], "termin": [24, 26, 45, 46, 50, 56, 93, 97, 98, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 162, 163, 164, 165, 166, 179, 181, 188, 227, 238, 239, 243, 266, 267, 268, 269, 270, 272, 275, 277, 278, 281, 283, 285], "command": [24, 26, 45, 46, 50, 56, 93, 97, 98, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 162, 163, 164, 165, 166, 179, 181, 188, 227, 238, 239, 243, 266, 267, 268, 269, 270, 272, 275, 277, 278, 281, 283, 285], "format": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 255, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "venv": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 88, 89, 91, 93, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 227, 230, 231, 232, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 266, 267, 268, 269, 270, 272, 275, 277, 278, 281, 283, 285], "python3": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "py": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "inputfil": [24, 26, 27, 30, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "outputfil": [24, 26, 27, 28, 30, 32, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "exampl": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 255, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "sampletdb": [24, 26, 48, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 89, 90, 93, 95, 97, 98, 100, 101, 106, 110, 116, 117, 123, 125, 127, 135, 152, 153, 155, 156, 174, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 227, 232, 233, 236, 240, 241, 242, 243, 244, 248, 252, 260, 261, 262, 266, 271, 275, 277, 278], "txt": [24, 26, 30, 32, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "25": [24, 152, 153], "2": [24, 40, 48, 50, 52, 54, 56, 58, 60, 62, 69, 73, 79, 80, 88, 89, 91, 97, 98, 100, 106, 108, 113, 116, 121, 127, 129, 152, 153, 174, 179, 183, 185, 188, 189, 190, 192, 196, 201, 205, 211, 213, 223, 229, 230, 232, 240, 241, 242, 243, 244, 248, 251, 256, 258, 260, 264, 265, 276, 277, 278, 280, 281], "call": [24, 26, 45, 46, 50, 56, 58, 78, 80, 82, 97, 98, 113, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 162, 163, 164, 165, 166, 179, 181, 188, 189, 218, 238, 239, 243, 256, 257, 266, 267, 268, 269, 270, 275, 276, 277, 278, 281, 283, 285], "alg": [24, 26, 30, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "obj": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "getpattern": [24, 26, 29, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "print": [24, 26, 28, 30, 32, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "number": [24, 26, 30, 32, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 280, 281, 283, 285], "len": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "savepattern": [24, 45, 46, 48, 75, 76, 84, 101, 104, 106, 110, 113, 117, 120, 125, 127, 131, 152, 153, 164, 166, 174, 181, 221, 246, 248, 252, 256, 257, 258, 262, 275, 278, 283], "df": [24, 26, 28, 43, 45, 46, 48, 49, 50, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "getpatternsasdatafram": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "memuss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "getmemoryuss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "memrss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "getmemoryrss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "run": [24, 26, 28, 30, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "getruntim": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "executiontim": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "second": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "wa": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "written": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "b": [24, 52, 54, 56, 58, 62, 66, 75, 79, 88, 108, 113, 121, 152, 153, 183, 185, 188, 189, 192, 200, 207, 210, 223, 231, 251, 255, 257, 258, 264, 265], "sai": [24, 40, 52, 54, 56, 58, 62, 66, 75, 79, 108, 152, 153, 183, 185, 188, 189, 192, 200, 207, 210, 211, 251], "chitra": [24, 52, 54, 56, 58, 62, 66, 75, 79, 108, 152, 153, 183, 185, 188, 189, 192, 200, 207, 210, 251], "under": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "supervis": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "professor": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "rage": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "udai": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "kiran": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "retriev": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "function": [24, 26, 30, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "return": [24, 26, 27, 28, 29, 30, 32, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "tupl": [24, 26, 32, 43, 49, 82, 97, 100, 152, 153, 155, 158, 178, 217, 218, 239, 240, 242, 244], "send": [24, 26, 36, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "after": [24, 26, 32, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "final": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "pd": [24, 26, 29, 32, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "calcul": [24, 26, 29, 30, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "runtim": [24, 26, 33, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "taken": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "none": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 39, 40, 43, 45, 52, 54, 56, 62, 71, 75, 79, 80, 82, 84, 88, 95, 97, 100, 101, 108, 110, 117, 119, 120, 123, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 183, 185, 188, 192, 202, 206, 208, 210, 211, 213, 216, 217, 218, 220, 221, 229, 230, 231, 236, 238, 239, 240, 241, 242, 244, 251, 252, 262, 266, 267, 268, 269, 277, 281, 283, 285], "main": [24, 26, 31, 43, 45, 52, 73, 75, 79, 80, 84, 86, 88, 90, 91, 92, 97, 100, 103, 104, 108, 113, 120, 123, 125, 127, 131, 148, 152, 153, 155, 159, 166, 183, 205, 207, 210, 211, 213, 220, 221, 226, 229, 230, 231, 233, 234, 240, 244, 245, 246, 251, 257, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 283, 284], "method": [24, 26, 27, 30, 31, 32, 33, 37, 39, 40, 43, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 159, 176, 178, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "printresult": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "result": [24, 26, 27, 30, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "recurs": [24, 71, 73, 75, 79, 80, 86, 88, 97, 110, 113, 116, 119, 123, 152, 153, 202, 205, 206, 208, 211, 213, 226, 231, 238, 241, 252, 257, 260, 270], "node": [24, 49, 75, 82, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 123, 125, 127, 135, 152, 153, 176, 177, 178, 208, 216, 225, 227, 229, 230, 233, 236, 239, 240, 242, 244, 248, 261, 262, 266, 267, 268, 269, 270, 271, 275, 277, 278], "root": [24, 49, 82, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 123, 125, 127, 135, 152, 153, 178, 216, 225, 227, 229, 230, 233, 236, 239, 240, 242, 244, 248, 261, 262, 266, 267, 268, 269, 270, 271, 275, 277, 278], "save": [24, 26, 27, 28, 29, 30, 32, 33, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "outfil": [24, 26, 28, 29, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 275, 277, 278, 281, 283, 285], "an": [24, 26, 28, 29, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 62, 64, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 92, 95, 97, 98, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 139, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 196, 198, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 223, 225, 226, 229, 231, 234, 236, 237, 238, 239, 240, 241, 242, 243, 249, 250, 251, 252, 255, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "startmin": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 271, 275, 277, 278, 281, 283, 285], "minrf": [26, 155, 156], "minc": [26, 155, 156], "maxor": [26, 155, 156], "_coveragepattern": [26, 155, 156], "coverag": [26, 155, 156, 157, 214, 265], "bhargav": [26, 155, 156], "sripada": [26, 155], "polep": [26, 155], "krishna": [26, 69, 84, 86, 88, 89, 93, 101, 129, 155, 156, 201, 221, 225, 227, 231, 232, 281], "reddi": [26, 69, 71, 84, 86, 88, 93, 97, 101, 110, 129, 155, 156, 201, 202, 221, 225, 227, 231, 242, 252, 281], "banner": [26, 155], "advertis": [26, 155], "placement": [26, 155], "www": [26, 54, 88, 89, 95, 106, 155, 185, 231, 232, 236, 248], "companion": [26, 155], "volum": [26, 86, 123, 155, 225, 266], "2011": [26, 84, 123, 155, 221, 266, 272], "131": [26, 155], "132": [26, 155], "__http": [26, 155], "dl": [26, 92, 155, 234], "acm": [26, 45, 49, 75, 92, 113, 123, 155, 164, 178, 208, 234, 257, 272], "org": [26, 43, 45, 46, 50, 75, 76, 84, 86, 88, 90, 91, 92, 97, 98, 100, 104, 113, 116, 117, 121, 123, 125, 127, 131, 155, 159, 162, 163, 164, 165, 166, 179, 181, 206, 208, 220, 221, 225, 229, 230, 233, 234, 239, 240, 242, 243, 244, 246, 256, 261, 262, 266, 268, 269, 270, 272, 275, 277, 278, 283], "doi": [26, 43, 45, 46, 49, 50, 52, 56, 62, 69, 71, 75, 76, 79, 80, 82, 84, 86, 88, 91, 92, 93, 97, 104, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 155, 159, 162, 164, 166, 176, 179, 181, 183, 188, 192, 201, 202, 206, 208, 210, 213, 216, 217, 218, 220, 221, 225, 227, 229, 230, 234, 239, 240, 242, 246, 252, 256, 261, 262, 266, 268, 269, 270, 272, 275, 277, 278, 281, 283, 285], "10": [26, 27, 32, 37, 40, 43, 45, 46, 49, 50, 52, 54, 56, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 155, 156, 158, 159, 162, 163, 164, 165, 166, 176, 177, 178, 179, 181, 183, 185, 188, 190, 192, 196, 198, 200, 201, 202, 205, 206, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 280, 281, 283, 285], "1145": [26, 45, 75, 84, 88, 91, 123, 155, 162, 164, 208, 221, 229, 230, 272], "1963192": [26, 155], "1963259": [26, 155], "everi": [26, 78, 80, 82, 86, 92, 97, 98, 100, 101, 108, 155, 156, 216, 225, 240, 241, 242, 243, 244, 251, 264, 276, 280], "must": [26, 78, 80, 86, 92, 97, 98, 100, 101, 108, 110, 113, 155, 156, 190, 223, 240, 241, 242, 243, 244, 251, 252, 256, 257, 258, 264, 265, 276, 280], "least": [26, 32, 108, 155, 156, 251], "maximum": [26, 30, 32, 39, 40, 62, 71, 73, 75, 76, 79, 80, 82, 86, 90, 97, 98, 100, 101, 103, 106, 110, 113, 116, 117, 127, 129, 139, 155, 156, 192, 202, 205, 206, 208, 210, 211, 213, 216, 217, 218, 225, 226, 233, 237, 238, 239, 240, 241, 242, 243, 244, 245, 248, 252, 257, 260, 261, 262, 277, 278, 281], "ani": [26, 82, 86, 97, 98, 100, 101, 103, 120, 148, 155, 156, 216, 217, 218, 225, 226, 238, 239, 240, 241, 242, 243, 244, 245, 264, 284], "two": [26, 40, 71, 73, 75, 79, 80, 82, 86, 97, 98, 100, 101, 103, 110, 113, 155, 156, 202, 205, 206, 208, 211, 213, 216, 217, 218, 223, 225, 226, 238, 239, 240, 241, 242, 243, 244, 245, 252, 256, 264, 276], "reappear": [26, 82, 86, 97, 98, 100, 101, 103, 155, 156, 216, 217, 218, 225, 226, 238, 239, 240, 241, 242, 243, 244, 245], "4": [26, 52, 58, 69, 82, 88, 89, 90, 93, 95, 97, 98, 100, 101, 106, 116, 117, 123, 127, 131, 155, 156, 183, 189, 190, 196, 201, 216, 217, 218, 223, 227, 231, 232, 233, 236, 240, 241, 242, 243, 244, 248, 260, 261, 262, 264, 266, 276, 277, 278, 280, 283], "7": [26, 155, 156, 190, 264, 276, 280], "5": [26, 32, 40, 64, 66, 69, 82, 86, 91, 97, 101, 116, 123, 133, 155, 156, 190, 196, 198, 200, 201, 216, 217, 218, 223, 225, 226, 241, 260, 268, 269, 276, 280, 285], "p": [26, 40, 43, 45, 46, 48, 50, 52, 56, 64, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 92, 93, 95, 97, 98, 100, 101, 103, 104, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 155, 156, 158, 159, 162, 166, 174, 179, 181, 183, 188, 198, 201, 202, 205, 206, 210, 211, 213, 216, 217, 218, 220, 221, 225, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 252, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "likhitha": [26, 40, 43, 45, 46, 48, 50, 60, 69, 84, 88, 89, 90, 92, 93, 95, 97, 98, 100, 103, 104, 116, 117, 121, 123, 125, 127, 129, 131, 133, 155, 156, 158, 159, 162, 166, 174, 179, 181, 201, 220, 221, 227, 229, 230, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "creatingcoverageitem": [26, 155], "creat": [26, 28, 29, 32, 35, 37, 40, 49, 75, 79, 80, 82, 86, 119, 120, 155, 178, 190, 196, 207, 210, 213, 216, 217, 218, 223, 225, 255, 264, 265, 276, 280], "_databas": [26, 155], "coveragetiddata": [26, 155], "tid": [26, 32, 40, 52, 54, 56, 58, 60, 62, 82, 86, 91, 101, 104, 155, 183, 185, 188, 189, 190, 192, 196, 216, 225, 226, 246, 264, 265, 276, 280], "genpattern": [26, 155], "prefix": [26, 46, 49, 52, 54, 56, 58, 60, 62, 75, 79, 80, 82, 86, 88, 91, 97, 108, 113, 116, 155, 178, 181, 183, 185, 188, 189, 192, 207, 210, 213, 216, 225, 226, 231, 238, 241, 251, 258, 260], "tiddata": [26, 155], "gener": [26, 32, 40, 43, 45, 46, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 75, 78, 79, 80, 82, 86, 88, 91, 92, 97, 103, 104, 113, 116, 119, 127, 155, 159, 166, 178, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 208, 210, 216, 217, 218, 225, 226, 231, 234, 238, 241, 245, 246, 256, 257, 258, 260, 264, 276, 277, 280], "about": [26, 30, 39, 119, 155], "string": [26, 54, 60, 80, 82, 86, 106, 120, 155, 185, 213, 216, 225, 248, 264, 265], "generateallpattern": [26, 155], "coverageitem": [26, 155], "load": [26, 28, 29, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "tidtobitset": [26, 155], "item_set": [26, 155], "convert": [26, 27, 30, 31, 32, 33, 52, 54, 56, 58, 60, 62, 64, 66, 69, 93, 95, 97, 101, 106, 113, 116, 117, 123, 125, 127, 135, 155, 183, 185, 188, 189, 192, 198, 200, 201, 227, 236, 239, 248, 257, 261, 262, 266, 267, 268, 269, 270, 271, 275, 277, 278], "bitset": [26, 45, 121, 155, 165], "gowtham": [26, 156], "sriniva": [26, 156], "trinath": [26, 156], "v": [26, 119, 120, 156], "r": [26, 45, 56, 62, 69, 71, 82, 84, 86, 88, 89, 90, 93, 97, 100, 101, 104, 108, 110, 127, 129, 156, 162, 188, 192, 201, 202, 216, 217, 218, 221, 225, 227, 231, 232, 233, 238, 240, 242, 244, 246, 251, 252, 277, 281], "2015": [26, 54, 97, 156, 185, 240], "journal": [26, 54, 86, 97, 156, 185, 225, 240], "intellig": [26, 49, 54, 79, 97, 116, 156, 176, 185, 211, 242, 260, 261], "system": [26, 49, 54, 56, 62, 86, 97, 116, 121, 123, 141, 156, 178, 185, 188, 192, 225, 240, 253, 260, 266], "45": [26, 156], "3": [26, 29, 33, 43, 45, 48, 49, 54, 56, 58, 62, 64, 69, 71, 73, 79, 82, 88, 89, 90, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 113, 116, 117, 121, 123, 125, 127, 131, 135, 156, 158, 163, 165, 174, 176, 177, 178, 188, 189, 190, 192, 196, 198, 201, 202, 205, 210, 216, 217, 218, 223, 227, 231, 232, 233, 234, 236, 239, 240, 242, 243, 244, 245, 246, 248, 256, 260, 261, 262, 264, 265, 266, 267, 271, 272, 275, 276, 277, 278, 280, 283], "423": [26, 156], "439": [26, 156], "http": [26, 43, 45, 46, 48, 50, 52, 54, 75, 76, 84, 86, 88, 89, 90, 92, 95, 97, 98, 100, 103, 104, 106, 108, 113, 116, 117, 121, 123, 125, 127, 131, 156, 159, 162, 163, 164, 165, 166, 174, 179, 181, 183, 185, 206, 208, 220, 221, 225, 231, 232, 233, 234, 236, 239, 240, 242, 243, 244, 245, 246, 248, 251, 256, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 283], "link": [26, 82, 86, 103, 123, 156, 216, 225, 245, 267, 271], "springer": [26, 103, 104, 116, 121, 123, 127, 156, 245, 246, 260, 261, 267, 268, 269, 271, 277, 278], "com": [26, 103, 123, 156, 245, 267, 271], "articl": [26, 88, 91, 156, 229, 230], "1007": [26, 71, 73, 75, 76, 79, 92, 97, 103, 104, 116, 117, 121, 123, 125, 127, 156, 202, 205, 206, 211, 234, 239, 245, 246, 261, 262, 267, 268, 269, 271, 275, 277, 278], "s10844": [26, 156], "014": [26, 156], "0318": [26, 156], "percentag": [26, 30, 32, 39, 40, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 97, 98, 100, 101, 106, 108, 116, 117, 156, 174, 176, 177, 178, 183, 185, 189, 192, 198, 200, 201, 202, 205, 207, 210, 211, 238, 239, 240, 241, 242, 243, 244, 248, 251, 260, 261, 262], "period": [26, 30, 39, 56, 58, 60, 62, 64, 69, 82, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 116, 117, 127, 129, 135, 140, 156, 187, 188, 189, 190, 191, 192, 195, 196, 197, 198, 201, 214, 215, 216, 217, 218, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 260, 261, 262, 263, 264, 276, 277, 278, 279, 281], "generatelatexcod": [27, 58], "latexgraphfil": 27, "fuz": 27, "idf": [27, 28, 33], "plot": [27, 30, 33, 39, 41], "point": [27, 33, 190, 196, 276, 280], "plt": [27, 33], "path": [27, 30, 37, 39, 40, 64, 66, 69, 75, 76, 78, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 113, 116, 117, 119, 120, 123, 125, 127, 129, 131, 133, 135, 198, 200, 201, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 240, 241, 242, 243, 244, 245, 246, 248, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "rank": [27, 49, 50, 91, 101, 123, 178, 179, 270], "gettopkpattern": 27, "storetopkpattern": 27, "get": [27, 28, 29, 30, 32, 39, 40, 49, 64, 66, 69, 75, 76, 82, 101, 113, 178, 198, 200, 201, 216, 257, 258], "defin": [27, 28, 78, 80, 82, 86, 92, 139, 143, 216, 217, 218, 225, 226, 237, 263], "patternid": 27, "predictedclass2transact": 27, "predicted_class": 27, "minthreshold": 27, "8": [27, 43, 45, 56, 62, 97, 159, 166, 188, 190, 192, 242, 264], "dens": [27, 28], "un": 27, "getbinarytransact": 27, "inputdf": 28, "param": [28, 29, 30, 32, 33, 37, 39, 40, 43, 49, 75, 76, 80, 86, 91, 97, 101, 103, 110, 113, 119, 120, 123, 159, 176, 177, 178, 206, 207, 208, 213, 225, 226, 240, 245, 252, 256, 257, 258, 270, 271], "condit": [28, 45, 49, 75, 86, 91, 97, 101, 108, 119, 165, 178, 208, 225, 242, 251], "judg": 28, "thresholdvalu": 28, "db": [28, 29, 30, 31, 32, 35, 37, 39, 40], "iddf": 28, "16": [28, 29, 35, 113, 258], "convert2transactionaldatabas": 28, "outputfilenam": [28, 29, 32, 40], "convert2temporaldatabas": 28, "convert2multipletimeseri": 28, "multipl": [28, 29, 30, 60, 84, 119, 180, 214, 220, 221, 222, 264, 265], "timeseri": [28, 60, 214], "convert2utilitydatabas": 28, "util": [28, 30, 39, 40, 52, 71, 73, 75, 76, 79, 80, 110, 183, 190, 196, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 252, 253, 276], "getfilenam": [28, 32, 37, 40], "write": [28, 119, 120], "break": 28, "convert2uncertaintransact": 28, "createtransact": [28, 80, 213], "createtempor": 28, "createutil": 28, "csv": [28, 29, 32, 40, 43, 45, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 86, 88, 90, 91, 95, 97, 98, 100, 101, 113, 116, 123, 125, 127, 129, 131, 133, 135, 159, 164, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 225, 226, 229, 230, 233, 236, 238, 239, 240, 241, 242, 243, 244, 256, 258, 260, 261, 266, 267, 271, 272, 275, 277, 278, 281, 283, 285], "denseformatdfplu": 28, "thresholdconditiondf": 28, "denseformatdf_dump": 28, "sparseformatdfplu": 28, "beta": [29, 75, 76], "code": [29, 32, 35, 56, 78, 80, 86, 88, 92, 97, 101, 103, 116, 119, 225, 226, 231, 234, 238, 239, 245, 260], "calculatemi": 29, "getmisdatafram": 29, "respect": [29, 45, 62, 82, 86, 97, 101, 108, 120, 127, 165, 192, 216, 225, 242, 251, 278], "rtype": [29, 30, 32, 39, 48, 49, 64, 73, 75, 76, 80, 86, 110, 113, 116, 123, 174, 176, 177, 178, 198, 205, 206, 207, 208, 213, 225, 226, 252, 257, 260, 271], "sd": 29, "getdatafram": [29, 35], "execut": [30, 39, 58, 80, 82, 86, 89, 91, 92, 100, 101, 103, 106, 189, 216, 217, 218, 232, 244, 245, 248], "readdatabas": [30, 39], "read": [30, 39, 75, 76, 119, 120], "getdatabases": [30, 39], "getminimumtransactionlength": [30, 39], "getaveragetransactionlength": [30, 39], "averag": [30, 32, 39, 40], "sum": [30, 32, 39, 40, 52, 54, 56, 58, 60, 62, 80, 183, 185, 188, 189, 190, 192, 213, 276], "divid": [30, 39], "getmaximumtransactionlength": [30, 39], "getstandarddeviationtransactionlength": [30, 39], "standard": [30, 39, 120], "deviat": [30, 39], "getsortedlistofitemfrequ": [30, 39], "sort": [30, 39, 54, 60, 71, 73, 75, 79, 80, 88, 90, 91, 93, 95, 97, 100, 101, 106, 110, 116, 117, 123, 125, 127, 135, 185, 202, 205, 206, 211, 213, 227, 229, 230, 233, 236, 239, 240, 242, 244, 248, 252, 261, 262, 266, 267, 268, 269, 270, 271, 275, 277, 278], "getsortedlistoftransactionlength": [30, 39], "getminimumutil": [30, 39], "getaverageutil": [30, 39], "getmaximumutil": [30, 39], "getsortedutilityvaluesofitem": [30, 39], "fuzzydatabasestat": 30, "printstat": [30, 39, 75, 208], "creatingitemset": [30, 39, 43, 64, 66, 69, 84, 88, 90, 91, 92, 93, 95, 97, 100, 101, 103, 104, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 159, 198, 200, 201, 220, 221, 227, 229, 230, 233, 234, 236, 239, 240, 244, 245, 246, 248, 251, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "getfrequenciesinrang": [30, 39], "max": [30, 39, 86, 225], "min": [30, 86, 225], "getnumberofitem": [30, 39], "kei": [30, 33, 39, 66, 71, 75, 91, 101, 110, 119, 200, 202, 206, 252], "getspars": [30, 39], "sparsiti": [30, 39], "gettotalnumberofitem": [30, 39], "gettotalutil": [30, 39], "gettransanctionallengthdistribut": [30, 39], "getvariancetransactionlength": [30, 39], "varianc": [30, 39], "plotgraph": [30, 39], "multipletimeseriesdatabasestat": 30, "fuzzi": [30, 31, 52, 54, 56, 58, 60, 62, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 214], "convertdataintomatrix": [30, 39], "matrix": [30, 80, 213], "form": [30, 45, 71, 86, 88, 108, 110, 165, 202, 226, 231, 251, 252, 280], "densiti": 30, "getdens": [30, 39], "disctribut": 30, "ndarrai": [30, 39], "like": [30, 39, 113, 257, 280], "avarag": [30, 39], "minimun": [30, 39], "so": [30, 32, 39, 40, 82, 216, 217, 218], "subsequ": [30, 39, 113, 142, 254, 257], "self": [30, 39, 49, 52, 71, 73, 75, 79, 80, 88, 91, 110, 119, 178, 183, 202, 205, 206, 211, 213, 229, 231, 252], "getminimumsequencelength": [30, 39], "getaveragesubsequencepersequencelength": [30, 39], "per": [30, 32, 39, 40, 91], "getaverageitempersubsequencelength": [30, 39], "getmaximumsequencelength": [30, 39], "getstandarddeviationsubsequencelength": [30, 39], "getvariancesequencelength": [30, 39], "getsequences": [30, 39], "getminimumsubsequencelength": [30, 39], "getaverageitempersequencelength": [30, 39], "getmaximumsubsequencelength": [30, 39], "getvariancesubsequencelength": [30, 39], "getsequenciallengthdistribut": [30, 39], "getsubsequenciallengthdistribut": [30, 39], "statu": [30, 39], "sampledb": [30, 39, 43, 45, 46, 48, 49, 50, 82, 84, 86, 88, 91, 92, 97, 103, 104, 108, 113, 116, 121, 123, 125, 127, 129, 131, 133, 135, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 216, 217, 218, 220, 221, 225, 226, 229, 230, 231, 234, 238, 239, 241, 245, 246, 251, 256, 257, 258, 260, 266, 267, 268, 269, 270, 272, 275, 277, 278, 281, 283, 285], "_ap": [30, 39], "shota": [30, 39, 113, 256, 257, 258], "suzuki": [30, 39, 113, 256, 257, 258], "getstandarddeviationsequencelength": [30, 39], "getminimumperiod": [30, 39], "getaverageperiod": [30, 39], "getmaximumperiod": [30, 39], "getstandarddeviationperiod": [30, 39], "getnumberoftransactionspertimestamp": [30, 39], "stamp": [30, 32, 39, 82, 86, 216, 217, 218, 225, 226], "getaverageinterarrivalperiod": [30, 39], "inter": [30, 39], "arriv": [30, 39], "getaverageperiodofitem": [30, 39], "getmaximuminterarrivalperiod": [30, 39], "getmaximumperiodofitem": [30, 39], "getminimuminterarrivalperiod": [30, 39], "getminimumperiodofitem": [30, 39], "getperiodsinrang": [30, 39], "And": [30, 39, 113, 257, 258], "uncertaintemporaldatabasestat": 30, "fuzfil": [31, 54, 58, 185, 189], "_convert": [31, 113, 257], "startconvert": 31, "spatiotemporaldatabasegener": 32, "xmin": 32, "xmax": 32, "ymin": 32, "ymax": 32, "maxtimestamp": 32, "numberofitem": [32, 40], "itemchancelow": 32, "itemchancehigh": 32, "timestampchancelow": 32, "timestampchancehigh": 32, "spatiotempor": [32, 56, 66, 69, 73, 79, 80, 129, 188, 200, 201, 205, 210, 211, 213, 281], "give": [32, 113, 258], "x": [32, 33, 75, 79, 91, 101, 119, 120, 121, 207, 210], "chanc": [32, 190], "highest": 32, "lowest": 32, "100": [32, 33, 40, 190, 196, 280], "9": [32, 276], "createpoint": 32, "accord": 32, "saveasfil": 32, "alreadyad": 32, "coinflip": 32, "true": [32, 91, 101, 119, 120], "fals": [32, 119, 120, 123, 125, 127, 135, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278], "outfilenam": [32, 40], "numoftransact": [32, 40], "avglenoftransact": [32, 40], "numitem": [32, 40], "50": [32, 40], "typeoffil": [32, 40], "frame": [32, 78, 80, 86, 92], "cointoss": [32, 40], "correspond": [32, 40, 73, 79, 80, 119, 190, 205, 211, 213, 280], "filenam": [32, 40, 90, 93, 95, 97, 100, 101, 106, 108, 116, 117, 123, 125, 127, 135, 227, 233, 236, 239, 240, 244, 248, 251, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 278], "createtemporalfil": [32, 40], "getdatabaseasdatafram": [32, 40], "performcoinflip": [32, 40], "perform": [32, 40, 46, 48, 49, 75, 76, 86, 88, 119, 174, 176, 177, 178, 181, 226, 231], "coin": [32, 40], "flip": [32, 40], "probabl": [32, 40, 79, 80, 123, 127, 144, 145, 146, 210, 213, 270, 273, 274, 276, 278, 279], "tune": [32, 40, 84, 123, 125, 127, 129, 131, 135, 220, 221, 266, 275, 277, 278, 281, 283], "arraylength": [32, 40], "15": 32, "avgtransactionlength": [32, 40], "6": [32, 54, 60, 89, 97, 98, 100, 117, 123, 185, 190, 223, 232, 240, 242, 243, 244, 262, 268], "temporal_ot": 32, "percent": 32, "75": 32, "frameorbas": 32, "you": [32, 113, 120, 257], "want": 32, "temporaldb": [32, 40], "bool": [32, 40, 80, 88, 213, 229], "otherwis": [32, 43, 45, 46, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 158, 159, 162, 163, 166, 176, 177, 178, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 207, 210, 211, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 248, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "arrai": [32, 40, 73, 75, 76, 79, 80, 205, 211, 213], "sumr": [32, 40], "equal": [32, 37, 40, 75, 206], "target": [32, 40, 120, 139, 143, 237, 263], "numlin": [32, 40], "avgitemsperlin": [32, 40], "line": [32, 33, 40, 80, 82, 86, 97, 108, 113, 190, 213, 216, 225, 226, 240, 251, 255, 258, 276, 280], "gettransact": [32, 40, 80, 91, 101, 213], "generatearrai": 32, "num": [32, 91], "avg": 32, "maxitem": [32, 80, 213], "random": [32, 40], "n": [32, 40, 49, 52, 86, 88, 89, 113, 116, 127, 176, 183, 225, 231, 232, 249, 250, 257, 261, 277], "whose": [32, 37, 73, 205], "m": [32, 60, 69, 71, 82, 93, 97, 110, 113, 116, 127, 129, 201, 202, 216, 217, 218, 227, 242, 252, 258, 261, 277, 281], "dataframeintofigur": 33, "figur": 33, "column": [33, 223, 264], "xcolumn": 33, "axi": 33, "ycolumn": 33, "fig": 33, "plotgraphsfromdatafram": 33, "end": [33, 45, 78, 80, 82, 97, 101, 164, 165, 216, 217, 218, 242], "titl": 33, "xlabel": 33, "ylabel": 33, "plotlinegraph": 33, "draw": 33, "idict": 33, "plotlinegraphfromdatafram": 33, "plotlinegraphfromdatfram": 33, "produc": [33, 121, 280], "miner": [33, 54, 56, 58, 62, 71, 75, 79, 185, 188, 189, 192, 202, 207, 211], "take": [33, 40, 119], "viz": 33, "markers": 33, "20": [33, 71, 73, 84, 97, 110, 196, 202, 205, 221, 238, 239, 252], "zoom": 33, "width": 33, "1500": 33, "height": 33, "1000": 33, "marker": 33, "screen": 33, "createdatabas": 35, "detected_object": 35, "appli": [35, 79, 116, 123, 211, 260, 272], "detected_obj": 35, "saveastemporaldb": 35, "saveastransactionaldb": 35, "saveasuncertaintemporaldb": 35, "saveasuncertaintransactionaldb": 35, "saveasutilitytemporaldb": 35, "saveasutilitytransactionaldb": 35, "url": [36, 45, 46, 50, 97, 162, 163, 164, 165, 166, 179, 181, 238, 239], "usernam": 36, "password": 36, "toaddress": 36, "subject": 36, "bodi": 36, "createneighborhoodfileusingeuclideandist": 37, "maxeuclediandist": 37, "neighbourhood": [37, 52, 64, 66, 69, 78, 79, 80, 129, 183, 198, 200, 201, 210, 213, 214, 280, 281], "euclid": 37, "distanc": [37, 73, 79, 205, 211], "pf": 37, "maxeuclideandist": 37, "pair": [37, 71, 75, 110, 119, 120, 202, 206, 252], "euclidean": 37, "than": [37, 73, 75, 79, 80, 116, 205, 206, 211, 213, 260, 261, 264], "maxeuclediandistac": 37, "plotedgedistribut": 39, "plotnodedistribut": 39, "printgraphdatabasestatist": 39, "printindividualgraphstat": 39, "transanct": 39, "e": [40, 71, 73, 75, 79, 80, 110, 190, 202, 205, 206, 211, 213, 252, 255, 264, 265, 276, 280], "g": [40, 48, 60, 119, 120, 174, 264], "wai": 40, "text": [40, 119], "randomli": 40, "databases": 40, "avgitemspertransact": 40, "collect": [40, 75, 76, 223, 255, 264], "onli": [40, 71, 73, 75, 79, 80, 110, 113, 140, 147, 149, 202, 205, 206, 211, 213, 247, 252, 258, 282, 286], "ignor": [40, 264, 265], "metadata": 40, "creategeoreferentialtemporaldatabas": 40, "avgtransact": 40, "synthet": 40, "referenti": [40, 196], "totaltransact": 40, "No": [40, 88, 91, 229, 230], "noofitem": 40, "creategeoreferentialtransactiondatabas": 40, "creategeoreferentialtransactionaldatabas": 40, "creategeoreferentialuncertaintransactiondatabas": 40, "creategeoreferentialuncertaintransactionaldatabas": 40, "createtemporalldatabas": 40, "createtemporaldatabas": 40, "createtransactionaldatabas": 40, "createuncertaintemporaldatabas": 40, "createuncertaintransactionaldatabas": 40, "maxutilrang": 40, "createutilitydatabas": 40, "transactions": 40, "numofitem": 40, "minutilityvalu": 40, "maxutilityvalu": 40, "minnumoftimesanitem": 40, "maxnumoftimesanitem": 40, "__init__": 40, "constructor": [40, 120], "initi": [40, 73, 79, 80, 205, 211, 213], "createsyntheticutilitydatabas": 40, "createrandomnumb": 40, "targetsum": 40, "credit": [40, 103, 245], "hemanth": 40, "sree": 40, "normal": 40, "multipli": 40, "total_transact": 40, "num_of_item": 40, "avg_transaction_length": 40, "create_temporal_databas": 40, "output_fil": 40, "generate_random_numb": 40, "target_sum": 40, "utilitydatagener": 40, "averagelengthoftransact": 40, "minimuminternalutilityvalu": 40, "maximuminternalutilityvalu": 40, "minimumexternalutilityvalu": 40, "maximumexternalutilityvalu": 40, "generateandprintitempair": 40, "generateexternalutilitydata": 40, "getexternalutilitydata": 40, "getinternalutilitydata": 40, "getutilitydata": 40, "saveitemsinternalutilityvalu": 40, "saveitemsexternalutilityvalu": 40, "itemsup": [43, 116, 121, 158, 159, 260], "minlength": [43, 121, 158, 159], "faulttoler": [43, 121, 158, 159], "_faulttolerantfrequentpattern": [43, 121, 158, 159], "ft": [43, 158], "fault": [43, 121, 158, 159, 160, 214, 265], "toler": [43, 121, 158, 159, 160, 214, 265], "properti": [43, 45, 46, 49, 90, 97, 113, 121, 131, 133, 148, 158, 159, 162, 166, 176, 177, 178, 181, 233, 238, 241, 256, 257, 258, 283, 284, 285], "downward": [43, 45, 49, 113, 121, 131, 133, 148, 158, 159, 162, 166, 176, 177, 178, 256, 257, 258, 283, 284, 285], "closur": [43, 45, 49, 113, 121, 131, 133, 148, 158, 159, 162, 166, 176, 177, 178, 256, 257, 258, 283, 284, 285], "reduc": [43, 45, 49, 54, 56, 58, 62, 84, 113, 121, 131, 133, 158, 159, 162, 166, 176, 177, 178, 185, 188, 189, 192, 221, 256, 257, 258, 283, 285], "pei": [43, 45, 54, 113, 135, 158, 159, 166, 185, 258], "jian": [43, 158], "tung": [43, 158], "anthoni": [43, 158], "jiawei": [43, 158], "2001": [43, 113, 158, 256], "problem": [43, 54, 56, 58, 62, 158, 185, 188, 189, 192], "challeng": [43, 54, 56, 58, 62, 137, 146, 158, 185, 188, 189, 192, 228, 279], "falut": [43, 158, 159], "here": [43, 45, 46, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 150, 151, 158, 159, 162, 163, 164, 165, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "csvfile": [43, 45, 46, 48, 49, 50, 158, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181], "compress": [43, 45, 49, 131, 133, 159, 166, 178, 283, 285], "decreas": [43, 45, 49, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 123, 125, 127, 131, 133, 135, 159, 166, 178, 227, 229, 230, 233, 236, 239, 240, 244, 248, 261, 262, 266, 267, 268, 269, 270, 271, 275, 277, 278, 283, 285], "extract": [43, 45, 46, 49, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 159, 164, 166, 178, 181, 220, 221, 226, 227, 229, 230, 231, 233, 236, 239, 240, 244, 248, 251, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "yin": [43, 45, 159, 166], "et": [43, 45, 49, 62, 75, 76, 79, 80, 98, 116, 117, 159, 166, 178, 192, 206, 210, 213, 243, 261, 262], "al": [43, 45, 49, 62, 75, 76, 79, 80, 98, 116, 117, 159, 166, 178, 192, 206, 210, 213, 243, 261, 262], "without": [43, 45, 103, 113, 120, 121, 159, 166, 245, 256, 258], "candid": [43, 45, 71, 73, 75, 79, 80, 110, 113, 120, 159, 166, 202, 205, 206, 207, 208, 210, 211, 213, 252, 256, 257, 258], "knowledg": [43, 45, 75, 113, 123, 133, 159, 164, 166, 208, 257, 267, 271, 276, 285], "53": [43, 45, 79, 159, 166, 211], "87": [43, 45, 159, 166], "2004": [43, 45, 84, 113, 159, 166, 220, 258], "1023": [43, 45, 113, 159, 166, 256], "scan": [43, 45, 73, 79, 80, 84, 86, 88, 90, 91, 92, 93, 95, 97, 100, 101, 103, 104, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 159, 165, 205, 211, 213, 220, 221, 226, 227, 229, 230, 231, 233, 234, 236, 238, 239, 240, 241, 242, 244, 245, 246, 248, 251, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "frequentoneitem": [43, 64, 66, 69, 84, 92, 103, 104, 108, 123, 125, 129, 131, 133, 135, 159, 198, 200, 201, 220, 221, 234, 245, 246, 251, 266, 267, 268, 269, 270, 271, 272, 275, 281, 283, 285], "getpatternindatafram": [43, 45, 49, 50, 84, 86, 92, 103, 104, 113, 121, 133, 159, 162, 163, 164, 165, 166, 176, 177, 178, 179, 220, 221, 226, 234, 245, 246, 256, 257, 258, 285], "_frequentpattern": [45, 46, 48, 49, 50, 84, 108, 123, 125, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 220, 221, 251, 266, 267, 268, 269, 270, 271, 272, 275], "breadth": [45, 82, 113, 162, 217, 256, 257], "agraw": [45, 162], "imi": [45, 162], "nski": [45, 162], "swami": [45, 162], "rule": [45, 52, 66, 84, 162, 183, 190, 196, 200, 220, 223, 255, 264, 265, 276, 280], "sigmod": [45, 162], "207": [45, 162], "216": [45, 162], "1993": [45, 162], "170035": [45, 162], "170072": [45, 162], "pami1": [45, 162], "also": [45, 46, 97, 121, 123, 125, 127, 129, 131, 133, 135, 147, 148, 149, 162, 163, 164, 165, 166, 181, 238, 239, 265, 266, 267, 268, 269, 270, 272, 275, 277, 278, 281, 282, 283, 284, 285, 286], "revis": [45, 46, 50, 97, 162, 163, 164, 165, 166, 179, 181, 238, 239], "tarun": [45, 46, 50, 75, 97, 162, 163, 164, 165, 166, 179, 181, 238, 239], "sreepada": [45, 46, 50, 75, 97, 162, 163, 164, 165, 166, 179, 181, 238, 239], "moham": [45, 46, 113, 163, 165, 181, 256], "jave": [45, 163, 165], "zaki": [45, 46, 113, 163, 165, 181, 256], "scalabl": [45, 66, 163, 165, 200], "ieee": [45, 50, 56, 62, 69, 79, 80, 90, 97, 98, 100, 110, 113, 123, 163, 165, 179, 188, 192, 201, 210, 213, 233, 242, 243, 244, 252, 258, 270], "tran": [45, 49, 75, 113, 163, 165, 178, 206, 258], "knowl": [45, 75, 76, 113, 163, 165, 206, 258], "eng": [45, 113, 163, 165, 258], "12": [45, 163, 165], "372": [45, 163, 165], "390": [45, 163, 165], "2000": [45, 163, 165], "ieeexplor": [45, 50, 90, 98, 100, 163, 165, 179, 233, 243, 244], "document": [45, 50, 90, 98, 100, 163, 165, 179, 233, 243, 244], "846291": [45, 163, 165], "kundai": [45, 58, 163, 164], "diffset": [45, 164], "kdd": [45, 75, 164, 208], "03": [45, 164], "proceed": [45, 46, 75, 88, 91, 113, 123, 131, 164, 181, 208, 229, 230, 257, 270, 272, 283], "ninth": [45, 164], "sigkdd": [45, 75, 113, 164, 208, 257], "intern": [45, 49, 56, 62, 69, 75, 79, 80, 88, 91, 93, 98, 103, 110, 113, 116, 123, 129, 131, 133, 164, 176, 188, 192, 201, 208, 210, 213, 227, 229, 230, 243, 245, 252, 257, 260, 270, 280, 281, 283, 285], "confer": [45, 49, 56, 62, 69, 75, 79, 80, 88, 91, 93, 98, 103, 110, 113, 123, 129, 131, 133, 164, 176, 178, 188, 192, 201, 208, 210, 213, 227, 229, 230, 243, 245, 252, 257, 267, 270, 271, 281, 283, 285], "august": [45, 164], "page": [45, 86, 88, 91, 123, 164, 214, 225, 229, 230, 266, 272], "326": [45, 164], "335": [45, 164], "956750": [45, 164], "956788": [45, 164], "yudai": [45, 49, 165, 176, 177, 178], "masu": [45, 49, 165, 176, 177, 178], "implement": [45, 49, 86, 88, 97, 116, 165, 176, 226, 231, 238, 241, 260], "we": [45, 54, 56, 58, 62, 165, 185, 188, 189, 192, 249, 250, 265, 276], "check": [45, 46, 71, 73, 75, 79, 80, 90, 91, 97, 108, 110, 119, 165, 181, 202, 205, 206, 211, 213, 233, 238, 240, 241, 251, 252], "superset": [46, 73, 181, 205], "same": [46, 49, 52, 54, 56, 58, 60, 62, 113, 178, 181, 183, 185, 188, 189, 192, 196, 256, 257, 258, 264], "origin": [46, 80, 120, 123, 125, 127, 135, 181, 213, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278], "ching": [46, 181], "jui": [46, 181], "hsiao": [46, 181], "2002": [46, 113, 181, 257], "siam": [46, 131, 181, 283], "sdm": [46, 181], "457": [46, 181], "473": [46, 181], "1137": [46, 131, 181, 283], "9781611972726": [46, 181], "27": [46, 181], "tidlist": [46, 66, 82, 86, 88, 92, 97, 103, 104, 116, 181, 200, 216, 225, 226, 231, 234, 238, 241, 245, 246, 260], "hash": [46, 97, 181, 238, 241], "equival": [46, 64, 66, 86, 88, 97, 116, 123, 181, 198, 200, 226, 231, 238, 241, 260, 272], "maxfp": [48, 174], "grahn": [48, 174], "zhu": [48, 174], "enc": [48, 174], "concordia": [48, 174], "ca": [48, 174], "paper": [48, 106, 174, 248], "hpdm03": [48, 174], "pdf": [48, 52, 88, 89, 95, 106, 108, 131, 174, 183, 231, 232, 236, 248, 251, 283], "maxper": [48, 52, 54, 56, 58, 60, 62, 64, 66, 75, 79, 82, 86, 93, 95, 97, 98, 100, 101, 103, 106, 108, 116, 117, 127, 129, 131, 139, 174, 183, 185, 188, 189, 192, 198, 200, 207, 210, 211, 216, 217, 218, 225, 226, 227, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 248, 251, 260, 261, 262, 277, 278, 281, 283], "functon": [48, 174], "numwork": [49, 91, 101, 176, 177, 178], "li": [49, 54, 176, 178, 185, 276], "l": [49, 121, 176], "zeng": [49, 176], "q": [49, 113, 176, 258], "he": [49, 176], "z": [49, 75, 79, 176, 207, 210], "shi": [49, 176], "mapreduc": [49, 176], "2012": [49, 123, 176, 266], "13th": [49, 176], "aci": [49, 176], "softwar": [49, 86, 97, 176, 225, 240], "engin": [49, 116, 176, 260], "artifici": [49, 116, 176, 261], "comput": [49, 75, 97, 104, 116, 121, 123, 127, 176, 208, 242, 246, 261, 270, 277, 278], "kyoto": [49, 176], "japan": [49, 176], "236": [49, 176], "241": [49, 176], "1109": [49, 50, 56, 62, 69, 79, 80, 93, 97, 110, 123, 129, 133, 176, 179, 188, 192, 201, 210, 213, 227, 242, 252, 270, 281, 285], "snpd": [49, 176], "31": [49, 113, 176, 256], "numpartit": [49, 91, 176, 177, 178], "partit": [49, 91, 101, 176, 177, 178], "On": [49, 176, 177, 178], "worker": [49, 101, 176, 177, 178], "executor": [49, 176, 177, 178], "unit": [49, 176, 177, 178], "children": [49, 82, 86, 91, 97, 101, 178, 216, 225, 242], "null": [49, 88, 90, 91, 93, 95, 97, 100, 101, 106, 110, 116, 117, 123, 125, 127, 135, 178, 227, 229, 230, 233, 236, 239, 240, 242, 244, 248, 252, 261, 262, 266, 267, 268, 269, 270, 271, 275, 277, 278], "nodelink": [49, 82, 86, 178, 216, 225], "addtransact": [49, 82, 86, 178, 216, 225], "addnodetonodelink": [49, 178], "add": [49, 80, 82, 86, 91, 101, 113, 119, 120, 178, 213, 216, 225, 258], "generateconditionaltre": [49, 178], "haoyuan": [49, 178], "pfp": [49, 178], "queri": [49, 178], "recommend": [49, 106, 141, 178, 248, 253], "2008": [49, 178], "static": [49, 139, 178, 237], "buildtre": [49, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 123, 125, 127, 135, 178, 227, 229, 230, 233, 236, 239, 240, 242, 244, 248, 261, 262, 266, 267, 268, 269, 270, 271, 275, 277, 278], "build": [49, 75, 178, 208], "genallfrequentpattern": [49, 178], "tree_tupl": [49, 178], "id": [49, 52, 75, 76, 101, 119, 120, 178, 183], "gencondtransact": [49, 91, 101, 178], "genfreqpattern": [49, 178], "new": [49, 71, 73, 75, 79, 80, 84, 88, 89, 95, 106, 110, 119, 123, 178, 202, 205, 206, 208, 211, 213, 220, 231, 232, 236, 248, 252, 266], "getpartitionid": [49, 91, 101, 178], "zhi": [50, 179], "hong": [50, 54, 135, 179, 185], "deng": [50, 179], "guo": [50, 179], "dong": [50, 179], "fang": [50, 179], "icmlc": [50, 179], "2007": [50, 52, 179, 183], "4370261": [50, 179], "xplore": [50, 179], "topkfrequentpattern": [50, 179], "element": [52, 54, 56, 58, 60, 62, 66, 75, 79, 80, 119, 141, 183, 185, 188, 189, 192, 200, 207, 210, 213, 253, 276], "iutil": [52, 183], "rutil": [52, 183], "keep": [52, 54, 56, 58, 60, 62, 71, 73, 75, 79, 80, 110, 183, 185, 188, 189, 192, 202, 205, 206, 207, 210, 211, 213, 252], "tact": [52, 183], "rest": [52, 183], "_corelatedfuzzyfrequentpattern": [52, 183], "lin": [52, 54, 75, 76, 116, 123, 135, 183, 185, 206, 260, 266], "chueh": [52, 183], "h": [52, 60, 113, 116, 183, 258, 261], "citeseerx": [52, 183], "ist": [52, 183], "psu": [52, 183], "edu": [52, 183], "viewdoc": [52, 183], "download": [52, 183], "416": [52, 183], "6053": [52, 183], "rep": [52, 183], "rep1": [52, 183], "starttimetim": [52, 183], "itemscnt": [52, 54, 56, 58, 60, 62, 183, 185, 188, 189, 192], "mapitemslowsum": [52, 54, 56, 62, 183, 192], "map": [52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 110, 113, 119, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 252, 257], "track": [52, 54, 56, 58, 60, 62, 75, 79, 183, 185, 188, 189, 192, 207, 210], "low": [52, 54, 56, 62, 80, 183, 190, 192, 213], "region": [52, 54, 56, 58, 60, 62, 183, 188, 192], "mapitemsmidsum": [52, 54, 56, 60, 62, 183, 192], "middl": [52, 54, 56, 62, 183, 192], "mapitemshighsum": [52, 54, 56, 62, 183, 192], "mapitemsum": [52, 54, 56, 58, 60, 62, 183, 185, 188, 189, 192], "mapitemregion": [52, 54, 56, 58, 60, 62, 183, 188, 192], "jointcnt": [52, 54, 62, 183, 192], "ffi": [52, 54, 56, 58, 60, 62, 183, 185, 188, 189, 192], "construct": [52, 54, 56, 58, 60, 62, 75, 79, 88, 91, 97, 119, 120, 123, 125, 127, 135, 183, 185, 188, 189, 192, 207, 208, 210, 223, 229, 230, 240, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278], "buffers": [52, 54, 56, 58, 60, 62, 183, 185, 188, 189, 192], "buffer": [52, 54, 56, 58, 60, 62, 183, 185, 188, 189, 192], "itembuff": [52, 54, 62, 183, 192], "starttimemin": [52, 183], "getratio": [52, 183], "prefixlen": [52, 54, 56, 58, 60, 62, 75, 79, 183, 185, 188, 189, 192, 207, 210], "ration": [52, 183], "fsfimin": [52, 54, 56, 58, 62, 183, 185, 188, 189, 192], "fsfim": [52, 54, 56, 58, 60, 62, 183, 185, 188, 189, 192], "px": [52, 54, 56, 58, 60, 62, 183, 185, 188, 189, 192], "findelementwithtid": [52, 54, 56, 58, 60, 62, 183, 185, 188, 189, 192], "ulist": [52, 54, 56, 58, 60, 62, 75, 79, 183, 185, 188, 189, 192, 207, 210], "writeout": [52, 54, 56, 58, 60, 62, 183, 185, 188, 189, 192], "sumiutil": [52, 54, 56, 58, 60, 62, 183, 185, 188, 189, 192], "patten": [52, 54, 56, 58, 60, 62, 82, 183, 185, 188, 189, 192, 216, 217, 218], "correlatedfuzzyfrequentpattern": [52, 183], "_fuzzyfrequentpattenr": [54, 185], "desir": [54, 56, 58, 62, 185, 188, 189, 192], "trivial": [54, 56, 58, 62, 185, 188, 189, 192], "huge": [54, 56, 58, 62, 185, 188, 189, 192], "prune": [54, 56, 58, 62, 185, 188, 189, 192], "chun": [54, 123, 135, 185, 266], "wei": [54, 75, 101, 123, 135, 185, 208, 266], "ting": [54, 185], "fournier": [54, 66, 71, 75, 76, 82, 89, 93, 110, 116, 117, 127, 135, 185, 200, 202, 206, 216, 217, 218, 227, 232, 252, 260, 261, 262, 278], "viger": [54, 66, 71, 75, 76, 82, 93, 110, 116, 117, 127, 135, 185, 200, 202, 206, 216, 217, 218, 227, 252, 260, 261, 262, 278], "philipp": [54, 66, 89, 103, 127, 135, 185, 200, 232, 245, 278], "tzung": [54, 123, 135, 185, 266], "fast": [54, 75, 76, 123, 185, 206, 270], "29": [54, 185], "2373": [54, 185], "2379": [54, 185], "3233": [54, 185], "IFS": [54, 185], "151936": [54, 185], "researchg": [54, 185], "net": [54, 185], "286510908_a_fast_algorithm_for_mining_fuzzy_frequent_itemset": [54, 185], "fmfile": [54, 185], "joinscnt": [54, 56, 58, 60, 62, 185, 188, 189], "compareitem": [54, 60, 185], "o1": [54, 60, 185], "o2": [54, 60, 185], "ascend": [54, 60, 185], "ffiminermin": 54, "fuzzymembership": 54, "nfile": [56, 58, 64, 66, 69, 71, 73, 78, 79, 80, 125, 129, 188, 189, 198, 200, 201, 202, 205, 210, 211, 213, 275, 281], "_fuzzyspatialfrequentpattern": [56, 58, 188, 189], "veena": [56, 79, 125, 127, 188, 211, 275, 278], "chithra": [56, 188], "u": [56, 62, 71, 80, 82, 88, 89, 95, 97, 104, 106, 110, 113, 116, 131, 188, 192, 202, 213, 216, 217, 218, 231, 232, 236, 242, 246, 248, 252, 258, 260, 283], "agarw": [56, 188], "zettsu": [56, 66, 69, 79, 90, 93, 97, 100, 101, 125, 127, 129, 188, 200, 201, 211, 227, 233, 238, 244, 275, 277, 278, 281], "quantit": [56, 60, 62, 79, 80, 188, 192, 210, 213, 280], "2021": [56, 79, 80, 97, 110, 127, 188, 210, 213, 238, 252, 277], "fuzz": [56, 62, 188, 192], "fuzz45933": [56, 188], "9494594": [56, 188], "neighbor": [56, 58, 75, 79, 119, 147, 188, 189, 207, 210, 282], "intersect": [56, 58, 73, 79, 80, 188, 189, 205, 211, 213], "neighbourx": [56, 58, 188, 189], "neighbouri": [56, 58, 188, 189], "common": [56, 58, 64, 66, 69, 73, 79, 80, 188, 189, 198, 200, 201, 205, 211, 213, 264], "samplen": [56, 58, 64, 66, 69, 73, 75, 79, 80, 188, 189, 198, 200, 201, 205, 208, 210, 211, 213], "fuzzyspatialfrequentpattern": [56, 188], "block": [56, 86, 88, 92, 101, 103, 116, 225, 226, 231, 234, 245, 260], "consol": 56, "kwangwari": 58, "generategraph": 58, "_fuzzypartialperiodicpattern": 60, "irregulat": 60, "mapitemsgsum": 60, "mapitemshsum": 60, "f3pmine": 60, "palla": [60, 92, 125, 127, 234, 275, 278], "_fuzzyperiodicfrequentpattern": [62, 192], "2020": [62, 66, 82, 90, 98, 100, 101, 123, 192, 200, 216, 217, 218, 233, 243, 244, 268, 269], "glasgow": [62, 192], "uk": [62, 192], "fuzz48607": [62, 192], "9177579": [62, 192], "maxtid": [62, 192], "lasttid": [62, 192], "last": [62, 80, 82, 86, 119, 192, 213, 216, 217, 218, 225, 226], "itemstoregion": [62, 192], "il": 62, "_georeferencedperiodicfrequentpattern": [64, 198], "extens": [64, 66, 119, 198, 200, 249, 250], "\u00e9clat": [64, 198], "stand": [64, 66, 198, 200], "cluster": [64, 66, 198, 200], "bottom": [64, 66, 198, 200], "up": [64, 66, 75, 198, 200, 208], "lattic": [64, 66, 198, 200], "travers": [64, 66, 119, 198, 200], "referenc": [64, 66, 69, 71, 73, 125, 186, 187, 190, 193, 194, 195, 197, 198, 200, 201, 202, 205, 214, 255, 274, 275, 276, 280], "avail": [64, 66, 69, 113, 198, 200, 201, 257], "ifilenam": [64, 66, 69, 198, 200, 201], "getneighbouritem": [64, 66, 69, 198, 200, 201], "keyset": [64, 66, 69, 198, 200, 201], "mapneighbour": [64, 66, 69, 198, 200, 201], "neighbourfil": [64, 66, 69, 198, 200, 201], "georeferencedperidicfrequentpattern": [64, 198], "ravikumar": [64, 79, 88, 97, 104, 198, 211, 231, 238, 246], "_spatialfrequentpattern": [66, 200], "popular": [66, 200], "version": [66, 97, 200, 240], "koji": [66, 79, 90, 97, 100, 101, 125, 127, 200, 211, 233, 238, 244, 275, 278], "toyoda": [66, 69, 71, 86, 90, 100, 101, 106, 110, 127, 129, 200, 201, 202, 225, 233, 244, 248, 252, 278, 281], "masashi": [66, 86, 88, 89, 90, 100, 101, 106, 127, 200, 225, 231, 232, 233, 244, 248, 278], "kitsuregawa": [66, 69, 71, 86, 89, 90, 93, 100, 101, 106, 108, 129, 200, 201, 202, 225, 227, 232, 233, 244, 248, 251, 281], "masaru": [66, 86, 88, 89, 90, 100, 101, 106, 108, 200, 225, 231, 232, 233, 244, 248, 251], "veri": [66, 79, 80, 90, 97, 98, 100, 104, 110, 200, 210, 213, 233, 240, 243, 244, 246, 252], "dictkeystoint": [66, 200], "ilist": [66, 200], "eclatgener": [66, 92, 103, 104, 200, 234, 245, 246], "clist": [66, 200], "generatespatialfrequentpattern": [66, 200], "spatialfrequentpattern": [66, 200], "minp": [69, 88, 91, 92, 106, 108, 201, 229, 230, 231, 248, 251], "maxiat": [69, 201], "_partialperiodicspatialpattern": [69, 201], "georeferenec": [69, 201], "c": [69, 88, 93, 106, 113, 116, 119, 120, 121, 129, 201, 223, 227, 231, 248, 255, 257, 260, 264, 265, 281], "saideep": [69, 93, 101, 106, 201, 227, 248], "2019": [69, 71, 93, 116, 129, 201, 202, 227, 260, 281], "big": [69, 79, 80, 92, 98, 101, 104, 110, 116, 201, 210, 213, 234, 243, 246, 252, 261], "233": [69, 201], "238": [69, 201], "bigdata47090": [69, 201], "9005693": [69, 201], "partialperiodicspatialpattern": [69, 201], "minutil": [71, 73, 75, 76, 78, 79, 80, 110, 202, 205, 206, 207, 208, 210, 211, 213, 252], "_utilitypattern": [71, 73, 75, 76, 79, 110, 202, 205, 206, 207, 208, 210, 211, 252], "help": [71, 110, 202, 252], "hufi": [71, 202], "cutoff": [71, 202], "suffix": [71, 86, 202, 226], "pakdd": [71, 89, 97, 123, 125, 202, 232, 239, 267, 271, 275], "978": [71, 73, 92, 97, 103, 104, 116, 123, 125, 127, 202, 205, 234, 239, 245, 246, 261, 267, 271, 275, 277, 278], "030": [71, 73, 127, 202, 205, 277], "16145": [71, 202], "3_15": [71, 202], "candidatecount": [71, 73, 75, 79, 80, 110, 202, 205, 206, 208, 211, 213, 252], "maxmemori": [71, 73, 75, 76, 79, 80, 110, 202, 205, 206, 208, 211, 213, 252], "highutilityfrequentitemset": [71, 202], "utilitybinarraylu": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "hold": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "local": [71, 73, 75, 79, 80, 82, 110, 202, 205, 206, 211, 213, 214, 215, 216, 217, 218, 252, 264], "utilitybinarraysu": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "subtre": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "oldnamestonewnam": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "old": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "newnamestooldnam": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "singleitemsetssupport": [71, 202], "singleitemsetsutil": [71, 202], "patterncount": [71, 73, 75, 79, 110, 202, 205, 206, 211, 252], "rhui": [71, 110, 202, 252], "itemstokeep": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "promis": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "i": [71, 110, 113, 119, 120, 123, 190, 202, 252, 257, 264, 270, 276, 280], "extend": [71, 73, 75, 79, 80, 110, 119, 202, 205, 206, 211, 213, 252], "itemstoexplor": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "need": [71, 110, 119, 202, 252, 255], "backtrackinghufim": [71, 202], "transactionsofp": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "prefixlength": [71, 73, 75, 79, 80, 108, 110, 202, 205, 206, 211, 213, 251, 252], "useutilitybinarraystocalculateupperbound": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "transactionsp": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "sub": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "tempposit": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "rel": [71, 108, 110, 148, 202, 214, 250, 251, 252, 253, 264, 265, 280, 284], "what": [71, 73, 75, 79, 80, 110, 113, 202, 205, 206, 211, 213, 252, 257, 258], "chose": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "isequ": [71, 73, 202, 205], "transaction1": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "transaction2": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "ident": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "useutilitybinarraytocalculatesubtreeutilityfirsttim": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "sortdatabas": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "sorttransact": [71, 73, 202, 205], "trans1": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "trans2": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "useutilitybinarraytocalculatelocalutilityfirsttim": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "35": [71, 73, 75, 79, 80, 110, 202, 205, 206, 207, 208, 210, 211, 213, 252], "pradeep": [71, 73, 75, 79, 80, 110, 202, 205, 206, 208, 211, 213, 252], "pallikila": [71, 73, 75, 79, 80, 110, 202, 205, 206, 208, 210, 211, 213, 252], "satisfi": [73, 79, 86, 101, 139, 148, 205, 211, 225, 237, 284], "37188": [73, 205], "3_17": [73, 205], "highutilityfrequentspatialitemset": [73, 205], "pmu": [73, 79, 80, 205, 210, 211, 213], "shufi": [73, 205], "ie": [73, 75, 79, 80, 205, 206, 211, 213], "subtreeutil": [73, 75, 79, 80, 205, 206, 211, 213], "grater": [73, 79, 80, 205, 211, 213], "calculateneighbourintersect": [73, 79, 80, 205, 211, 213], "backtrackingefim": [73, 75, 79, 80, 205, 206, 211, 213], "shui": [73, 79, 205, 211], "neighbourhoodlist": [73, 79, 80, 205, 211, 213], "av": [73, 79, 80, 205, 211, 213], "lst1": [73, 79, 80, 205, 211, 213], "lst2": [73, 79, 80, 205, 211, 213], "bin": [73, 79, 80, 205, 211, 213], "fastest": [75, 76, 123, 206, 270], "zida": [75, 76, 206], "cw": [75, 76, 206], "inf": [75, 76, 119, 120, 206], "syst": [75, 76, 84, 206, 220], "51": [75, 76, 206], "595": [75, 76, 206], "625": [75, 76, 206], "2017": [75, 76, 86, 88, 91, 133, 206, 225, 229, 230, 285], "s10115": [75, 76, 206], "016": [75, 76, 206], "0986": [75, 76, 206], "highutilityitemset": [75, 79, 206, 211], "hui": [75, 79, 206, 207, 210], "greater": [75, 116, 206, 260, 261], "is_equ": [75, 80, 110, 206, 213, 252], "sort_transact": [75, 79, 80, 110, 206, 211, 213, 252], "_pd": [75, 206], "_transact": [75, 110, 206, 252], "ifile1": [75, 207], "hmier": [75, 207], "mapfmap": [75, 79, 207, 210], "euc": [75, 79, 207, 210], "fhm": [75, 79, 207, 210], "genet": [75, 161, 207], "huicnt": [75, 79, 207, 210], "nighbou": [75, 207], "explore_searchtre": [75, 79, 207, 210], "updateclos": [75, 79, 207, 210], "cul": [75, 79, 207, 210], "st": [75, 79, 207, 210], "excul": [75, 79, 207, 210], "newt": [75, 79, 207, 210], "ex": [75, 79, 207, 210], "ey_t": [75, 207], "updat": [75, 79, 88, 90, 91, 93, 95, 97, 100, 101, 106, 113, 116, 117, 119, 123, 125, 127, 135, 207, 210, 227, 229, 230, 233, 236, 239, 240, 242, 244, 248, 256, 257, 261, 262, 266, 267, 268, 269, 270, 271, 275, 277, 278], "saveitemset": [75, 79, 108, 207, 210, 251], "updateel": [75, 79, 207, 210], "duppo": [75, 207], "vale": [75, 79, 207, 210], "duplic": [75, 79, 207, 210], "construccul": [75, 207], "exnighbor": [75, 207], "phase": [75, 208], "vincent": [75, 208], "tseng": [75, 208], "cheng": [75, 101, 208], "wu": [75, 101, 208], "bai": [75, 123, 208, 268, 269], "en": [75, 208], "shie": [75, 208], "philip": [75, 208], "yu": [75, 208], "2010": [75, 208], "16th": [75, 208], "machineri": [75, 208], "york": [75, 208], "ny": [75, 208], "usa": [75, 79, 80, 110, 123, 208, 210, 213, 252, 270], "253": [75, 208], "262": [75, 110, 208, 252], "1835804": [75, 208], "1835839": [75, 208], "numberofnod": [75, 208], "parentnumberofnod": [75, 208], "parent": [75, 82, 86, 91, 97, 101, 127, 208, 216, 225, 242, 278], "mapitemtominimumutil": [75, 208], "phui": [75, 208], "mapitemtotwu": [75, 208], "twu": [75, 79, 80, 208, 211, 213], "createlocaltre": [75, 208], "alpha": [75, 91, 208], "thread": [75, 76, 120], "renam": [75, 76], "resid": [75, 76], "byte": [75, 76], "uniqu": [75, 76, 264], "read_fil": [75, 76], "filter": [75, 76], "primari": [75, 76, 80, 213], "secondari": [75, 76, 80, 213], "binarysearch": [75, 76], "arr": [75, 76], "binari": [75, 76, 190, 223, 276, 280], "project": [75, 76, 80, 101, 213], "file_data": [75, 76], "utilitypattern": [78, 80, 213], "abc": [78, 80, 86, 92], "actual": [78, 80, 249, 250], "model": [79, 143, 210, 263], "mani": [79, 210], "real": [79, 210, 280], "world": [79, 210, 280], "spatio": [79, 210], "orlando": [79, 80, 110, 210, 213, 252], "fl": [79, 80, 110, 210, 213, 252], "4925": [79, 80, 210, 213], "4935": [79, 80, 210, 213], "bigdata52589": [79, 80, 110, 210, 213, 252], "9671912": [79, 80, 210, 213], "mapofpmu": [79, 210], "constructcul": [79, 210], "compactulist": [79, 210], "exneighbour": [79, 210], "eyt": [79, 210], "duprevpo": [79, 210], "pamalla": [79, 125, 211, 275], "penugonda": [79, 211], "raj": [79, 211], "bathala": [79, 211], "dao": [79, 116, 127, 211, 261, 277], "minh": [79, 211], "bommisetti": [79, 211], "2023": [79, 106, 125, 127, 211, 248, 275, 278], "hdshui": [79, 211], "novel": [79, 84, 211, 221], "dimension": [79, 211], "26": [79, 211], "s10489": [79, 117, 123, 211, 262, 268, 269], "022": [79, 211], "04436": [79, 211], "when": [79, 80, 82, 113, 211, 213, 216, 217, 218, 256], "_isequ": [79, 211], "datasetpath": [80, 213], "largest": [80, 213], "getmaxitem": [80, 213], "tkshui": [80, 213], "additemset": [80, 213], "prioriti": [80, 213], "queue": [80, 120, 213], "ad": [80, 82, 86, 90, 91, 93, 95, 97, 100, 101, 106, 113, 116, 117, 123, 125, 127, 135, 213, 216, 225, 226, 227, 233, 236, 239, 240, 241, 242, 244, 248, 258, 261, 262, 266, 267, 268, 269, 270, 271, 275, 277, 278], "numpi": [80, 213], "current": [80, 213, 276], "heaplist": [80, 213], "inttostr": [80, 213], "item1": [80, 213, 255, 264, 265], "item2": [80, 213, 255, 264, 265], "whether": [80, 119, 120, 213], "posit": [80, 108, 127, 213, 251, 277], "strtoint": [80, 213], "temp": [80, 213], "transactionutil": [80, 213], "utilit": [80, 213], "prefixutil": [80, 213], "offset": [80, 213], "pointer": [80, 213], "projectedtransact": [80, 213], "till": [80, 213], "getitem": [80, 213], "getutil": [80, 213], "getpmu": [80, 213], "getlastposit": [80, 213], "removeunpromisingitem": [80, 213], "remov": [80, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 119, 123, 125, 127, 135, 213, 227, 229, 230, 233, 236, 239, 240, 242, 244, 248, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278], "insertionsort": [80, 213], "projecttransact": [80, 213], "nams": [80, 213], "maxsop": [82, 216, 217, 218], "mindur": [82, 216, 217, 218], "_localperiodicpattern": [82, 216, 217, 218], "spillov": [82, 216, 217, 218], "minim": [82, 216, 217, 218], "ensur": [82, 148, 216, 217, 218, 284], "those": [82, 216, 217, 218], "yang": [82, 116, 117, 216, 217, 218, 260, 262], "ventura": [82, 216, 217, 218], "luna": [82, 110, 216, 217, 218, 252], "discret": [82, 216, 217, 218], "scienc": [82, 104, 116, 121, 123, 127, 144, 216, 217, 218, 246, 261, 268, 269, 273, 277, 278], "elsevi": [82, 216, 217, 218], "ppt": [82, 216, 217, 218], "1016": [82, 84, 86, 97, 123, 216, 217, 218, 220, 225, 240, 266], "ins": [82, 216, 217, 218], "09": [82, 84, 123, 216, 217, 218, 220, 266], "044": [82, 216, 217, 218], "consecut": [82, 216, 217, 218], "tsmin": [82, 216, 217, 218], "date": [82, 216, 217, 218], "tsmax": [82, 216, 217, 218], "ptl": [82, 216, 217, 218], "tslist": [82, 216, 217, 218], "bit": [82, 113, 121, 216, 217, 218, 257], "vector": [82, 121, 216, 217, 218], "whole": [82, 216], "findsepar": [82, 86, 216, 225], "split": [82, 216, 223], "cretelpplist": [82, 216], "createtslist": [82, 216, 217, 218], "generatelpp": [82, 216, 217, 218], "createlpptre": [82, 216], "lpptree": [82, 216], "patterngrowth": [82, 216], "prefixpflist": [82, 216], "calculateptl": [82, 216, 217, 218], "calculateptlbit": [82, 216], "getlocalperiodicpattern": [82, 216, 217, 218], "lppmgrowth": [82, 216], "minsop": [82, 216, 217, 218], "f": [82, 216, 217, 218, 249, 250, 255, 264, 265], "nakamura": [82, 86, 216, 217, 218, 225, 226], "localperiodicpatterntre": [82, 216], "child": [82, 86, 91, 216, 225], "next": [82, 86, 113, 216, 225, 257, 258], "getchild": [82, 86, 216, 225], "itemnam": [82, 86, 97, 101, 216, 225, 242], "don": [82, 86, 216, 225], "frequentpatterngrowth": [82, 86, 216, 225], "firstnodelink": [82, 86, 216, 225], "branch": [82, 86, 97, 101, 216, 225, 242], "frequentpatterntre": [82, 86, 97, 101, 108, 216, 225, 242, 251], "fixnodelink": [82, 86, 216, 225], "newnod": [82, 86, 216, 225], "deletenod": [82, 86, 216, 225], "delet": [82, 86, 113, 216, 225, 258], "createprefixtre": [82, 86, 216, 225], "timestamplist": [82, 86, 216, 225], "fix": [82, 86, 196, 216, 225], "lppmbreathsearch": [82, 217], "extensionofp": [82, 217, 218], "lppbreadth": [82, 217], "lppmdepthsearch": [82, 218], "mi": [84, 220, 221], "ya": [84, 220], "hu": [84, 220], "yen": [84, 220], "liang": [84, 220], "chen": [84, 113, 220, 258], "2006": [84, 220], "mechan": [84, 220], "deci": [84, 220], "42": [84, 113, 196, 220, 256], "octob": [84, 220], "24": [84, 220], "dss": [84, 220], "007": [84, 220], "were": [84, 123, 125, 127, 129, 131, 135, 220, 221, 266, 275, 277, 278, 281, 283], "appropri": [84, 123, 125, 127, 129, 131, 135, 220, 221, 266, 275, 277, 278, 281, 283], "limit": [84, 123, 125, 127, 129, 131, 135, 220, 221, 266, 275, 277, 278, 281, 283], "misfil": [84, 220, 221], "note": [84, 97, 98, 100, 101, 104, 106, 108, 110, 113, 116, 121, 190, 196, 220, 221, 240, 241, 242, 243, 244, 246, 248, 251, 252, 256, 257, 258, 260, 261, 264, 276], "11": [84, 86, 113, 123, 221, 225, 258, 272], "edbt": [84, 221], "1951365": [84, 221], "1951370": [84, 221], "minpr": [86, 225, 226], "venkatesh": [86, 225], "125": [86, 225], "170": [86, 225], "182": [86, 225], "issn": [86, 225], "0164": [86, 225], "1212": [86, 225], "jss": [86, 97, 225, 240], "2016": [86, 97, 225, 240, 242], "035": [86, 97, 225, 240], "storepatternsinfil": [86, 123, 225, 268, 269, 272], "ouputfil": [86, 225, 226], "getpatternindf": [86, 88, 90, 91, 225, 229, 230, 233], "pfgrowth": [86, 225], "pflist": [86, 225], "pr": [86, 225], "createconditionaltre": [86, 225], "Its": [86, 225], "ip": [86, 225, 226], "calculateip": [86, 225], "timestampfin": [86, 225], "generatepflistver2": [86, 225], "generatepftreever2": [86, 225], "getper_sup": [86, 104, 226, 246], "calucl": [86, 226], "sup": [86, 226], "getpersup": [86, 226], "oneitem": [86, 106, 226, 248], "tidsetx": [86, 226], "tidset": [86, 226], "userd": [86, 226], "equibal": [86, 226], "getpartialperiodicpattern": [86, 226], "ouput": [86, 226], "userspecifi": 86, "term": [86, 249, 250], "getfrequentpattern": [86, 90, 108, 233, 251], "relativep": [88, 229], "_partialperiodicpattern": [88, 89, 90, 91, 93, 227, 229, 230, 231, 232, 233], "3pgrowth": [88, 229, 230], "ssdbm": [88, 91, 229, 230], "17": [88, 91, 229, 230], "29th": [88, 91, 229, 230], "scientif": [88, 91, 229, 230], "managementjun": [88, 91, 229, 230], "30": [88, 91, 196, 229, 230], "6http": [88, 91, 229, 230], "3085504": [88, 91, 229, 230], "3085535": [88, 91, 229, 230], "partialperiodiconeitem": [88, 91, 229, 230], "updatetransact": [88, 91, 123, 125, 127, 135, 229, 230, 266, 267, 268, 269, 270, 271, 275, 277], "aperiod": [88, 90, 91, 93, 95, 97, 100, 101, 116, 117, 127, 227, 229, 230, 233, 236, 239, 240, 244, 261, 262, 277, 278], "constrcut": [88, 91, 229, 230], "descripit": [88, 231], "3peclat": [88, 231], "kirana": [88, 231], "venkateshd": [88, 231], "toyodaa": [88, 231], "kitsuregawaa": [88, 231], "tkl": [88, 89, 95, 106, 231, 232, 236, 248], "ii": [88, 89, 95, 106, 231, 232, 236, 248], "tokyo": [88, 89, 95, 106, 231, 232, 236, 248], "ac": [88, 89, 95, 106, 113, 231, 232, 236, 248, 257], "jp": [88, 89, 95, 106, 231, 232, 236, 248], "upload": [88, 89, 95, 106, 231, 232, 236, 248], "publication_fil": [88, 89, 95, 106, 231, 232, 236, 248], "774": [88, 231], "jss_2017": [88, 231], "creatingoneitemset": [88, 97, 231, 238, 241], "getperiodandsupport": [88, 97, 231, 238, 241, 242], "periodicsupport": [89, 90, 91, 93, 227, 232, 233], "kiran1": [89, 232], "venkatesh2": [89, 232], "viger3": [89, 232], "toyoda1": [89, 232], "reddy2": [89, 232], "799": [89, 232], "max3p": [90, 233], "IS": [90, 233], "3p": [90, 233], "yutaka": [90, 100, 233, 244], "watanob": [90, 97, 100, 104, 233, 238, 244, 246], "bhaskar": [90, 100, 233, 244], "chaudhuri": [90, 100, 233, 244], "9260063": [90, 100, 233, 244], "maximaltre": [90, 233], "periodicfrequentoneitem": [90, 93, 95, 97, 100, 101, 116, 117, 127, 227, 233, 236, 239, 240, 244, 261, 262, 277, 278], "updatedatabas": [90, 93, 95, 97, 100, 101, 106, 116, 117, 127, 227, 233, 236, 239, 240, 244, 248, 261, 262, 278], "max3prowth": [90, 233], "threepgrowth": [90, 233], "_gettransact": 91, "addchild": [91, 97, 101, 242], "summari": [91, 101], "info": 91, "add_transact": 91, "add_transaction_summ": 91, "tid_summ": 91, "get_condition_pattern": 91, "remove_nod": 91, "node_v": 91, "get_t": 91, "ts": [91, 276], "merg": [91, 101], "generate_pattern": 91, "glist": 91, "isrespons": [91, 101], "lambda": [91, 101], "cond_tran": 91, "cond_pat": 91, "cond_tid": 91, "getpf": 91, "tid_list": 91, "getp": 91, "4pgrowth": 91, "me": 91, "npartit": [91, 101], "getfrequentitem": [91, 101], "getfrequentitemset": [91, 101], "perfreqitem": 91, "psinfo": 91, "setpartit": 91, "031": [92, 104, 116, 125, 234, 246, 261, 275], "39847": [92, 234], "6_28": [92, 234], "candidatelist": [92, 103, 104, 113, 234, 245, 246, 256, 257, 258], "generatefrequentpattern": [92, 103, 104, 234, 245, 246], "topk_pppgrowth": [92, 234], "irregular": [93, 137, 227, 228, 264], "workshop": [93, 129, 227, 281], "icdmw": [93, 129, 227, 281], "1020": [93, 227], "1028": [93, 227], "00147": [93, 227], "remain": [93, 95, 97, 101, 106, 116, 117, 123, 125, 127, 135, 223, 227, 236, 239, 248, 261, 262, 264, 266, 267, 268, 269, 270, 271, 275, 277, 278], "maxperallconf": [95, 236], "_periodiccorrelatedpattern": [95, 236], "897": [95, 236], "venkatesh2018_chapter_discoveringperiod": [95, 236], "maaxperallconf": [95, 236], "thr": [95, 236], "topkpfp": [96, 102, 237], "kpfpminer": [96, 102, 237], "_periodicfrequentpattern": [97, 98, 100, 101, 103, 104, 127, 238, 239, 240, 241, 242, 243, 244, 245, 246, 277, 278], "toward": [97, 108, 116, 238, 251, 261], "columnar": [97, 116, 238, 261], "iea": [97, 101, 116, 238, 260, 261], "aie": [97, 101, 116, 238, 260, 261], "sy": [97, 123, 239, 267, 271], "khairuzzaman": [97, 123, 239, 267, 271], "tanbeer": [97, 123, 239, 267, 271], "chowdhuri": [97, 239], "farhan": [97, 239], "byeong": [97, 239], "soo": [97, 239], "jeong": [97, 239], "young": [97, 239], "koo": [97, 239], "2009": [97, 239], "642": [97, 103, 123, 239, 245, 267, 271], "01307": [97, 239], "2_24": [97, 239], "metho": [97, 239], "greedi": [97, 240], "udaykiran": [97, 240], "masarukitsuregawa": [97, 240], "krishnareddyd": [97, 240], "februari": [97, 240], "delimit": [97, 108, 240, 251], "pfpgorwthplu": [97, 240], "append": [97, 119, 242], "detail": [97, 123, 242, 270], "ps": [97, 242], "anirudh": [97, 242], "kitsuregawai": [97, 242], "symposium": [97, 123, 242, 272], "ssci": [97, 242], "7849926": [97, 242], "getconditionalpatternsindatafram": [97, 242], "onelengthitem": [97, 242], "conditionaltransact": [97, 242], "_interv": [97, 242], "fail": [97, 121, 242], "9378215": [98, 243], "maxpf": [100, 244], "maxpfrowth": [100, 244], "tostr": 101, "pfptree": 101, "itemid": 101, "satisfyp": 101, "numtran": 101, "mincount": 101, "framework": 101, "807": 101, "819": 101, "machin": [101, 135], "nowork": 101, "func1": 101, "ps1": 101, "func2": 101, "ps2": 101, "func3": 101, "endt": 101, "freqitem": 101, "topkpfpgrowth": [103, 245], "komat": [103, 245], "amphawan": [103, 133, 245, 285], "lenca": [103, 245], "athasit": [103, 245], "surarerk": [103, 245], "advanc": [103, 116, 121, 245, 261], "technolog": [103, 133, 245, 285], "chapter": [103, 123, 245, 267, 271], "10392": [103, 245], "6_3": [103, 245], "sampl": [103, 190, 245, 264, 265, 276, 280], "2022": [104, 116, 117, 127, 246, 261, 262, 278], "bda": [104, 246], "lectur": [104, 116, 121, 246, 261], "vol": [104, 116, 121, 127, 246, 261, 277, 278], "13773": [104, 246], "cham": [104, 116, 127, 246, 261, 277], "24094": [104, 246], "2_14": [104, 246], "minrec": [106, 248], "_recurringpattern": [106, 248], "haichuan": [106, 248], "shang": [106, 248], "693": [106, 248], "could": [106, 248], "potenti": [106, 140, 247, 248], "numer": [106, 248], "minr": [108, 251], "comad": [108, 251], "comad2012": [108, 251], "saveallcombin": [108, 251], "tempbuff": [108, 251], "frequentpatterngrowthgener": [108, 251], "port": [108, 251], "particular": [108, 196, 223, 251, 255, 264], "__mapsupport": [108, 251], "__minratio": [108, 251], "23": [108, 251], "minur": [110, 252], "invari": [110, 252], "252": [110, 252], "9672064": [110, 252], "relativehighutilityitemset": [110, 252], "backtrackingrhuim": [110, 252], "_sequentialpattern": [113, 256, 257, 258], "serch": [113, 256], "abov": [113, 256, 276], "mach": [113, 256], "learn": [113, 135, 256], "januari": [113, 256], "60": [113, 256], "1007652502315": [113, 256], "dx": [113, 256], "_xlendatabas": [113, 256], "rownumb": [113, 256], "_xlendatabasesam": [113, 256], "candidatetofrequ": [113, 256, 257, 258], "frequenttocandid": [113, 256, 257, 258], "frequentlist": [113, 256, 257, 258], "make1lendatabas": [113, 256], "make2lendatabas": [113, 256], "join": [113, 256], "xlen": [113, 256], "make3lendatabas": [113, 256], "makenextrow": [113, 256], "bs": [113, 256], "latestword": [113, 256], "latestword2": [113, 256], "row": [113, 119, 256, 258, 264, 265], "latest": [113, 256, 258], "previou": [113, 256], "makenextrowsam": [113, 256], "latestword1": [113, 256], "makenextrowsame2": [113, 256], "makenextrowsame3": [113, 256], "makexlendatabas": [113, 256], "rowlen": [113, 256], "seq": [113, 256], "xlendatabas": [113, 256], "makexlendatabasesam": [113, 256], "prnt": [113, 256], "ayr": [113, 257], "gehrk": [113, 257], "yiu": [113, 257], "flannick": [113, 257], "bitmap": [113, 257], "eighth": [113, 257], "edmonton": [113, 257], "alberta": [113, 257], "canada": [113, 257], "juli": [113, 257], "_iddatabas": [113, 257], "_maxseqlen": [113, 257], "_creatingitemset": [113, 257], "make2bitdatabas": [113, 257], "dfsprune": [113, 257], "sstep": [113, 257], "istep": [113, 257], "again": [113, 257], "until": [113, 257], "ssteo": [113, 257], "ones": [113, 257], "010101": [113, 257], "001111": [113, 257], "00001001": [113, 257], "00000111": [113, 257], "pattren": [113, 257], "got": [113, 257], "befor": [113, 257, 258], "presum": [113, 257], "later": [113, 257], "ab": [113, 257], "countsup": [113, 257], "span": [113, 258], "mortazavi": [113, 258], "asl": [113, 258], "wang": [113, 116, 117, 258, 261, 262], "pinto": [113, 258], "dayal": [113, 258], "hsu": [113, 258], "1424": [113, 258], "1440": [113, 258], "getsameseq": [113, 258], "startrow": [113, 258], "makenext": [113, 258], "sepdatabas": [113, 258], "head": [113, 258], "makenextsam": [113, 258], "makeseqdatabasefirst": [113, 258], "makeseqdatabasesam": [113, 258], "makesupdatabas": [113, 258], "serchsam": [113, 258], "maxla": [116, 117, 260, 261, 262], "_stableperiodicfrequentpattern": [116, 117, 260, 262], "stabl": [116, 117, 214, 260, 261, 262, 263, 264], "dicov": [116, 260, 261], "three": [116, 260, 261], "contraint": [116, 260, 261], "labil": [116, 260, 261], "proc": [116, 260], "32nd": [116, 260], "conf": [116, 260], "industri": [116, 260], "lnai": [116, 260], "230": [116, 260], "244": [116, 260], "loss": [116, 260], "calculatela": [116, 260], "pfpeclat": [116, 260], "fujita": [116, 261], "ali": [116, 261], "ed": [116, 121, 127, 261, 277], "theori": [116, 261], "practic": [116, 261], "13343": [116, 261], "08530": [116, 261], "7_70": [116, 261], "includ": [116, 117, 119, 261, 262], "spplist": [116, 261], "appl": [117, 262], "intel": [117, 262], "52": [117, 262], "6917": [117, 262], "6938": [117, 262], "020": [117, 262], "02181": [117, 262], "ee": [119, 120], "rightmost": 119, "containedg": [119, 120], "v1": [119, 120], "v2": [119, 120], "copi": [119, 120], "getallvlabel": [119, 120], "label": [119, 120], "getat": [119, 120], "index": [119, 120, 123, 214, 270], "geteelist": [119, 120], "getrightmost": [119, 120], "getrightmostpath": [119, 120], "isempti": [119, 120], "notpreofrm": [119, 120], "rightmostpath": 119, "onrightmostpath": [119, 120], "edgelabel": [119, 120], "getedgelabel": [119, 120], "vlabel1": [119, 120], "vlabel2": [119, 120], "getv1": [119, 120], "getv2": [119, 120], "getvlabel1": [119, 120], "getvlabel2": [119, 120], "pairsmallerthan": [119, 120], "x1": [119, 120], "x2": [119, 120], "y1": [119, 120], "y2": [119, 120], "smallerthan": [119, 120], "smallerthanorigin": [119, 120], "setofgraphsid": [119, 120], "vmap": [119, 120], "emptyintegerarrai": 119, "emptyvertexlist": 119, "findallwithlabel": [119, 120], "targetlabel": [119, 120], "getallneighbor": [119, 120], "getallvertic": [119, 120], "getedg": [119, 120], "getedgecount": [119, 120], "getid": [119, 120], "getnonprecalculatedallvertic": [119, 120], "getvlabel": [119, 120], "isneighbor": [119, 120], "precalculatelabelstovertic": [119, 120], "precalcul": 119, "precalculatevertexlist": [119, 120], "vertic": [119, 120], "iter": 119, "precalculatevertexneighbor": [119, 120], "cach": 119, "removeinfrequentlabel": [119, 120], "accordingli": 119, "minsupport": 119, "outputsinglevertic": [119, 120], "maxnumberofedg": [119, 120], "outputgraphid": [119, 120], "_gspan": 119, "edge_count_prun": [119, 120], "eliminate_infrequent_edge_label": [119, 120], "eliminate_infrequent_vertex_pair": [119, 120], "eliminate_infrequent_vertic": [119, 120], "findallonlyonevertex": [119, 120], "graphdb": [119, 120], "outputfrequentvertic": [119, 120], "option": 119, "infrequ": 119, "boolean": [119, 120], "flag": 119, "determin": [119, 136, 147, 149, 224, 282, 286], "getfrequentsubgraph": 119, "getsubgraphgraphmap": 119, "subgraph": [119, 120], "belong": 119, "fid": 119, "clabel": 119, "gid": 119, "gspandf": [119, 120], "subgraphid": [119, 120], "snippet": 119, "_ab": [119, 120], "itself": 119, "doe": 119, "modifi": 119, "found": 119, "dure": 119, "iscanon": [119, 120], "canon": 119, "compar": [119, 141, 253], "readgraph": [119, 120], "pars": 119, "removeinfrequentvertexpair": [119, 120], "rightmostpathextens": [119, 120], "graphid": [119, 120], "seem": 119, "rightmostpathextensionsfromsingl": [119, 120], "design": [119, 161], "outputpath": 119, "savesubgraphsbygraphid": 119, "flat": 119, "subgraphisomorph": [119, 120], "isomorph": 119, "try": 119, "valid": 119, "getsupportforitem": [119, 120], "incrementcount": [119, 120], "removeinfrequententriesfrommatrix": [119, 120], "setsupport": [119, 120], "vlabel": [119, 120], "addedg": [119, 120], "getedgelist": [119, 120], "getlabel": [119, 120], "removeedg": [119, 120], "edgetoremov": [119, 120], "tkginstanc": 120, "subclass": 120, "invok": 120, "callabl": 120, "pass": 120, "argument": 120, "keyword": 120, "arg": 120, "kwarg": 120, "empty_integer_arrai": 120, "empty_vertex_list": 120, "_tkg": 120, "dynamic_search": 120, "threaded_dynamic_search": 120, "getksubgraph": 120, "correct": 120, "newlin": 120, "getminsupport": 120, "getqueues": 120, "getsubgraphslist": 120, "empti": 120, "gspandynamicdf": 120, "metric": 120, "registerascandid": 120, "startthread": 120, "represent": 121, "koh": 121, "jl": 121, "yo": 121, "pw": 121, "2005": [121, 131, 283], "zhou": 121, "ooi": 121, "meng": 121, "dasfaa": 121, "3453": 121, "berlin": 121, "heidelberg": 121, "11408079_51": 121, "frequentfrequ": 121, "abil": 121, "handl": 121, "inconsist": 121, "incorrect": 121, "cufp": [123, 266], "peihong": [123, 266], "expert": [123, 266], "39": [123, 266], "issu": [123, 266], "march": [123, 266], "4084": [123, 266], "4093": [123, 266], "eswa": [123, 266], "087": [123, 266], "puf": [123, 135, 267, 271, 272], "carson": [123, 267, 270, 271, 272], "kai": [123, 267, 270, 271, 272], "sang": [123, 267, 270, 271, 272], "leung": [123, 267, 270, 271, 272], "compact": [123, 267, 271], "pacif": [123, 267, 271], "asia": [123, 267, 271], "2013": [123, 267, 271], "37453": [123, 267, 271], "1_2": [123, 267, 271], "cup": [123, 268, 269], "tuong": [123, 268, 269], "le": [123, 268, 269], "vo": [123, 268, 269], "van": [123, 268, 269], "nam": [123, 268, 269], "huynh": [123, 268, 269], "ngoc": [123, 268, 269], "thanh": [123, 268, 269], "nguyen": [123, 268, 269], "sung": [123, 268, 269], "wook": [123, 268, 269], "baik": [123, 268, 269], "busi": [123, 268, 269], "media": [123, 268, 269], "llc": [123, 268, 269], "part": [123, 268, 269], "019": [123, 268, 269], "01622": [123, 268, 269], "getpatternsindatafram": [123, 268, 269, 272], "richard": [123, 270], "kyle": [123, 270], "mackinnon": [123, 270], "2014": [123, 270], "14": [123, 270], "societi": [123, 270], "893": [123, 270], "898": [123, 270], "146": [123, 270], "dict1": [123, 270], "printtre": [123, 127, 270, 278], "lije": [123, 272], "sun": [123, 272], "transform": [123, 272], "sac": [123, 272], "computingmarch": [123, 272], "983": [123, 272], "984": [123, 272], "1982185": [123, 272], "1982399": [123, 272], "gfp": [125, 275], "33380": [125, 275], "4_3": [125, 275], "neighborfil": [125, 275], "sampleneighbor": [125, 275], "ms": [127, 277], "zhang": [127, 277], "mantoro": [127, 277], "ayu": [127, 277], "wong": [127, 277], "hidayanto": [127, 277], "neural": [127, 277], "iconip": [127, 277, 278], "commun": [127, 277, 278], "1516": [127, 277], "92307": [127, 277], "5_83": [127, 277], "_lno": [127, 277], "removefalseposit": [127, 277], "plu": [127, 278], "upfp": [127, 278], "1792": [127, 278], "singapor": [127, 278], "981": [127, 278], "99": [127, 278], "1642": [127, 278], "9_16": [127, 278], "floot": [127, 129, 278, 281], "minw": [129, 281], "_weightedfrequentspatialpattern": [129, 281], "weight": [129, 131, 133, 135, 214, 280, 281, 282, 283, 284, 285, 286], "987": [129, 281], "996": [129, 281], "00143": [129, 281], "minweight": [129, 131, 281, 283], "weightfil": [129, 131, 281, 283], "weightfrequentneighbourhoodpattern": [129, 281], "wfile": [129, 131, 133, 135, 281, 283, 285], "_weightedfrequentpattern": [131, 135, 283], "wfminer": [131, 283], "yun": [131, 283], "leggett": [131, 283], "636": [131, 283], "640": [131, 283], "epub": [131, 283], "9781611972757": [131, 283], "76": [131, 283], "weightsampl": [131, 283], "weightfrequentpattern": [131, 283], "_wfile": [133, 285], "ws": [133, 285], "_weightedfrequentregularpattern": [133, 285], "wfri": [133, 285], "klangwisan": [133, 285], "9th": [133, 285], "smart": [133, 285], "kst": [133, 285], "66": [133, 285], "71": [133, 285], "7886090": [133, 285], "weightsupport": [133, 285], "expsup": 135, "expwsup": 135, "recognit": 135, "book": [135, 190, 276, 280], "jerri": 135, "wensheng": 135, "gan": 135, "cyclic": [136, 139, 224, 237], "full": [136, 224], "follow": [136, 190, 196, 224, 255, 264, 276, 280], "strict": [136, 224], "still": [136, 224], "interesting": [136, 224], "mainten": [136, 140, 224, 247], "repeat": [137, 147, 149, 228, 282, 286], "exactli": [137, 228], "intermitt": [137, 228], "convent": [137, 228], "task": [138, 143, 144, 145, 146, 235, 263, 273, 274, 279], "sale": [138, 139, 235, 237], "observ": [139, 196, 237, 249, 250], "goal": [139, 140, 237, 247], "plai": [139, 237], "crucial": [139, 237], "role": [139, 237], "togeth": [142, 161, 254], "clickstream": [142, 254], "biolog": [142, 254], "log": [142, 254], "retent": [142, 254], "sppm": [143, 263], "success": [143, 263], "known": [143, 263], "spp": [143, 263], "reliabl": [143, 263], "adher": [143, 263], "stabil": [143, 263], "enabl": [143, 263], "probabilist": [144, 145, 146, 273, 274, 276, 279], "determinist": [144, 146, 273, 279], "deal": [144, 146, 273, 279], "financ": [144, 273], "aris": [145, 274], "address": [146, 279], "pose": [146, 279], "neighborhood": [147, 196, 282], "assign": [147, 148, 149, 282, 284, 286], "proxim": [147, 282], "group": [147, 282], "cumul": [147, 148, 149, 282, 284, 286], "focu": [148, 284], "constitu": [149, 286], "contigu": [150, 214], "def": 150, "definit": 151, "pami": [152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "typic": 161, "done": 161, "dna": 161, "protein": 161, "lead": 161, "logic": 190, "pleas": [190, 264], "lie": 190, "zero": [190, 276], "impli": 190, "bread": [190, 276, 280], "jam": [190, 276, 280], "butter": [190, 276, 280], "pen": [190, 276, 280], "bat": [190, 276, 280], "shown": [190, 223, 264, 265, 276, 280], "below": [190, 223, 264, 265, 276, 280], "tabl": [190, 264, 276, 280], "ball": [190, 276, 280], "fuzzyitema": 190, "fuzzyitemb": 190, "fuzzyitemn": 190, "fuzzyvalu": 190, "fuzzyvaluea": 190, "fuzzyvalueb": 190, "fuzzyvaluen": 190, "choic": [190, 276, 280], "sinc": [190, 264, 265, 276, 280], "polygon": [190, 276, 280], "comma": [190, 223, 264, 265, 276, 280], "facilit": [190, 276, 280], "symbol": [190, 276, 280], "110": [190, 280], "gather": [196, 223], "sensor": 196, "phenomenon": 196, "topic": 196, "spatialitem1": 196, "spatialitem2": 196, "spatialitemn": 196, "price": [196, 276, 280], "40": 196, "utilitya": [196, 280], "utilityb": [196, 280], "utilityn": [196, 280], "162": 196, "140": 196, "70": 196, "With": [214, 265], "modul": [214, 219], "packag": 219, "subpackag": 219, "content": 219, "broadli": 223, "classifi": 223, "window": 223, "windowid": 223, "brace": 223, "left": 223, "hand": 223, "side": 223, "letter": 223, "pend": 228, "quantiti": [249, 250], "mathemat": [249, 250], "wherea": [249, 250], "suppos": [249, 250], "intrus": [249, 250], "sid": 255, "itema": [255, 276, 280], "itemb": [255, 276, 280], "itemc": 255, "gap": 264, "implicitli": 264, "thereaft": 264, "rather": 264, "being": 264, "absolut": 264, "especi": 264, "variant": 264, "work": 264, "properli": 264, "share": 264, "itemn": [264, 265, 276, 280], "directli": 265, "storag": 265, "perfect": 276, "hidden": 276, "now": 276, "probabilitya": 276, "probabilityb": 276, "probabilityn": 276, "introduct": 276, "becaus": 280, "contrast": 280, "fact": 280, "henceforth": 280, "most": 280, "extern": 280, "supermarket": 280, "do": 280, "purchas": 280, "custom": 280, "seo": 280}, "objects": {"": [[20, 0, 0, "-", "PAMI"]], "PAMI": [[21, 0, 0, "-", "AssociationRules"], [23, 0, 0, "-", "correlatedPattern"], [25, 0, 0, "-", "coveragePattern"], [27, 0, 0, "-", "extras"], [42, 0, 0, "-", "faultTolerantFrequentPattern"], [44, 0, 0, "-", "frequentPattern"], [51, 0, 0, "-", "fuzzyCorrelatedPattern"], [53, 0, 0, "-", "fuzzyFrequentPattern"], [55, 0, 0, "-", "fuzzyGeoreferencedFrequentPattern"], [57, 0, 0, "-", "fuzzyGeoreferencedPeriodicFrequentPattern"], [59, 0, 0, "-", "fuzzyPartialPeriodicPatterns"], [61, 0, 0, "-", "fuzzyPeriodicFrequentPattern"], [63, 0, 0, "-", "geoReferencedPeriodicFrequentPattern"], [65, 0, 0, "-", "georeferencedFrequentPattern"], [67, 0, 0, "-", "georeferencedFrequentSequencePattern"], [68, 0, 0, "-", "georeferencedPartialPeriodicPattern"], [70, 0, 0, "-", "highUtilityFrequentPattern"], [72, 0, 0, "-", "highUtilityGeoreferencedFrequentPattern"], [74, 0, 0, "-", "highUtilityPattern"], [77, 0, 0, "-", "highUtilityPatternsInStreams"], [78, 0, 0, "-", "highUtilitySpatialPattern"], [81, 0, 0, "-", "localPeriodicPattern"], [83, 0, 0, "-", "multipleMinimumSupportBasedFrequentPattern"], [85, 0, 0, "-", "partialPeriodicFrequentPattern"], [87, 0, 0, "-", "partialPeriodicPattern"], [93, 0, 0, "-", "partialPeriodicPatternInMultipleTimeSeries"], [94, 0, 0, "-", "periodicCorrelatedPattern"], [96, 0, 0, "-", "periodicFrequentPattern"], [105, 0, 0, "-", "recurringPattern"], [107, 0, 0, "-", "relativeFrequentPattern"], [109, 0, 0, "-", "relativeHighUtilityPattern"], [111, 0, 0, "-", "sequence"], [112, 0, 0, "-", "sequentialPatternMining"], [115, 0, 0, "-", "stablePeriodicFrequentPattern"], [118, 0, 0, "-", "subgraphMining"], [121, 0, 0, "-", "uncertainFaultTolerantFrequentPattern"], [122, 0, 0, "-", "uncertainFrequentPattern"], [124, 0, 0, "-", "uncertainGeoreferencedFrequentPattern"], [126, 0, 0, "-", "uncertainPeriodicFrequentPattern"], [128, 0, 0, "-", "weightedFrequentNeighbourhoodPattern"], [130, 0, 0, "-", "weightedFrequentPattern"], [132, 0, 0, "-", "weightedFrequentRegularPattern"], [134, 0, 0, "-", "weightedUncertainFrequentPattern"]], "PAMI.AssociationRules": [[22, 0, 0, "-", "basic"]], "PAMI.AssociationRules.basic": [[22, 0, 0, "-", "abstract"]], "PAMI.correlatedPattern": [[24, 0, 0, "-", "basic"]], "PAMI.correlatedPattern.basic": [[152, 0, 0, "-", "CoMine"], [153, 0, 0, "-", "CoMinePlus"], [24, 0, 0, "-", "abstract"]], "PAMI.correlatedPattern.basic.CoMine": [[152, 1, 1, "", "CoMine"]], "PAMI.correlatedPattern.basic.CoMine.CoMine": [[152, 2, 1, "", "getMemoryRSS"], [152, 2, 1, "", "getMemoryUSS"], [152, 2, 1, "", "getPatterns"], [152, 2, 1, "", "getPatternsAsDataFrame"], [152, 2, 1, "", "getRuntime"], [152, 2, 1, "", "mine"], [152, 2, 1, "", "printResults"], [152, 2, 1, "", "recursive"], [152, 2, 1, "", "save"], [152, 2, 1, "", "startMine"]], "PAMI.correlatedPattern.basic.CoMinePlus": [[153, 1, 1, "", "CoMine"]], "PAMI.correlatedPattern.basic.CoMinePlus.CoMine": [[153, 2, 1, "", "getMemoryRSS"], [153, 2, 1, "", "getMemoryUSS"], [153, 2, 1, "", "getPatterns"], [153, 2, 1, "", "getPatternsAsDataFrame"], [153, 2, 1, "", "getRuntime"], [153, 2, 1, "", "mine"], [153, 2, 1, "", "printResults"], [153, 2, 1, "", "recursive"], [153, 2, 1, "", "save"], [153, 2, 1, "", "startMine"]], "PAMI.coveragePattern": [[26, 0, 0, "-", "basic"]], "PAMI.coveragePattern.basic": [[155, 0, 0, "-", "CMine"], [156, 0, 0, "-", "CPPG"], [26, 0, 0, "-", "abstract"]], "PAMI.coveragePattern.basic.CMine": [[155, 1, 1, "", "CMine"]], "PAMI.coveragePattern.basic.CMine.CMine": [[155, 2, 1, "", "creatingCoverageItems"], [155, 2, 1, "", "genPatterns"], [155, 2, 1, "", "generateAllPatterns"], [155, 2, 1, "", "getMemoryRSS"], [155, 2, 1, "", "getMemoryUSS"], [155, 2, 1, "", "getPatterns"], [155, 2, 1, "", "getPatternsAsDataFrame"], [155, 2, 1, "", "getRuntime"], [155, 2, 1, "", "mine"], [155, 2, 1, "", "printResults"], [155, 2, 1, "", "save"], [155, 2, 1, "", "startMine"], [155, 2, 1, "", "tidToBitset"]], "PAMI.coveragePattern.basic.CPPG": [[156, 1, 1, "", "CPPG"]], "PAMI.coveragePattern.basic.CPPG.CPPG": [[156, 2, 1, "", "getMemoryRSS"], [156, 2, 1, "", "getMemoryUSS"], [156, 2, 1, "", "getPatterns"], [156, 2, 1, "", "getPatternsAsDataFrame"], [156, 2, 1, "", "getRuntime"], [156, 2, 1, "", "mine"], [156, 2, 1, "", "printResults"], [156, 2, 1, "", "save"], [156, 2, 1, "", "startMine"]], "PAMI.extras": [[28, 0, 0, "-", "DF2DB"], [29, 0, 0, "-", "calculateMISValues"], [30, 0, 0, "-", "dbStats"], [31, 0, 0, "-", "fuzzyTransformation"], [32, 0, 0, "-", "generateDatabase"], [27, 0, 0, "-", "generateLatexGraphFile"], [33, 0, 0, "-", "graph"], [34, 0, 0, "-", "image2Database"], [35, 0, 0, "-", "imageProcessing"], [36, 0, 0, "-", "messaging"], [37, 0, 0, "-", "neighbours"], [38, 0, 0, "-", "sampleDatasets"], [27, 0, 0, "-", "scatterPlotSpatialPoints"], [39, 0, 0, "-", "stats"], [40, 0, 0, "-", "syntheticDataGenerator"], [27, 0, 0, "-", "topKPatterns"], [27, 0, 0, "-", "uncertaindb_convert"], [41, 0, 0, "-", "visualize"]], "PAMI.extras.DF2DB": [[28, 0, 0, "-", "DenseFormatDF"], [28, 0, 0, "-", "SparseFormatDF"], [28, 0, 0, "-", "createTDB"], [28, 0, 0, "-", "denseDF2DBPlus"], [28, 0, 0, "-", "denseDF2DB_dump"], [28, 0, 0, "-", "sparseDF2DBPlus"]], "PAMI.extras.DF2DB.DenseFormatDF": [[28, 1, 1, "", "DenseFormatDF"]], "PAMI.extras.DF2DB.DenseFormatDF.DenseFormatDF": [[28, 2, 1, "", "convert2MultipleTimeSeries"], [28, 2, 1, "", "convert2TemporalDatabase"], [28, 2, 1, "", "convert2TransactionalDatabase"], [28, 2, 1, "", "convert2UncertainTransactional"], [28, 2, 1, "", "convert2UtilityDatabase"], [28, 2, 1, "", "getFileName"]], "PAMI.extras.DF2DB.SparseFormatDF": [[28, 1, 1, "", "SparseFormatDF"]], "PAMI.extras.DF2DB.SparseFormatDF.SparseFormatDF": [[28, 2, 1, "", "createTemporal"], [28, 2, 1, "", "createTransactional"], [28, 2, 1, "", "createUtility"], [28, 2, 1, "", "getFileName"]], "PAMI.extras.DF2DB.createTDB": [[28, 1, 1, "", "createTDB"]], "PAMI.extras.DF2DB.createTDB.createTDB": [[28, 2, 1, "", "createTDB"], [28, 2, 1, "", "save"]], "PAMI.extras.DF2DB.denseDF2DBPlus": [[28, 1, 1, "", "DenseFormatDFPlus"]], "PAMI.extras.DF2DB.denseDF2DBPlus.DenseFormatDFPlus": [[28, 2, 1, "", "createTemporal"], [28, 2, 1, "", "createTransactional"], [28, 2, 1, "", "createUtility"], [28, 2, 1, "", "getFileName"]], "PAMI.extras.DF2DB.denseDF2DB_dump": [[28, 1, 1, "", "DenseFormatDF"]], "PAMI.extras.DF2DB.denseDF2DB_dump.DenseFormatDF": [[28, 2, 1, "", "createTemporal"], [28, 2, 1, "", "createTransactional"], [28, 2, 1, "", "createUtility"], [28, 2, 1, "", "getFileName"]], "PAMI.extras.DF2DB.sparseDF2DBPlus": [[28, 1, 1, "", "SparseFormatDFPlus"]], "PAMI.extras.DF2DB.sparseDF2DBPlus.SparseFormatDFPlus": [[28, 2, 1, "", "createTemporal"], [28, 2, 1, "", "createTransactional"], [28, 2, 1, "", "createUtility"], [28, 2, 1, "", "getFileName"]], "PAMI.extras.calculateMISValues": [[29, 0, 0, "-", "usingBeta"], [29, 0, 0, "-", "usingSD"]], "PAMI.extras.calculateMISValues.usingBeta": [[29, 1, 1, "", "usingBeta"]], "PAMI.extras.calculateMISValues.usingBeta.usingBeta": [[29, 2, 1, "", "calculateMIS"], [29, 2, 1, "", "getMISDataFrame"], [29, 2, 1, "", "save"]], "PAMI.extras.calculateMISValues.usingSD": [[29, 1, 1, "", "usingSD"]], "PAMI.extras.calculateMISValues.usingSD.usingSD": [[29, 2, 1, "", "calculateMIS"], [29, 2, 1, "", "getDataFrame"], [29, 2, 1, "", "save"]], "PAMI.extras.dbStats": [[30, 0, 0, "-", "FuzzyDatabase"], [30, 0, 0, "-", "MultipleTimeSeriesFuzzyDatabaseStats"], [30, 0, 0, "-", "SequentialDatabase"], [30, 0, 0, "-", "TemporalDatabase"], [30, 0, 0, "-", "TransactionalDatabase"], [30, 0, 0, "-", "UncertainTemporalDatabase"], [30, 0, 0, "-", "UncertainTransactionalDatabase"], [30, 0, 0, "-", "UtilityDatabase"]], "PAMI.extras.dbStats.FuzzyDatabase": [[30, 1, 1, "", "FuzzyDatabase"]], "PAMI.extras.dbStats.FuzzyDatabase.FuzzyDatabase": [[30, 2, 1, "", "creatingItemSets"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getAverageUtility"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMaximumUtility"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getMinimumUtility"], [30, 2, 1, "", "getNumberOfItems"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSortedUtilityValuesOfItem"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTotalUtility"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.MultipleTimeSeriesFuzzyDatabaseStats": [[30, 1, 1, "", "MultipleTimeSeriesFuzzyDatabaseStats"]], "PAMI.extras.dbStats.MultipleTimeSeriesFuzzyDatabaseStats.MultipleTimeSeriesFuzzyDatabaseStats": [[30, 2, 1, "", "convertDataIntoMatrix"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getDensity"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getNumberOfItems"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.SequentialDatabase": [[30, 1, 1, "", "SequentialDatabase"]], "PAMI.extras.dbStats.SequentialDatabase.SequentialDatabase": [[30, 2, 1, "", "getAverageItemPerSequenceLength"], [30, 2, 1, "", "getAverageItemPerSubsequenceLength"], [30, 2, 1, "", "getAverageSubsequencePerSequenceLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumSequenceLength"], [30, 2, 1, "", "getMaximumSubsequenceLength"], [30, 2, 1, "", "getMinimumSequenceLength"], [30, 2, 1, "", "getMinimumSubsequenceLength"], [30, 2, 1, "", "getSequenceSize"], [30, 2, 1, "", "getSequencialLengthDistribution"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getStandardDeviationSequenceLength"], [30, 2, 1, "", "getStandardDeviationSubsequenceLength"], [30, 2, 1, "", "getSubsequencialLengthDistribution"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getVarianceSequenceLength"], [30, 2, 1, "", "getVarianceSubsequenceLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"]], "PAMI.extras.dbStats.TemporalDatabase": [[30, 1, 1, "", "TemporalDatabase"]], "PAMI.extras.dbStats.TemporalDatabase.TemporalDatabase": [[30, 2, 1, "", "convertDataIntoMatrix"], [30, 2, 1, "", "getAverageInterArrivalPeriod"], [30, 2, 1, "", "getAveragePeriodOfItem"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getDensity"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumInterArrivalPeriod"], [30, 2, 1, "", "getMaximumPeriodOfItem"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMinimumInterArrivalPeriod"], [30, 2, 1, "", "getMinimumPeriodOfItem"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getNumberOfTransactionsPerTimestamp"], [30, 2, 1, "", "getPeriodsInRange"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationPeriod"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.TransactionalDatabase": [[30, 1, 1, "", "TransactionalDatabase"]], "PAMI.extras.dbStats.TransactionalDatabase.TransactionalDatabase": [[30, 2, 1, "", "convertDataIntoMatrix"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getDensity"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getNumberOfItems"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.UncertainTemporalDatabase": [[30, 1, 1, "", "UncertainTemporalDatabase"]], "PAMI.extras.dbStats.UncertainTemporalDatabase.UncertainTemporalDatabase": [[30, 2, 1, "", "convertDataIntoMatrix"], [30, 2, 1, "", "getAveragePeriod"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getDensity"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumPeriod"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMinimumPeriod"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getNumberOfTransactionsPerTimestamp"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationPeriod"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.UncertainTransactionalDatabase": [[30, 1, 1, "", "UncertainTransactionalDatabase"]], "PAMI.extras.dbStats.UncertainTransactionalDatabase.UncertainTransactionalDatabase": [[30, 2, 1, "", "convertDataIntoMatrix"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getDensity"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getNumberOfItems"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.UtilityDatabase": [[30, 1, 1, "", "UtilityDatabase"]], "PAMI.extras.dbStats.UtilityDatabase.UtilityDatabase": [[30, 2, 1, "", "creatingItemSets"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getAverageUtility"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMaximumUtility"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getMinimumUtility"], [30, 2, 1, "", "getNumberOfItems"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSortedUtilityValuesOfItem"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTotalUtility"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.fuzzyTransformation": [[31, 0, 0, "-", "abstract"], [31, 0, 0, "-", "temporalToFuzzy"], [31, 0, 0, "-", "transactionalToFuzzy"]], "PAMI.extras.fuzzyTransformation.temporalToFuzzy": [[31, 1, 1, "", "temporalToFuzzy"]], "PAMI.extras.fuzzyTransformation.temporalToFuzzy.temporalToFuzzy": [[31, 2, 1, "", "startConvert"]], "PAMI.extras.fuzzyTransformation.transactionalToFuzzy": [[31, 1, 1, "", "transactionalToFuzzy"]], "PAMI.extras.fuzzyTransformation.transactionalToFuzzy.transactionalToFuzzy": [[31, 2, 1, "", "startConvert"]], "PAMI.extras.generateDatabase": [[32, 0, 0, "-", "generateSpatioTemporalDatabase"], [32, 0, 0, "-", "generateTemporalDatabase"], [32, 0, 0, "-", "generateTransactionalDatabase"]], "PAMI.extras.generateDatabase.generateSpatioTemporalDatabase": [[32, 1, 1, "", "spatioTemporalDatabaseGenerator"]], "PAMI.extras.generateDatabase.generateSpatioTemporalDatabase.spatioTemporalDatabaseGenerator": [[32, 3, 1, "", "alreadyAdded"], [32, 3, 1, "", "coinFlip"], [32, 2, 1, "", "createPoint"], [32, 3, 1, "", "items"], [32, 3, 1, "", "outFileName"], [32, 2, 1, "", "saveAsFile"], [32, 3, 1, "", "timestamp"]], "PAMI.extras.generateDatabase.generateTemporalDatabase": [[32, 1, 1, "", "generateTemporalDatabase"]], "PAMI.extras.generateDatabase.generateTemporalDatabase.generateTemporalDatabase": [[32, 2, 1, "", "createTemporalFile"], [32, 2, 1, "", "getDatabaseAsDataFrame"], [32, 2, 1, "", "getFileName"], [32, 2, 1, "", "performCoinFlip"], [32, 2, 1, "", "tuning"]], "PAMI.extras.generateDatabase.generateTransactionalDatabase": [[32, 1, 1, "", "generateTransactionalDatabase"]], "PAMI.extras.generateDatabase.generateTransactionalDatabase.generateTransactionalDatabase": [[32, 2, 1, "", "create"], [32, 2, 1, "", "generateArray"], [32, 2, 1, "", "getTransactions"], [32, 2, 1, "", "save"], [32, 2, 1, "", "tuning"]], "PAMI.extras.generateLatexGraphFile": [[27, 4, 1, "", "generateLatexCode"], [27, 1, 1, "", "generateLatexGraphFile"]], "PAMI.extras.graph": [[33, 0, 0, "-", "DF2Fig"], [33, 0, 0, "-", "plotLineGraphFromDictionary"], [33, 0, 0, "-", "plotLineGraphsFromDataFrame"], [33, 0, 0, "-", "visualizeFuzzyPatterns"], [33, 0, 0, "-", "visualizePatterns"]], "PAMI.extras.graph.DF2Fig": [[33, 1, 1, "", "DF2Fig"]], "PAMI.extras.graph.DF2Fig.DF2Fig": [[33, 2, 1, "", "plot"]], "PAMI.extras.graph.plotLineGraphFromDictionary": [[33, 1, 1, "", "plotLineGraphFromDictionary"]], "PAMI.extras.graph.plotLineGraphsFromDataFrame": [[33, 1, 1, "", "plotGraphsFromDataFrame"]], "PAMI.extras.graph.plotLineGraphsFromDataFrame.plotGraphsFromDataFrame": [[33, 2, 1, "", "plotGraphsFromDataFrame"]], "PAMI.extras.graph.visualizeFuzzyPatterns": [[33, 1, 1, "", "visualizeFuzzyPatterns"]], "PAMI.extras.graph.visualizeFuzzyPatterns.visualizeFuzzyPatterns": [[33, 2, 1, "", "visualize"]], "PAMI.extras.graph.visualizePatterns": [[33, 1, 1, "", "visualizePatterns"]], "PAMI.extras.graph.visualizePatterns.visualizePatterns": [[33, 2, 1, "", "visualize"]], "PAMI.extras.imageProcessing": [[35, 0, 0, "-", "imagery2Databases"]], "PAMI.extras.imageProcessing.imagery2Databases": [[35, 1, 1, "", "createDatabase"]], "PAMI.extras.imageProcessing.imagery2Databases.createDatabase": [[35, 2, 1, "", "getDataFrame"], [35, 2, 1, "", "saveAsTemporalDB"], [35, 2, 1, "", "saveAsTransactionalDB"], [35, 2, 1, "", "saveAsUncertainTemporalDB"], [35, 2, 1, "", "saveAsUncertainTransactionalDB"], [35, 2, 1, "", "saveAsUtilityTemporalDB"], [35, 2, 1, "", "saveAsUtilityTransactionalDB"]], "PAMI.extras.messaging": [[36, 0, 0, "-", "discord"], [36, 0, 0, "-", "gmail"]], "PAMI.extras.messaging.discord": [[36, 1, 1, "", "discord"]], "PAMI.extras.messaging.discord.discord": [[36, 2, 1, "", "send"]], "PAMI.extras.messaging.gmail": [[36, 1, 1, "", "gmail"]], "PAMI.extras.messaging.gmail.gmail": [[36, 2, 1, "", "send"]], "PAMI.extras.neighbours": [[37, 0, 0, "-", "findNeighborsUsingEuclideanDistanceforPointInfo"], [37, 0, 0, "-", "findNeighboursUsingEuclidean"]], "PAMI.extras.neighbours.findNeighborsUsingEuclideanDistanceforPointInfo": [[37, 1, 1, "", "createNeighborhoodFileUsingEuclideanDistance"]], "PAMI.extras.neighbours.findNeighborsUsingEuclideanDistanceforPointInfo.createNeighborhoodFileUsingEuclideanDistance": [[37, 2, 1, "", "getFileName"]], "PAMI.extras.neighbours.findNeighboursUsingEuclidean": [[37, 1, 1, "", "createNeighborhoodFileUsingEuclideanDistance"]], "PAMI.extras.neighbours.findNeighboursUsingEuclidean.createNeighborhoodFileUsingEuclideanDistance": [[37, 2, 1, "", "getFileName"]], "PAMI.extras.scatterPlotSpatialPoints": [[27, 1, 1, "", "scatterPlotSpatialPoints"]], "PAMI.extras.scatterPlotSpatialPoints.scatterPlotSpatialPoints": [[27, 2, 1, "", "scatterPlotSpatialPoints"]], "PAMI.extras.stats": [[39, 0, 0, "-", "TransactionalDatabase"], [39, 0, 0, "-", "graphDatabase"], [39, 0, 0, "-", "sequentialDatabase"], [39, 0, 0, "-", "temporalDatabase"], [39, 0, 0, "-", "utilityDatabase"]], "PAMI.extras.stats.TransactionalDatabase": [[39, 1, 1, "", "TransactionalDatabase"]], "PAMI.extras.stats.TransactionalDatabase.TransactionalDatabase": [[39, 2, 1, "", "convertDataIntoMatrix"], [39, 2, 1, "", "getAverageTransactionLength"], [39, 2, 1, "", "getDatabaseSize"], [39, 2, 1, "", "getDensity"], [39, 2, 1, "", "getFrequenciesInRange"], [39, 2, 1, "", "getMaximumTransactionLength"], [39, 2, 1, "", "getMinimumTransactionLength"], [39, 2, 1, "", "getNumberOfItems"], [39, 2, 1, "", "getSortedListOfItemFrequencies"], [39, 2, 1, "", "getSparsity"], [39, 2, 1, "", "getStandardDeviationTransactionLength"], [39, 2, 1, "", "getTotalNumberOfItems"], [39, 2, 1, "", "getTransanctionalLengthDistribution"], [39, 2, 1, "", "getVarianceTransactionLength"], [39, 2, 1, "", "plotGraphs"], [39, 2, 1, "", "printStats"], [39, 2, 1, "", "run"], [39, 2, 1, "", "save"]], "PAMI.extras.stats.graphDatabase": [[39, 1, 1, "", "graphDatabase"]], "PAMI.extras.stats.graphDatabase.graphDatabase": [[39, 2, 1, "", "plotEdgeDistribution"], [39, 2, 1, "", "plotNodeDistribution"], [39, 2, 1, "", "printGraphDatabaseStatistics"], [39, 2, 1, "", "printIndividualGraphStats"]], "PAMI.extras.stats.sequentialDatabase": [[39, 1, 1, "", "sequentialDatabase"]], "PAMI.extras.stats.sequentialDatabase.sequentialDatabase": [[39, 2, 1, "", "getAverageItemPerSequenceLength"], [39, 2, 1, "", "getAverageItemPerSubsequenceLength"], [39, 2, 1, "", "getAverageSubsequencePerSequenceLength"], [39, 2, 1, "", "getDatabaseSize"], [39, 2, 1, "", "getFrequenciesInRange"], [39, 2, 1, "", "getMaximumSequenceLength"], [39, 2, 1, "", "getMaximumSubsequenceLength"], [39, 2, 1, "", "getMinimumSequenceLength"], [39, 2, 1, "", "getMinimumSubsequenceLength"], [39, 2, 1, "", "getSequenceSize"], [39, 2, 1, "", "getSequencialLengthDistribution"], [39, 2, 1, "", "getSortedListOfItemFrequencies"], [39, 2, 1, "", "getStandardDeviationSequenceLength"], [39, 2, 1, "", "getStandardDeviationSubsequenceLength"], [39, 2, 1, "", "getSubsequencialLengthDistribution"], [39, 2, 1, "", "getTotalNumberOfItems"], [39, 2, 1, "", "getVarianceSequenceLength"], [39, 2, 1, "", "getVarianceSubsequenceLength"], [39, 2, 1, "", "plotGraphs"], [39, 2, 1, "", "printStats"], [39, 2, 1, "", "readDatabase"], [39, 2, 1, "", "run"]], "PAMI.extras.stats.temporalDatabase": [[39, 1, 1, "", "temporalDatabase"]], "PAMI.extras.stats.temporalDatabase.temporalDatabase": [[39, 2, 1, "", "convertDataIntoMatrix"], [39, 2, 1, "", "getAverageInterArrivalPeriod"], [39, 2, 1, "", "getAveragePeriodOfItem"], [39, 2, 1, "", "getAverageTransactionLength"], [39, 2, 1, "", "getDatabaseSize"], [39, 2, 1, "", "getDensity"], [39, 2, 1, "", "getFrequenciesInRange"], [39, 2, 1, "", "getMaximumInterArrivalPeriod"], [39, 2, 1, "", "getMaximumPeriodOfItem"], [39, 2, 1, "", "getMaximumTransactionLength"], [39, 2, 1, "", "getMinimumInterArrivalPeriod"], [39, 2, 1, "", "getMinimumPeriodOfItem"], [39, 2, 1, "", "getMinimumTransactionLength"], [39, 2, 1, "", "getNumberOfTransactionsPerTimestamp"], [39, 2, 1, "", "getPeriodsInRange"], [39, 2, 1, "", "getSortedListOfItemFrequencies"], [39, 2, 1, "", "getSparsity"], [39, 2, 1, "", "getStandardDeviationPeriod"], [39, 2, 1, "", "getStandardDeviationTransactionLength"], [39, 2, 1, "", "getTotalNumberOfItems"], [39, 2, 1, "", "getTransanctionalLengthDistribution"], [39, 2, 1, "", "getVarianceTransactionLength"], [39, 2, 1, "", "plotGraphs"], [39, 2, 1, "", "printStats"], [39, 2, 1, "", "readDatabase"], [39, 2, 1, "", "run"], [39, 2, 1, "", "save"]], "PAMI.extras.stats.utilityDatabase": [[39, 1, 1, "", "utilityDatabase"]], "PAMI.extras.stats.utilityDatabase.utilityDatabase": [[39, 2, 1, "", "creatingItemSets"], [39, 2, 1, "", "getAverageTransactionLength"], [39, 2, 1, "", "getAverageUtility"], [39, 2, 1, "", "getDatabaseSize"], [39, 2, 1, "", "getFrequenciesInRange"], [39, 2, 1, "", "getMaximumTransactionLength"], [39, 2, 1, "", "getMaximumUtility"], [39, 2, 1, "", "getMinimumTransactionLength"], [39, 2, 1, "", "getMinimumUtility"], [39, 2, 1, "", "getNumberOfItems"], [39, 2, 1, "", "getSortedListOfItemFrequencies"], [39, 2, 1, "", "getSortedUtilityValuesOfItem"], [39, 2, 1, "", "getSparsity"], [39, 2, 1, "", "getStandardDeviationTransactionLength"], [39, 2, 1, "", "getTotalNumberOfItems"], [39, 2, 1, "", "getTotalUtility"], [39, 2, 1, "", "getTransanctionalLengthDistribution"], [39, 2, 1, "", "getVarianceTransactionLength"], [39, 2, 1, "", "plotGraphs"], [39, 2, 1, "", "printStats"], [39, 2, 1, "", "readDatabase"], [39, 2, 1, "", "run"], [39, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator": [[40, 0, 0, "-", "TemporalDatabase"], [40, 0, 0, "-", "TransactionalDatabase"], [40, 0, 0, "-", "createSyntheticGeoreferentialTemporal"], [40, 0, 0, "-", "createSyntheticGeoreferentialTransactions"], [40, 0, 0, "-", "createSyntheticGeoreferentialUncertainTransaction"], [40, 0, 0, "-", "createSyntheticTemporal"], [40, 0, 0, "-", "createSyntheticTransactions"], [40, 0, 0, "-", "createSyntheticUncertainTemporal"], [40, 0, 0, "-", "createSyntheticUncertainTransactions"], [40, 0, 0, "-", "createSyntheticUtility"], [40, 0, 0, "-", "fuzzyDatabase"], [40, 0, 0, "-", "generateTemporal"], [40, 0, 0, "-", "generateTransactional"], [40, 0, 0, "-", "generateUncertainTemporal"], [40, 0, 0, "-", "generateUncertainTransactional"], [40, 0, 0, "-", "generateUtilityTemporal"], [40, 0, 0, "-", "generateUtilityTransactional"], [40, 0, 0, "-", "georeferencedTemporalDatabase"], [40, 0, 0, "-", "georeferencedTransactionalDatabase"], [40, 0, 0, "-", "syntheticUtilityDatabase"], [40, 0, 0, "-", "temporalDatabaseGen"], [40, 0, 0, "-", "utilityDatabase"]], "PAMI.extras.syntheticDataGenerator.TemporalDatabase": [[40, 1, 1, "", "TemporalDatabase"]], "PAMI.extras.syntheticDataGenerator.TemporalDatabase.TemporalDatabase": [[40, 2, 1, "", "create"], [40, 2, 1, "", "getDatabaseAsDataFrame"], [40, 2, 1, "", "getFileName"], [40, 2, 1, "", "performCoinFlip"], [40, 2, 1, "", "tuning"]], "PAMI.extras.syntheticDataGenerator.TransactionalDatabase": [[40, 1, 1, "", "TransactionalDatabase"]], "PAMI.extras.syntheticDataGenerator.TransactionalDatabase.TransactionalDatabase": [[40, 2, 1, "", "create"], [40, 2, 1, "", "getTransactions"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialTemporal": [[40, 1, 1, "", "createGeoreferentialTemporalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialTemporal.createGeoreferentialTemporalDatabase": [[40, 2, 1, "", "createGeoreferentialTemporalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialTransactions": [[40, 1, 1, "", "createSyntheticGeoreferentialTransaction"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialTransactions.createSyntheticGeoreferentialTransaction": [[40, 2, 1, "", "createGeoreferentialTransactionalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialUncertainTransaction": [[40, 1, 1, "", "createSyntheticGeoreferentialUncertainTransaction"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialUncertainTransaction.createSyntheticGeoreferentialUncertainTransaction": [[40, 2, 1, "", "createGeoreferentialUncertainTransactionalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticTemporal": [[40, 1, 1, "", "createSyntheticTemporal"]], "PAMI.extras.syntheticDataGenerator.createSyntheticTemporal.createSyntheticTemporal": [[40, 2, 1, "", "createTemporalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticTransactions": [[40, 1, 1, "", "createSyntheticTransaction"]], "PAMI.extras.syntheticDataGenerator.createSyntheticTransactions.createSyntheticTransaction": [[40, 2, 1, "", "createTransactionalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUncertainTemporal": [[40, 1, 1, "", "createSyntheticUncertainTemporal"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUncertainTemporal.createSyntheticUncertainTemporal": [[40, 2, 1, "", "createUncertainTemporalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUncertainTransactions": [[40, 1, 1, "", "createSyntheticUncertainTransaction"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUncertainTransactions.createSyntheticUncertainTransaction": [[40, 2, 1, "", "createUncertainTransactionalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUtility": [[40, 1, 1, "", "createSyntheticUtility"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUtility.createSyntheticUtility": [[40, 2, 1, "", "createUtilityDatabase"]], "PAMI.extras.syntheticDataGenerator.generateTemporal": [[40, 1, 1, "", "generateTemporal"]], "PAMI.extras.syntheticDataGenerator.generateTemporal.generateTemporal": [[40, 2, 1, "", "generate"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.generateTransactional": [[40, 1, 1, "", "generateTransactional"]], "PAMI.extras.syntheticDataGenerator.generateTransactional.generateTransactional": [[40, 2, 1, "", "generate"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.generateUncertainTemporal": [[40, 1, 1, "", "generateUncertainTemporal"]], "PAMI.extras.syntheticDataGenerator.generateUncertainTemporal.generateUncertainTemporal": [[40, 2, 1, "", "generate"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.generateUncertainTransactional": [[40, 1, 1, "", "generateUncertainTransactional"]], "PAMI.extras.syntheticDataGenerator.generateUncertainTransactional.generateUncertainTransactional": [[40, 2, 1, "", "generate"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.generateUtilityTemporal": [[40, 1, 1, "", "generateUtilityTemporal"]], "PAMI.extras.syntheticDataGenerator.generateUtilityTemporal.generateUtilityTemporal": [[40, 2, 1, "", "generate"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.generateUtilityTransactional": [[40, 1, 1, "", "generateUtilityTransactional"]], "PAMI.extras.syntheticDataGenerator.generateUtilityTransactional.generateUtilityTransactional": [[40, 2, 1, "", "generate"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.syntheticUtilityDatabase": [[40, 1, 1, "", "syntheticUtilityDatabase"]], "PAMI.extras.syntheticDataGenerator.syntheticUtilityDatabase.syntheticUtilityDatabase": [[40, 2, 1, "", "__init__"], [40, 3, 1, "", "avgTransactionLength"], [40, 2, 1, "id0", "createRandomNumbers"], [40, 2, 1, "id1", "createSyntheticUtilityDatabase"], [40, 3, 1, "", "maxUtilRange"], [40, 3, 1, "", "numOfItems"], [40, 2, 1, "id2", "save"], [40, 3, 1, "", "totalTransactions"]], "PAMI.extras.syntheticDataGenerator.temporalDatabaseGen": [[40, 1, 1, "", "CreateSyntheticTemporal"]], "PAMI.extras.syntheticDataGenerator.temporalDatabaseGen.CreateSyntheticTemporal": [[40, 3, 1, "", "avg_transaction_length"], [40, 2, 1, "id3", "create_temporal_database"], [40, 2, 1, "", "generate_random_numbers"], [40, 3, 1, "", "num_of_items"], [40, 3, 1, "", "total_transactions"]], "PAMI.extras.syntheticDataGenerator.utilityDatabase": [[40, 1, 1, "", "UtilityDataGenerator"]], "PAMI.extras.syntheticDataGenerator.utilityDatabase.UtilityDataGenerator": [[40, 2, 1, "", "Generate"], [40, 2, 1, "", "GenerateAndPrintItemPairs"], [40, 2, 1, "", "GenerateExternalUtilityData"], [40, 2, 1, "", "GetExternalUtilityData"], [40, 2, 1, "", "GetInternalUtilityData"], [40, 2, 1, "", "GetUtilityData"], [40, 2, 1, "", "Save"], [40, 2, 1, "", "SaveItemsInternalUtilityValues"], [40, 2, 1, "", "Saveitemsexternalutilityvalues"]], "PAMI.extras.topKPatterns": [[27, 1, 1, "", "topKPatterns"]], "PAMI.extras.topKPatterns.topKPatterns": [[27, 2, 1, "", "getTopKPatterns"], [27, 2, 1, "", "save"]], "PAMI.extras.uncertaindb_convert": [[27, 1, 1, "", "predictedClass2Transaction"]], "PAMI.extras.uncertaindb_convert.predictedClass2Transaction": [[27, 2, 1, "", "getBinaryTransaction"]], "PAMI.extras.visualize": [[41, 0, 0, "-", "graphs"]], "PAMI.extras.visualize.graphs": [[41, 1, 1, "", "graphDatabase"]], "PAMI.extras.visualize.graphs.graphDatabase": [[41, 2, 1, "", "plot"]], "PAMI.faultTolerantFrequentPattern": [[43, 0, 0, "-", "basic"]], "PAMI.faultTolerantFrequentPattern.basic": [[158, 0, 0, "-", "FTApriori"], [159, 0, 0, "-", "FTFPGrowth"], [43, 0, 0, "-", "abstract"]], "PAMI.faultTolerantFrequentPattern.basic.FTApriori": [[158, 1, 1, "", "FTApriori"]], "PAMI.faultTolerantFrequentPattern.basic.FTApriori.FTApriori": [[158, 2, 1, "", "getMemoryRSS"], [158, 2, 1, "", "getMemoryUSS"], [158, 2, 1, "", "getPatterns"], [158, 2, 1, "", "getPatternsAsDataFrame"], [158, 2, 1, "", "getRuntime"], [158, 2, 1, "", "mine"], [158, 2, 1, "", "printResults"], [158, 2, 1, "", "save"], [158, 2, 1, "", "startMine"]], "PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth": [[159, 1, 1, "", "FTFPGrowth"]], "PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth.FTFPGrowth": [[159, 2, 1, "", "getMemoryRSS"], [159, 2, 1, "", "getMemoryUSS"], [159, 2, 1, "", "getPatterns"], [159, 2, 1, "", "getPatternsAsDataFrame"], [159, 2, 1, "", "getRuntime"], [159, 2, 1, "", "mine"], [159, 2, 1, "", "printResults"], [159, 2, 1, "", "save"], [159, 2, 1, "", "startMine"]], "PAMI.frequentPattern": [[45, 0, 0, "-", "basic"], [46, 0, 0, "-", "closed"], [47, 0, 0, "-", "cuda"], [48, 0, 0, "-", "maximal"], [49, 0, 0, "-", "pyspark"], [50, 0, 0, "-", "topk"]], "PAMI.frequentPattern.basic": [[162, 0, 0, "-", "Apriori"], [163, 0, 0, "-", "ECLAT"], [164, 0, 0, "-", "ECLATDiffset"], [165, 0, 0, "-", "ECLATbitset"], [166, 0, 0, "-", "FPGrowth"], [45, 0, 0, "-", "abstract"]], "PAMI.frequentPattern.basic.Apriori": [[162, 1, 1, "", "Apriori"]], "PAMI.frequentPattern.basic.Apriori.Apriori": [[162, 2, 1, "", "getMemoryRSS"], [162, 2, 1, "", "getMemoryUSS"], [162, 2, 1, "", "getPatterns"], [162, 2, 1, "", "getPatternsAsDataFrame"], [162, 2, 1, "", "getRuntime"], [162, 2, 1, "", "mine"], [162, 2, 1, "", "printResults"], [162, 2, 1, "", "save"], [162, 2, 1, "", "startMine"]], "PAMI.frequentPattern.basic.ECLAT": [[163, 1, 1, "", "ECLAT"]], "PAMI.frequentPattern.basic.ECLAT.ECLAT": [[163, 2, 1, "", "getMemoryRSS"], [163, 2, 1, "", "getMemoryUSS"], [163, 2, 1, "", "getPatterns"], [163, 2, 1, "", "getPatternsAsDataFrame"], [163, 2, 1, "", "getRuntime"], [163, 2, 1, "", "mine"], [163, 2, 1, "", "printResults"], [163, 2, 1, "", "save"], [163, 2, 1, "", "startMine"]], "PAMI.frequentPattern.basic.ECLATDiffset": [[164, 1, 1, "", "ECLATDiffset"]], "PAMI.frequentPattern.basic.ECLATDiffset.ECLATDiffset": [[164, 2, 1, "", "getMemoryRSS"], [164, 2, 1, "", "getMemoryUSS"], [164, 2, 1, "", "getPatterns"], [164, 2, 1, "", "getPatternsAsDataFrame"], [164, 2, 1, "", "getRuntime"], [164, 2, 1, "", "mine"], [164, 2, 1, "", "printResults"], [164, 2, 1, "", "save"], [164, 2, 1, "", "startMine"]], "PAMI.frequentPattern.basic.ECLATbitset": [[165, 1, 1, "", "ECLATbitset"]], "PAMI.frequentPattern.basic.ECLATbitset.ECLATbitset": [[165, 2, 1, "", "getMemoryRSS"], [165, 2, 1, "", "getMemoryUSS"], [165, 2, 1, "", "getPatterns"], [165, 2, 1, "", "getPatternsAsDataFrame"], [165, 2, 1, "", "getRuntime"], [165, 2, 1, "", "mine"], [165, 2, 1, "", "printResults"], [165, 2, 1, "", "save"], [165, 2, 1, "", "startMine"]], "PAMI.frequentPattern.basic.FPGrowth": [[166, 1, 1, "", "FPGrowth"]], "PAMI.frequentPattern.basic.FPGrowth.FPGrowth": [[166, 2, 1, "", "getMemoryRSS"], [166, 2, 1, "", "getMemoryUSS"], [166, 2, 1, "", "getPatterns"], [166, 2, 1, "", "getPatternsAsDataFrame"], [166, 2, 1, "", "getRuntime"], [166, 2, 1, "", "mine"], [166, 2, 1, "", "printResults"], [166, 2, 1, "", "save"], [166, 2, 1, "", "startMine"]], "PAMI.frequentPattern.closed": [[181, 0, 0, "-", "CHARM"], [46, 0, 0, "-", "abstract"]], "PAMI.frequentPattern.closed.CHARM": [[181, 1, 1, "", "CHARM"]], "PAMI.frequentPattern.closed.CHARM.CHARM": [[181, 2, 1, "", "getMemoryRSS"], [181, 2, 1, "", "getMemoryUSS"], [181, 2, 1, "", "getPatterns"], [181, 2, 1, "", "getPatternsAsDataFrame"], [181, 2, 1, "", "getRuntime"], [181, 2, 1, "", "mine"], [181, 2, 1, "", "printResults"], [181, 2, 1, "", "save"], [181, 2, 1, "", "startMine"]], "PAMI.frequentPattern.maximal": [[174, 0, 0, "-", "MaxFPGrowth"], [48, 0, 0, "-", "abstract"]], "PAMI.frequentPattern.maximal.MaxFPGrowth": [[174, 1, 1, "", "MaxFPGrowth"]], "PAMI.frequentPattern.maximal.MaxFPGrowth.MaxFPGrowth": [[174, 2, 1, "", "getMemoryRSS"], [174, 2, 1, "", "getMemoryUSS"], [174, 2, 1, "", "getPatterns"], [174, 2, 1, "", "getPatternsAsDataFrame"], [174, 2, 1, "", "getRuntime"], [174, 2, 1, "", "mine"], [174, 2, 1, "", "printResults"], [174, 2, 1, "", "save"], [174, 2, 1, "", "startMine"]], "PAMI.frequentPattern.pyspark": [[49, 0, 0, "-", "abstract"], [176, 0, 0, "-", "parallelApriori"], [177, 0, 0, "-", "parallelECLAT"], [178, 0, 0, "-", "parallelFPGrowth"]], "PAMI.frequentPattern.pyspark.parallelApriori": [[176, 1, 1, "", "parallelApriori"]], "PAMI.frequentPattern.pyspark.parallelApriori.parallelApriori": [[176, 2, 1, "", "getMemoryRSS"], [176, 2, 1, "", "getMemoryUSS"], [176, 2, 1, "", "getPatterns"], [176, 2, 1, "", "getPatternsAsDataFrame"], [176, 2, 1, "", "getRuntime"], [176, 2, 1, "", "mine"], [176, 2, 1, "", "printResults"], [176, 2, 1, "", "save"], [176, 2, 1, "", "startMine"]], "PAMI.frequentPattern.pyspark.parallelECLAT": [[177, 1, 1, "", "parallelECLAT"]], "PAMI.frequentPattern.pyspark.parallelECLAT.parallelECLAT": [[177, 2, 1, "", "getMemoryRSS"], [177, 2, 1, "", "getMemoryUSS"], [177, 2, 1, "", "getPatterns"], [177, 2, 1, "", "getPatternsAsDataFrame"], [177, 2, 1, "", "getRuntime"], [177, 2, 1, "", "mine"], [177, 2, 1, "", "printResults"], [177, 2, 1, "", "save"], [177, 2, 1, "", "startMine"]], "PAMI.frequentPattern.pyspark.parallelFPGrowth": [[178, 1, 1, "", "Node"], [178, 1, 1, "", "Tree"], [178, 1, 1, "", "parallelFPGrowth"]], "PAMI.frequentPattern.pyspark.parallelFPGrowth.Tree": [[178, 2, 1, "", "addNodeToNodeLink"], [178, 2, 1, "", "addTransaction"], [178, 2, 1, "", "generateConditionalTree"]], "PAMI.frequentPattern.pyspark.parallelFPGrowth.parallelFPGrowth": [[178, 2, 1, "", "buildTree"], [178, 2, 1, "", "genAllFrequentPatterns"], [178, 2, 1, "", "genCondTransaction"], [178, 2, 1, "", "genFreqPatterns"], [178, 2, 1, "", "getMemoryRSS"], [178, 2, 1, "", "getMemoryUSS"], [178, 2, 1, "", "getPartitionId"], [178, 2, 1, "", "getPatterns"], [178, 2, 1, "", "getPatternsAsDataFrame"], [178, 2, 1, "", "getRuntime"], [178, 2, 1, "", "mine"], [178, 2, 1, "", "printResults"], [178, 2, 1, "", "save"], [178, 2, 1, "", "startMine"]], "PAMI.frequentPattern.topk": [[179, 0, 0, "-", "FAE"], [50, 0, 0, "-", "abstract"]], "PAMI.frequentPattern.topk.FAE": [[179, 1, 1, "", "FAE"]], "PAMI.frequentPattern.topk.FAE.FAE": [[179, 2, 1, "", "getMemoryRSS"], [179, 2, 1, "", "getMemoryUSS"], [179, 2, 1, "", "getPatterns"], [179, 2, 1, "", "getPatternsAsDataFrame"], [179, 2, 1, "", "getRuntime"], [179, 2, 1, "", "mine"], [179, 2, 1, "", "printResults"], [179, 2, 1, "", "save"], [179, 2, 1, "", "startMine"]], "PAMI.fuzzyCorrelatedPattern": [[52, 0, 0, "-", "basic"]], "PAMI.fuzzyCorrelatedPattern.basic": [[183, 0, 0, "-", "FCPGrowth"], [52, 0, 0, "-", "abstract"]], "PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth": [[183, 1, 1, "", "Element"], [183, 1, 1, "", "FCPGrowth"], [183, 4, 1, "", "main"]], "PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth.FCPGrowth": [[183, 2, 1, "", "getMemoryRSS"], [183, 2, 1, "", "getMemoryUSS"], [183, 2, 1, "", "getPatterns"], [183, 2, 1, "", "getPatternsAsDataFrame"], [183, 2, 1, "", "getRuntime"], [183, 2, 1, "", "mine"], [183, 2, 1, "", "printResults"], [183, 2, 1, "", "save"], [183, 2, 1, "", "startMine"]], "PAMI.fuzzyFrequentPattern": [[54, 0, 0, "-", "basic"]], "PAMI.fuzzyFrequentPattern.basic": [[185, 0, 0, "-", "FFIMiner"], [54, 0, 0, "-", "FFIMiner_old"], [54, 0, 0, "-", "abstract"]], "PAMI.fuzzyFrequentPattern.basic.FFIMiner": [[185, 1, 1, "", "FFIMiner"]], "PAMI.fuzzyFrequentPattern.basic.FFIMiner.FFIMiner": [[185, 2, 1, "", "getMemoryRSS"], [185, 2, 1, "", "getMemoryUSS"], [185, 2, 1, "", "getPatterns"], [185, 2, 1, "", "getPatternsAsDataFrame"], [185, 2, 1, "", "getRuntime"], [185, 2, 1, "", "mine"], [185, 2, 1, "", "printResults"], [185, 2, 1, "", "save"], [185, 2, 1, "", "startMine"]], "PAMI.fuzzyFrequentPattern.basic.FFIMiner_old": [[54, 1, 1, "", "FFIMiner"]], "PAMI.fuzzyFrequentPattern.basic.FFIMiner_old.FFIMiner": [[54, 2, 1, "", "getMemoryRSS"], [54, 2, 1, "", "getMemoryUSS"], [54, 2, 1, "", "getPatterns"], [54, 2, 1, "", "getPatternsAsDataFrame"], [54, 2, 1, "", "getRuntime"], [54, 2, 1, "", "mine"], [54, 2, 1, "", "printResults"], [54, 2, 1, "", "save"], [54, 2, 1, "", "startMine"]], "PAMI.fuzzyGeoreferencedFrequentPattern": [[56, 0, 0, "-", "basic"]], "PAMI.fuzzyGeoreferencedFrequentPattern.basic": [[188, 0, 0, "-", "FFSPMiner"], [56, 0, 0, "-", "FFSPMiner_old"], [56, 0, 0, "-", "abstract"]], "PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner": [[188, 1, 1, "", "FFSPMiner"]], "PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner.FFSPMiner": [[188, 2, 1, "", "getMemoryRSS"], [188, 2, 1, "", "getMemoryUSS"], [188, 2, 1, "", "getPatterns"], [188, 2, 1, "", "getPatternsAsDataFrame"], [188, 2, 1, "", "getRuntime"], [188, 2, 1, "", "mine"], [188, 2, 1, "", "printResults"], [188, 2, 1, "", "save"], [188, 2, 1, "", "startMine"]], "PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner_old": [[56, 1, 1, "", "FFSPMiner"]], "PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner_old.FFSPMiner": [[56, 2, 1, "", "getMemoryRSS"], [56, 2, 1, "", "getMemoryUSS"], [56, 2, 1, "", "getPatterns"], [56, 2, 1, "", "getPatternsAsDataFrame"], [56, 2, 1, "", "getRuntime"], [56, 2, 1, "", "mine"], [56, 2, 1, "", "printResults"], [56, 2, 1, "", "save"], [56, 2, 1, "", "startMine"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern": [[58, 0, 0, "-", "basic"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic": [[189, 0, 0, "-", "FGPFPMiner"], [58, 0, 0, "-", "FGPFPMiner_old"], [58, 0, 0, "-", "abstract"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner": [[189, 1, 1, "", "FGPFPMiner"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner.FGPFPMiner": [[189, 2, 1, "", "getMemoryRSS"], [189, 2, 1, "", "getMemoryUSS"], [189, 2, 1, "", "getPatterns"], [189, 2, 1, "", "getPatternsAsDataFrame"], [189, 2, 1, "", "getRuntime"], [189, 2, 1, "", "mine"], [189, 2, 1, "", "printResults"], [189, 2, 1, "", "save"], [189, 2, 1, "", "startMine"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner_old": [[58, 1, 1, "", "FGPFPMiner"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner_old.FGPFPMiner": [[58, 2, 1, "", "generateGraphs"], [58, 2, 1, "", "generateLatexCode"], [58, 2, 1, "", "getMemoryRSS"], [58, 2, 1, "", "getMemoryUSS"], [58, 2, 1, "", "getPatterns"], [58, 2, 1, "", "getPatternsAsDataFrame"], [58, 2, 1, "", "getPatternsAsDataframe"], [58, 2, 1, "", "getRuntime"], [58, 2, 1, "", "mine"], [58, 2, 1, "", "printResults"], [58, 2, 1, "", "save"], [58, 2, 1, "", "startMine"]], "PAMI.fuzzyPartialPeriodicPatterns": [[60, 0, 0, "-", "basic"]], "PAMI.fuzzyPartialPeriodicPatterns.basic": [[60, 0, 0, "-", "F3PMiner"], [60, 0, 0, "-", "abstract"]], "PAMI.fuzzyPartialPeriodicPatterns.basic.F3PMiner": [[60, 1, 1, "", "F3PMiner"]], "PAMI.fuzzyPartialPeriodicPatterns.basic.F3PMiner.F3PMiner": [[60, 2, 1, "", "getMemoryRSS"], [60, 2, 1, "", "getMemoryUSS"], [60, 2, 1, "", "getPatterns"], [60, 2, 1, "", "getPatternsAsDataFrame"], [60, 2, 1, "", "getRuntime"], [60, 2, 1, "", "mine"], [60, 2, 1, "", "printResults"], [60, 2, 1, "", "save"], [60, 2, 1, "", "startMine"]], "PAMI.fuzzyPeriodicFrequentPattern": [[62, 0, 0, "-", "basic"]], "PAMI.fuzzyPeriodicFrequentPattern.basic": [[192, 0, 0, "-", "FPFPMiner"], [62, 0, 0, "-", "FPFPMiner_old"], [62, 0, 0, "-", "abstract"]], "PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner": [[192, 1, 1, "", "FPFPMiner"]], "PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner.FPFPMiner": [[192, 2, 1, "", "getMemoryRSS"], [192, 2, 1, "", "getMemoryUSS"], [192, 2, 1, "", "getPatterns"], [192, 2, 1, "", "getPatternsAsDataFrame"], [192, 2, 1, "", "getRuntime"], [192, 2, 1, "", "mine"], [192, 2, 1, "", "printResults"], [192, 2, 1, "", "save"], [192, 2, 1, "", "startMine"]], "PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner_old": [[62, 1, 1, "", "FPFPMiner"]], "PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner_old.FPFPMiner": [[62, 2, 1, "", "getMemoryRSS"], [62, 2, 1, "", "getMemoryUSS"], [62, 2, 1, "", "getPatterns"], [62, 2, 1, "", "getPatternsAsDataFrame"], [62, 2, 1, "", "getRuntime"], [62, 2, 1, "", "mine"], [62, 2, 1, "", "printResults"], [62, 2, 1, "", "save"], [62, 2, 1, "", "startMine"]], "PAMI.geoReferencedPeriodicFrequentPattern": [[64, 0, 0, "-", "basic"]], "PAMI.geoReferencedPeriodicFrequentPattern.basic": [[198, 0, 0, "-", "GPFPMiner"], [64, 0, 0, "-", "abstract"]], "PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner": [[198, 1, 1, "", "GPFPMiner"]], "PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner.GPFPMiner": [[198, 2, 1, "", "getMemoryRSS"], [198, 2, 1, "", "getMemoryUSS"], [198, 2, 1, "", "getPatterns"], [198, 2, 1, "", "getPatternsAsDataFrame"], [198, 2, 1, "", "getRuntime"], [198, 2, 1, "", "mapNeighbours"], [198, 2, 1, "", "mine"], [198, 2, 1, "", "printResults"], [198, 2, 1, "", "save"], [198, 2, 1, "", "startMine"]], "PAMI.georeferencedFrequentPattern": [[66, 0, 0, "-", "basic"]], "PAMI.georeferencedFrequentPattern.basic": [[200, 0, 0, "-", "SpatialECLAT"], [66, 0, 0, "-", "abstract"]], "PAMI.georeferencedFrequentPattern.basic.SpatialECLAT": [[200, 1, 1, "", "SpatialECLAT"]], "PAMI.georeferencedFrequentPattern.basic.SpatialECLAT.SpatialECLAT": [[200, 2, 1, "", "getMemoryRSS"], [200, 2, 1, "", "getMemoryUSS"], [200, 2, 1, "", "getPatterns"], [200, 2, 1, "", "getPatternsAsDataFrame"], [200, 2, 1, "", "getRuntime"], [200, 2, 1, "", "mine"], [200, 2, 1, "", "printResults"], [200, 2, 1, "", "save"], [200, 2, 1, "", "startMine"]], "PAMI.georeferencedFrequentSequencePattern": [[67, 0, 0, "-", "abstract"]], "PAMI.georeferencedPartialPeriodicPattern": [[69, 0, 0, "-", "basic"]], "PAMI.georeferencedPartialPeriodicPattern.basic": [[201, 0, 0, "-", "STEclat"], [69, 0, 0, "-", "abstract"]], "PAMI.georeferencedPartialPeriodicPattern.basic.STEclat": [[201, 1, 1, "", "STEclat"]], "PAMI.georeferencedPartialPeriodicPattern.basic.STEclat.STEclat": [[201, 2, 1, "", "getMemoryRSS"], [201, 2, 1, "", "getMemoryUSS"], [201, 2, 1, "", "getPatterns"], [201, 2, 1, "", "getPatternsAsDataFrame"], [201, 2, 1, "", "getRuntime"], [201, 2, 1, "", "mapNeighbours"], [201, 2, 1, "", "mine"], [201, 2, 1, "", "printResults"], [201, 2, 1, "", "save"], [201, 2, 1, "", "startMine"]], "PAMI.highUtilityFrequentPattern": [[71, 0, 0, "-", "basic"]], "PAMI.highUtilityFrequentPattern.basic": [[202, 0, 0, "-", "HUFIM"], [71, 0, 0, "-", "abstract"]], "PAMI.highUtilityFrequentPattern.basic.HUFIM": [[202, 1, 1, "", "HUFIM"]], "PAMI.highUtilityFrequentPattern.basic.HUFIM.HUFIM": [[202, 2, 1, "", "getMemoryRSS"], [202, 2, 1, "", "getMemoryUSS"], [202, 2, 1, "", "getPatterns"], [202, 2, 1, "", "getPatternsAsDataFrame"], [202, 2, 1, "", "getRuntime"], [202, 2, 1, "", "mine"], [202, 2, 1, "", "printResults"], [202, 2, 1, "", "save"], [202, 2, 1, "", "startMine"]], "PAMI.highUtilityGeoreferencedFrequentPattern": [[73, 0, 0, "-", "basic"]], "PAMI.highUtilityGeoreferencedFrequentPattern.basic": [[205, 0, 0, "-", "SHUFIM"], [73, 0, 0, "-", "abstract"]], "PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM": [[205, 1, 1, "", "SHUFIM"], [205, 4, 1, "", "main"]], "PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM.SHUFIM": [[205, 2, 1, "", "getMemoryRSS"], [205, 2, 1, "", "getMemoryUSS"], [205, 2, 1, "", "getPatterns"], [205, 2, 1, "", "getPatternsAsDataFrame"], [205, 2, 1, "", "getRuntime"], [205, 2, 1, "", "mine"], [205, 2, 1, "", "printResults"], [205, 2, 1, "", "save"], [205, 2, 1, "", "startMine"]], "PAMI.highUtilityPattern": [[75, 0, 0, "-", "basic"], [76, 0, 0, "-", "parallel"]], "PAMI.highUtilityPattern.basic": [[206, 0, 0, "-", "EFIM"], [207, 0, 0, "-", "HMiner"], [208, 0, 0, "-", "UPGrowth"], [75, 0, 0, "-", "abstract"], [75, 0, 0, "-", "efimParallel"]], "PAMI.highUtilityPattern.basic.EFIM": [[206, 1, 1, "", "EFIM"]], "PAMI.highUtilityPattern.basic.EFIM.EFIM": [[206, 2, 1, "", "getMemoryRSS"], [206, 2, 1, "", "getMemoryUSS"], [206, 2, 1, "", "getPatterns"], [206, 2, 1, "", "getPatternsAsDataFrame"], [206, 2, 1, "", "getRuntime"], [206, 2, 1, "", "mine"], [206, 2, 1, "", "printResults"], [206, 2, 1, "", "save"], [206, 2, 1, "", "sort_transaction"], [206, 2, 1, "", "startMine"]], "PAMI.highUtilityPattern.basic.HMiner": [[207, 1, 1, "", "HMiner"]], "PAMI.highUtilityPattern.basic.HMiner.HMiner": [[207, 2, 1, "", "getMemoryRSS"], [207, 2, 1, "", "getMemoryUSS"], [207, 2, 1, "", "getPatterns"], [207, 2, 1, "", "getPatternsAsDataFrame"], [207, 2, 1, "", "getRuntime"], [207, 2, 1, "", "mine"], [207, 2, 1, "", "printResults"], [207, 2, 1, "", "save"], [207, 2, 1, "", "startMine"]], "PAMI.highUtilityPattern.basic.UPGrowth": [[208, 1, 1, "", "UPGrowth"]], "PAMI.highUtilityPattern.basic.UPGrowth.UPGrowth": [[208, 2, 1, "", "PrintStats"], [208, 2, 1, "", "getMemoryRSS"], [208, 2, 1, "", "getMemoryUSS"], [208, 2, 1, "", "getPatterns"], [208, 2, 1, "", "getPatternsAsDataFrame"], [208, 2, 1, "", "getRuntime"], [208, 2, 1, "", "mine"], [208, 2, 1, "", "printResults"], [208, 2, 1, "", "save"], [208, 2, 1, "", "startMine"]], "PAMI.highUtilityPattern.basic.efimParallel": [[75, 1, 1, "", "efimParallel"]], "PAMI.highUtilityPattern.basic.efimParallel.efimParallel": [[75, 2, 1, "", "getMemoryRSS"], [75, 2, 1, "", "getMemoryUSS"], [75, 2, 1, "", "getPatterns"], [75, 2, 1, "", "getPatternsAsDataFrame"], [75, 2, 1, "", "getRuntime"], [75, 2, 1, "", "mine"], [75, 2, 1, "", "printResults"], [75, 2, 1, "", "save"], [75, 2, 1, "", "startMine"]], "PAMI.highUtilityPattern.parallel": [[76, 0, 0, "-", "abstract"], [76, 0, 0, "-", "efimparallel"]], "PAMI.highUtilityPattern.parallel.efimparallel": [[76, 1, 1, "", "efimParallel"]], "PAMI.highUtilityPattern.parallel.efimparallel.efimParallel": [[76, 2, 1, "", "getMemoryRSS"], [76, 2, 1, "", "getMemoryUSS"], [76, 2, 1, "", "getPatterns"], [76, 2, 1, "", "getPatternsAsDataFrame"], [76, 2, 1, "", "getRuntime"], [76, 2, 1, "", "mine"], [76, 2, 1, "", "printResults"], [76, 2, 1, "", "save"], [76, 2, 1, "", "startMine"]], "PAMI.highUtilityPatternsInStreams": [[77, 0, 0, "-", "abstract"]], "PAMI.highUtilitySpatialPattern": [[78, 0, 0, "-", "abstract"], [79, 0, 0, "-", "basic"], [80, 0, 0, "-", "topk"]], "PAMI.highUtilitySpatialPattern.abstract": [[78, 1, 1, "", "utilityPatterns"]], "PAMI.highUtilitySpatialPattern.abstract.utilityPatterns": [[78, 2, 1, "", "endTime"], [78, 2, 1, "", "finalPatterns"], [78, 2, 1, "", "getMemoryRSS"], [78, 2, 1, "", "getMemoryUSS"], [78, 2, 1, "", "getPatterns"], [78, 2, 1, "", "getPatternsAsDataFrame"], [78, 2, 1, "", "getRuntime"], [78, 2, 1, "", "iFile"], [78, 2, 1, "", "memoryRSS"], [78, 2, 1, "", "memoryUSS"], [78, 2, 1, "", "minUtil"], [78, 2, 1, "", "nFile"], [78, 2, 1, "", "oFile"], [78, 2, 1, "", "save"], [78, 2, 1, "", "startMine"], [78, 2, 1, "", "startTime"]], "PAMI.highUtilitySpatialPattern.basic": [[210, 0, 0, "-", "HDSHUIM"], [211, 0, 0, "-", "SHUIM"], [79, 0, 0, "-", "abstract"]], "PAMI.highUtilitySpatialPattern.basic.HDSHUIM": [[210, 1, 1, "", "HDSHUIM"]], "PAMI.highUtilitySpatialPattern.basic.HDSHUIM.HDSHUIM": [[210, 2, 1, "", "getMemoryRSS"], [210, 2, 1, "", "getMemoryUSS"], [210, 2, 1, "", "getPatterns"], [210, 2, 1, "", "getPatternsAsDataFrame"], [210, 2, 1, "", "getRuntime"], [210, 2, 1, "", "mine"], [210, 2, 1, "", "printResults"], [210, 2, 1, "", "save"], [210, 2, 1, "", "startMine"]], "PAMI.highUtilitySpatialPattern.basic.SHUIM": [[211, 1, 1, "", "SHUIM"]], "PAMI.highUtilitySpatialPattern.basic.SHUIM.SHUIM": [[211, 2, 1, "", "getMemoryRSS"], [211, 2, 1, "", "getMemoryUSS"], [211, 2, 1, "", "getPatterns"], [211, 2, 1, "", "getPatternsAsDataFrame"], [211, 2, 1, "", "getRuntime"], [211, 2, 1, "", "mine"], [211, 2, 1, "", "printResults"], [211, 2, 1, "", "save"], [211, 2, 1, "", "startMine"]], "PAMI.highUtilitySpatialPattern.topk": [[213, 0, 0, "-", "TKSHUIM"], [80, 0, 0, "-", "abstract"]], "PAMI.highUtilitySpatialPattern.topk.TKSHUIM": [[213, 1, 1, "", "Dataset"], [213, 1, 1, "", "TKSHUIM"], [213, 1, 1, "", "Transaction"], [213, 4, 1, "", "main"]], "PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Dataset": [[213, 2, 1, "", "createTransaction"], [213, 2, 1, "", "getMaxItem"], [213, 2, 1, "", "getTransactions"], [213, 3, 1, "", "maxItem"], [213, 3, 1, "", "transactions"]], "PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM": [[213, 3, 1, "", "Neighbours"], [213, 2, 1, "", "additemset"], [213, 2, 1, "", "backtrackingEFIM"], [213, 2, 1, "", "calculateNeighbourIntersection"], [213, 3, 1, "", "candidateCount"], [213, 3, 1, "", "endTime"], [213, 3, 1, "", "finalPatterns"], [213, 2, 1, "", "getMemoryRSS"], [213, 2, 1, "", "getMemoryUSS"], [213, 2, 1, "", "getPatterns"], [213, 2, 1, "", "getPatternsAsDataFrame"], [213, 2, 1, "", "getRuntime"], [213, 3, 1, "", "heapList"], [213, 3, 1, "", "iFile"], [213, 3, 1, "", "intTostr"], [213, 2, 1, "", "intersection"], [213, 2, 1, "", "is_equal"], [213, 3, 1, "", "maxMemory"], [213, 3, 1, "", "memoryRSS"], [213, 3, 1, "", "memoryUSS"], [213, 3, 1, "", "minUtil"], [213, 2, 1, "", "mine"], [213, 3, 1, "", "nFile"], [213, 3, 1, "", "newNamesToOldNames"], [213, 3, 1, "", "oFile"], [213, 3, 1, "", "oldNamesToNewNames"], [213, 2, 1, "", "output"], [213, 2, 1, "", "printResults"], [213, 2, 1, "", "save"], [213, 3, 1, "", "sep"], [213, 2, 1, "", "sortDatabase"], [213, 2, 1, "", "sort_transaction"], [213, 2, 1, "", "startMine"], [213, 3, 1, "", "startTime"], [213, 3, 1, "", "strToint"], [213, 3, 1, "", "temp"], [213, 2, 1, "", "useUtilityBinArrayToCalculateLocalUtilityFirstTime"], [213, 2, 1, "", "useUtilityBinArrayToCalculateSubtreeUtilityFirstTime"], [213, 2, 1, "", "useUtilityBinArraysToCalculateUpperBounds"], [213, 3, 1, "", "utilityBinArrayLU"], [213, 3, 1, "", "utilityBinArraySU"]], "PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Transaction": [[213, 2, 1, "", "getItems"], [213, 2, 1, "", "getLastPosition"], [213, 2, 1, "", "getPmus"], [213, 2, 1, "", "getUtilities"], [213, 2, 1, "", "insertionSort"], [213, 3, 1, "", "offset"], [213, 3, 1, "", "prefixUtility"], [213, 2, 1, "", "projectTransaction"], [213, 2, 1, "", "removeUnpromisingItems"]], "PAMI.highUtilitySpatialPattern.topk.abstract": [[80, 1, 1, "", "utilityPatterns"]], "PAMI.highUtilitySpatialPattern.topk.abstract.utilityPatterns": [[80, 2, 1, "", "endTime"], [80, 2, 1, "", "finalPatterns"], [80, 2, 1, "", "getMemoryRSS"], [80, 2, 1, "", "getMemoryUSS"], [80, 2, 1, "", "getPatterns"], [80, 2, 1, "", "getPatternsAsDataFrame"], [80, 2, 1, "", "getRuntime"], [80, 2, 1, "", "iFile"], [80, 2, 1, "", "memoryRSS"], [80, 2, 1, "", "memoryUSS"], [80, 2, 1, "", "nFile"], [80, 2, 1, "", "oFile"], [80, 2, 1, "", "printResults"], [80, 2, 1, "", "save"], [80, 2, 1, "", "startMine"], [80, 2, 1, "", "startTime"]], "PAMI.localPeriodicPattern": [[82, 0, 0, "-", "basic"]], "PAMI.localPeriodicPattern.basic": [[216, 0, 0, "-", "LPPGrowth"], [217, 0, 0, "-", "LPPMBreadth"], [218, 0, 0, "-", "LPPMDepth"], [82, 0, 0, "-", "abstract"]], "PAMI.localPeriodicPattern.basic.LPPGrowth": [[216, 1, 1, "", "LPPGrowth"], [216, 1, 1, "", "Node"], [216, 1, 1, "", "Tree"]], "PAMI.localPeriodicPattern.basic.LPPGrowth.LPPGrowth": [[216, 2, 1, "", "getMemoryRSS"], [216, 2, 1, "", "getMemoryUSS"], [216, 2, 1, "", "getPatterns"], [216, 2, 1, "", "getPatternsAsDataFrame"], [216, 2, 1, "", "getRuntime"], [216, 2, 1, "", "mine"], [216, 2, 1, "", "printResults"], [216, 2, 1, "", "save"], [216, 2, 1, "", "startMine"]], "PAMI.localPeriodicPattern.basic.LPPGrowth.Node": [[216, 2, 1, "", "getChild"]], "PAMI.localPeriodicPattern.basic.LPPGrowth.Tree": [[216, 2, 1, "", "addTransaction"], [216, 2, 1, "", "createPrefixTree"], [216, 2, 1, "", "deleteNode"], [216, 2, 1, "", "fixNodeLinks"]], "PAMI.localPeriodicPattern.basic.LPPMBreadth": [[217, 1, 1, "", "LPPMBreadth"]], "PAMI.localPeriodicPattern.basic.LPPMBreadth.LPPMBreadth": [[217, 2, 1, "", "getMemoryRSS"], [217, 2, 1, "", "getMemoryUSS"], [217, 2, 1, "", "getPatterns"], [217, 2, 1, "", "getPatternsAsDataFrame"], [217, 2, 1, "", "getRuntime"], [217, 2, 1, "", "mine"], [217, 2, 1, "", "printResults"], [217, 2, 1, "", "save"], [217, 2, 1, "", "startMine"]], "PAMI.localPeriodicPattern.basic.LPPMDepth": [[218, 1, 1, "", "LPPMDepth"]], "PAMI.localPeriodicPattern.basic.LPPMDepth.LPPMDepth": [[218, 2, 1, "", "getMemoryRSS"], [218, 2, 1, "", "getMemoryUSS"], [218, 2, 1, "", "getPatterns"], [218, 2, 1, "", "getPatternsAsDataFrame"], [218, 2, 1, "", "getRuntime"], [218, 2, 1, "", "mine"], [218, 2, 1, "", "printResults"], [218, 2, 1, "", "save"], [218, 2, 1, "", "startMine"]], "PAMI.multipleMinimumSupportBasedFrequentPattern": [[84, 0, 0, "-", "basic"]], "PAMI.multipleMinimumSupportBasedFrequentPattern.basic": [[220, 0, 0, "-", "CFPGrowth"], [221, 0, 0, "-", "CFPGrowthPlus"], [84, 0, 0, "-", "abstract"]], "PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth": [[220, 1, 1, "", "CFPGrowth"]], "PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth.CFPGrowth": [[220, 2, 1, "", "Mine"], [220, 2, 1, "", "getMemoryRSS"], [220, 2, 1, "", "getMemoryUSS"], [220, 2, 1, "", "getPatterns"], [220, 2, 1, "", "getPatternsAsDataFrame"], [220, 2, 1, "", "getRuntime"], [220, 2, 1, "", "printResults"], [220, 2, 1, "", "save"], [220, 2, 1, "", "startMine"]], "PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus": [[221, 1, 1, "", "CFPGrowthPlus"]], "PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus.CFPGrowthPlus": [[221, 2, 1, "", "Mine"], [221, 2, 1, "", "getMemoryRSS"], [221, 2, 1, "", "getMemoryUSS"], [221, 2, 1, "", "getPatterns"], [221, 2, 1, "", "getPatternsAsDataFrame"], [221, 2, 1, "", "getRuntime"], [221, 2, 1, "", "printResults"], [221, 2, 1, "", "save"], [221, 2, 1, "", "startMine"]], "PAMI.partialPeriodicFrequentPattern": [[86, 0, 0, "-", "basic"]], "PAMI.partialPeriodicFrequentPattern.basic": [[225, 0, 0, "-", "GPFgrowth"], [226, 0, 0, "-", "PPF_DFS"], [86, 0, 0, "-", "abstract"]], "PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth": [[225, 1, 1, "", "GPFgrowth"], [225, 1, 1, "", "Node"], [225, 1, 1, "", "PFgrowth"], [225, 1, 1, "", "Tree"], [225, 1, 1, "", "calculateIP"], [225, 1, 1, "", "generatePFListver2"], [225, 1, 1, "", "generatePFTreever2"]], "PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.GPFgrowth": [[225, 2, 1, "", "getMemoryRSS"], [225, 2, 1, "", "getMemoryUSS"], [225, 2, 1, "", "getPatterns"], [225, 2, 1, "", "getPatternsAsDataFrame"], [225, 2, 1, "", "getRuntime"], [225, 2, 1, "", "mine"], [225, 2, 1, "", "printResults"], [225, 3, 1, "", "runTime"], [225, 2, 1, "", "save"]], "PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.Node": [[225, 2, 1, "", "getChild"]], "PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.PFgrowth": [[225, 2, 1, "", "run"]], "PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.Tree": [[225, 2, 1, "", "addTransaction"], [225, 2, 1, "", "createConditionalTree"], [225, 2, 1, "", "createPrefixTree"], [225, 2, 1, "", "deleteNode"], [225, 2, 1, "", "fixNodeLinks"]], "PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.calculateIP": [[225, 2, 1, "", "run"]], "PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.generatePFListver2": [[225, 2, 1, "", "findSeparator"], [225, 2, 1, "", "run"]], "PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.generatePFTreever2": [[225, 2, 1, "", "findSeparator"], [225, 2, 1, "", "run"]], "PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS": [[226, 1, 1, "", "PPF_DFS"]], "PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS.PPF_DFS": [[226, 2, 1, "", "getMemoryRSS"], [226, 2, 1, "", "getMemoryUSS"], [226, 2, 1, "", "getPatterns"], [226, 2, 1, "", "getPatternsAsDataFrame"], [226, 2, 1, "", "getRuntime"], [226, 2, 1, "", "mine"], [226, 2, 1, "", "printResults"], [226, 2, 1, "", "save"]], "PAMI.partialPeriodicFrequentPattern.basic.abstract": [[86, 1, 1, "", "partialPeriodicPatterns"]], "PAMI.partialPeriodicFrequentPattern.basic.abstract.partialPeriodicPatterns": [[86, 2, 1, "", "getMemoryRSS"], [86, 2, 1, "", "getMemoryUSS"], [86, 2, 1, "", "getPatterns"], [86, 2, 1, "", "getPatternsAsDataFrame"], [86, 2, 1, "", "getRuntime"], [86, 2, 1, "", "printResults"], [86, 2, 1, "", "save"], [86, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern": [[88, 0, 0, "-", "basic"], [89, 0, 0, "-", "closed"], [90, 0, 0, "-", "maximal"], [91, 0, 0, "-", "pyspark"], [92, 0, 0, "-", "topk"]], "PAMI.partialPeriodicPattern.basic": [[229, 0, 0, "-", "GThreePGrowth"], [88, 0, 0, "-", "Gabstract"], [230, 0, 0, "-", "PPPGrowth"], [231, 0, 0, "-", "PPP_ECLAT"], [88, 0, 0, "-", "abstract"]], "PAMI.partialPeriodicPattern.basic.GThreePGrowth": [[229, 1, 1, "", "GThreePGrowth"]], "PAMI.partialPeriodicPattern.basic.GThreePGrowth.GThreePGrowth": [[229, 2, 1, "", "getMemoryRSS"], [229, 2, 1, "", "getMemoryUSS"], [229, 2, 1, "", "getPatterns"], [229, 2, 1, "", "getPatternsAsDataFrame"], [229, 2, 1, "", "getRuntime"], [229, 2, 1, "", "mine"], [229, 2, 1, "", "printResults"], [229, 2, 1, "", "save"]], "PAMI.partialPeriodicPattern.basic.PPPGrowth": [[230, 1, 1, "", "PPPGrowth"]], "PAMI.partialPeriodicPattern.basic.PPPGrowth.PPPGrowth": [[230, 2, 1, "", "getMemoryRSS"], [230, 2, 1, "", "getMemoryUSS"], [230, 2, 1, "", "getPatterns"], [230, 2, 1, "", "getPatternsAsDataFrame"], [230, 2, 1, "", "getRuntime"], [230, 2, 1, "", "mine"], [230, 2, 1, "", "printResults"], [230, 2, 1, "", "save"], [230, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern.basic.PPP_ECLAT": [[231, 1, 1, "", "PPP_ECLAT"]], "PAMI.partialPeriodicPattern.basic.PPP_ECLAT.PPP_ECLAT": [[231, 2, 1, "", "Mine"], [231, 2, 1, "", "getMemoryRSS"], [231, 2, 1, "", "getMemoryUSS"], [231, 2, 1, "", "getPatterns"], [231, 2, 1, "", "getPatternsAsDataFrame"], [231, 2, 1, "", "getRuntime"], [231, 2, 1, "", "printResults"], [231, 2, 1, "", "save"], [231, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern.closed": [[232, 0, 0, "-", "PPPClose"], [89, 0, 0, "-", "abstract"]], "PAMI.partialPeriodicPattern.closed.PPPClose": [[232, 1, 1, "", "PPPClose"]], "PAMI.partialPeriodicPattern.closed.PPPClose.PPPClose": [[232, 2, 1, "", "getMemoryRSS"], [232, 2, 1, "", "getMemoryUSS"], [232, 2, 1, "", "getPatterns"], [232, 2, 1, "", "getPatternsAsDataFrame"], [232, 2, 1, "", "getRuntime"], [232, 2, 1, "", "mine"], [232, 2, 1, "", "printResults"], [232, 2, 1, "", "save"], [232, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern.maximal": [[233, 0, 0, "-", "Max3PGrowth"], [90, 0, 0, "-", "abstract"]], "PAMI.partialPeriodicPattern.maximal.Max3PGrowth": [[233, 1, 1, "", "Max3PGrowth"]], "PAMI.partialPeriodicPattern.maximal.Max3PGrowth.Max3PGrowth": [[233, 2, 1, "", "getMemoryRSS"], [233, 2, 1, "", "getMemoryUSS"], [233, 2, 1, "", "getPatterns"], [233, 2, 1, "", "getPatternsAsDataFrame"], [233, 2, 1, "", "getRuntime"], [233, 2, 1, "", "mine"], [233, 2, 1, "", "printResults"], [233, 2, 1, "", "save"]], "PAMI.partialPeriodicPattern.pyspark": [[91, 0, 0, "-", "abstract"], [91, 0, 0, "-", "parallel3PGrowth"]], "PAMI.partialPeriodicPattern.pyspark.parallel3PGrowth": [[91, 1, 1, "", "Node"], [91, 1, 1, "", "Tree"], [91, 4, 1, "", "cond_trans"], [91, 4, 1, "", "getPF"], [91, 4, 1, "", "getps"], [91, 1, 1, "", "parallel3PGrowth"]], "PAMI.partialPeriodicPattern.pyspark.parallel3PGrowth.Node": [[91, 2, 1, "", "addChild"]], "PAMI.partialPeriodicPattern.pyspark.parallel3PGrowth.Tree": [[91, 2, 1, "", "add_transaction"], [91, 2, 1, "", "add_transaction_summ"], [91, 2, 1, "", "generate_patterns"], [91, 2, 1, "", "getTransactions"], [91, 2, 1, "", "get_condition_pattern"], [91, 2, 1, "", "get_ts"], [91, 2, 1, "", "merge"], [91, 2, 1, "", "remove_node"]], "PAMI.partialPeriodicPattern.pyspark.parallel3PGrowth.parallel3PGrowth": [[91, 2, 1, "", "cond_trans"], [91, 2, 1, "", "genCondTransactions"], [91, 2, 1, "", "getFrequentItems"], [91, 2, 1, "", "getFrequentItemsets"], [91, 2, 1, "", "getMemoryRSS"], [91, 2, 1, "", "getMemoryUSS"], [91, 2, 1, "", "getPF"], [91, 2, 1, "", "getPartitionId"], [91, 2, 1, "", "getPatterns"], [91, 2, 1, "", "getPatternsAsDataFrame"], [91, 2, 1, "", "getRuntime"], [91, 2, 1, "", "getps"], [91, 2, 1, "", "mine"], [91, 3, 1, "", "numPartitions"], [91, 2, 1, "", "printResults"], [91, 2, 1, "", "save"], [91, 2, 1, "", "setPartitions"], [91, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern.topk": [[92, 0, 0, "-", "abstract"], [234, 0, 0, "-", "k3PMiner"]], "PAMI.partialPeriodicPattern.topk.abstract": [[92, 1, 1, "", "partialPeriodicPatterns"]], "PAMI.partialPeriodicPattern.topk.abstract.partialPeriodicPatterns": [[92, 2, 1, "", "getMemoryRSS"], [92, 2, 1, "", "getMemoryUSS"], [92, 2, 1, "", "getPatterns"], [92, 2, 1, "", "getPatternsAsDataFrame"], [92, 2, 1, "", "getRuntime"], [92, 2, 1, "", "printResults"], [92, 2, 1, "", "save"], [92, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern.topk.k3PMiner": [[234, 1, 1, "", "k3PMiner"]], "PAMI.partialPeriodicPattern.topk.k3PMiner.k3PMiner": [[234, 2, 1, "", "getMemoryRSS"], [234, 2, 1, "", "getMemoryUSS"], [234, 2, 1, "", "getPatterns"], [234, 2, 1, "", "getPatternsAsDataFrame"], [234, 2, 1, "", "getRuntime"], [234, 2, 1, "", "mine"], [234, 2, 1, "", "printResults"], [234, 2, 1, "", "save"], [234, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPatternInMultipleTimeSeries": [[227, 0, 0, "-", "PPGrowth"], [93, 0, 0, "-", "abstract"]], "PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth": [[227, 1, 1, "", "PPGrowth"]], "PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth.PPGrowth": [[227, 2, 1, "", "Mine"], [227, 2, 1, "", "getMemoryRSS"], [227, 2, 1, "", "getMemoryUSS"], [227, 2, 1, "", "getPatterns"], [227, 2, 1, "", "getPatternsAsDataFrame"], [227, 2, 1, "", "getRuntime"], [227, 2, 1, "", "printResults"], [227, 2, 1, "", "save"], [227, 2, 1, "", "startMine"]], "PAMI.periodicCorrelatedPattern": [[95, 0, 0, "-", "basic"]], "PAMI.periodicCorrelatedPattern.basic": [[236, 0, 0, "-", "EPCPGrowth"], [95, 0, 0, "-", "abstract"]], "PAMI.periodicCorrelatedPattern.basic.EPCPGrowth": [[236, 1, 1, "", "EPCPGrowth"]], "PAMI.periodicCorrelatedPattern.basic.EPCPGrowth.EPCPGrowth": [[236, 2, 1, "", "getMemoryRSS"], [236, 2, 1, "", "getMemoryUSS"], [236, 2, 1, "", "getPatterns"], [236, 2, 1, "", "getPatternsAsDataFrame"], [236, 2, 1, "", "getRuntime"], [236, 2, 1, "", "printResults"], [236, 2, 1, "", "save"], [236, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern": [[97, 0, 0, "-", "basic"], [98, 0, 0, "-", "closed"], [99, 0, 0, "-", "cuda"], [100, 0, 0, "-", "maximal"], [101, 0, 0, "-", "pyspark"], [102, 0, 0, "-", "topk"]], "PAMI.periodicFrequentPattern.basic": [[238, 0, 0, "-", "PFECLAT"], [239, 0, 0, "-", "PFPGrowth"], [240, 0, 0, "-", "PFPGrowthPlus"], [241, 0, 0, "-", "PFPMC"], [242, 0, 0, "-", "PSGrowth"], [97, 0, 0, "-", "abstract"]], "PAMI.periodicFrequentPattern.basic.PFECLAT": [[238, 1, 1, "", "PFECLAT"]], "PAMI.periodicFrequentPattern.basic.PFECLAT.PFECLAT": [[238, 2, 1, "", "getMemoryRSS"], [238, 2, 1, "", "getMemoryUSS"], [238, 2, 1, "", "getPatterns"], [238, 2, 1, "", "getPatternsAsDataFrame"], [238, 2, 1, "", "getRuntime"], [238, 2, 1, "", "mine"], [238, 2, 1, "", "printResults"], [238, 2, 1, "", "save"], [238, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.basic.PFPGrowth": [[239, 1, 1, "", "PFPGrowth"]], "PAMI.periodicFrequentPattern.basic.PFPGrowth.PFPGrowth": [[239, 2, 1, "", "getMemoryRSS"], [239, 2, 1, "", "getMemoryUSS"], [239, 2, 1, "", "getPatterns"], [239, 2, 1, "", "getPatternsAsDataFrame"], [239, 2, 1, "", "getRuntime"], [239, 2, 1, "", "mine"], [239, 2, 1, "", "printResults"], [239, 2, 1, "", "save"], [239, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.basic.PFPGrowthPlus": [[240, 1, 1, "", "PFPGrowthPlus"]], "PAMI.periodicFrequentPattern.basic.PFPGrowthPlus.PFPGrowthPlus": [[240, 2, 1, "", "getMemoryRSS"], [240, 2, 1, "", "getMemoryUSS"], [240, 2, 1, "", "getPatterns"], [240, 2, 1, "", "getPatternsAsDataFrame"], [240, 2, 1, "", "getRuntime"], [240, 2, 1, "", "printResults"], [240, 2, 1, "", "save"], [240, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.basic.PFPMC": [[241, 1, 1, "", "PFPMC"]], "PAMI.periodicFrequentPattern.basic.PFPMC.PFPMC": [[241, 2, 1, "", "getMemoryRSS"], [241, 2, 1, "", "getMemoryUSS"], [241, 2, 1, "", "getPatterns"], [241, 2, 1, "", "getPatternsAsDataFrame"], [241, 2, 1, "", "getRuntime"], [241, 2, 1, "", "printResults"], [241, 2, 1, "", "save"], [241, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.basic.PSGrowth": [[242, 1, 1, "", "Node"], [242, 1, 1, "", "PSGrowth"], [242, 4, 1, "", "conditionalTransactions"], [242, 4, 1, "", "getPeriodAndSupport"]], "PAMI.periodicFrequentPattern.basic.PSGrowth.Node": [[242, 2, 1, "", "addChild"]], "PAMI.periodicFrequentPattern.basic.PSGrowth.PSGrowth": [[242, 2, 1, "", "Mine"], [242, 2, 1, "", "getMemoryRSS"], [242, 2, 1, "", "getMemoryUSS"], [242, 2, 1, "", "getPatterns"], [242, 2, 1, "", "getPatternsAsDataFrame"], [242, 2, 1, "", "getRuntime"], [242, 2, 1, "", "printResults"], [242, 2, 1, "", "save"], [242, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.closed": [[243, 0, 0, "-", "CPFPMiner"], [98, 0, 0, "-", "abstract"]], "PAMI.periodicFrequentPattern.closed.CPFPMiner": [[243, 1, 1, "", "CPFPMiner"]], "PAMI.periodicFrequentPattern.closed.CPFPMiner.CPFPMiner": [[243, 2, 1, "", "Mine"], [243, 2, 1, "", "getMemoryRSS"], [243, 2, 1, "", "getMemoryUSS"], [243, 2, 1, "", "getPatterns"], [243, 2, 1, "", "getPatternsAsDataFrame"], [243, 2, 1, "", "getRuntime"], [243, 2, 1, "", "printResults"], [243, 2, 1, "", "save"], [243, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.maximal": [[244, 0, 0, "-", "MaxPFGrowth"], [100, 0, 0, "-", "abstract"]], "PAMI.periodicFrequentPattern.maximal.MaxPFGrowth": [[244, 1, 1, "", "MaxPFGrowth"]], "PAMI.periodicFrequentPattern.maximal.MaxPFGrowth.MaxPFGrowth": [[244, 2, 1, "", "Mine"], [244, 2, 1, "", "getMemoryRSS"], [244, 2, 1, "", "getMemoryUSS"], [244, 2, 1, "", "getPatterns"], [244, 2, 1, "", "getPatternsAsDataFrame"], [244, 2, 1, "", "getRuntime"], [244, 2, 1, "", "printResults"], [244, 2, 1, "", "save"], [244, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.pyspark": [[101, 0, 0, "-", "abstract"], [101, 0, 0, "-", "parallelPFPGrowth"]], "PAMI.periodicFrequentPattern.pyspark.parallelPFPGrowth": [[101, 1, 1, "", "Node"], [101, 1, 1, "", "PFPTree"], [101, 1, 1, "", "Summary"], [101, 1, 1, "", "parallelPFPGrowth"]], "PAMI.periodicFrequentPattern.pyspark.parallelPFPGrowth.Node": [[101, 2, 1, "", "addChild"], [101, 2, 1, "", "toString"]], "PAMI.periodicFrequentPattern.pyspark.parallelPFPGrowth.PFPTree": [[101, 2, 1, "", "add"], [101, 2, 1, "", "extract"], [101, 2, 1, "", "getTransactions"], [101, 2, 1, "", "merge"], [101, 2, 1, "", "project"], [101, 2, 1, "", "satisfyPer"]], "PAMI.periodicFrequentPattern.pyspark.parallelPFPGrowth.parallelPFPGrowth": [[101, 2, 1, "", "Mine"], [101, 2, 1, "", "func1"], [101, 2, 1, "", "func2"], [101, 2, 1, "", "func3"], [101, 2, 1, "", "genCondTransactions"], [101, 2, 1, "", "getFrequentItems"], [101, 2, 1, "", "getFrequentItemsets"], [101, 2, 1, "", "getMemoryRSS"], [101, 2, 1, "", "getMemoryUSS"], [101, 2, 1, "", "getPartitionId"], [101, 2, 1, "", "getPatterns"], [101, 2, 1, "", "getPatternsAsDataFrame"], [101, 2, 1, "", "getRuntime"], [101, 2, 1, "", "printResults"], [101, 2, 1, "", "save"], [101, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.topk": [[103, 0, 0, "-", "TopkPFP"], [104, 0, 0, "-", "kPFPMiner"]], "PAMI.periodicFrequentPattern.topk.TopkPFP": [[245, 0, 0, "-", "TopkPFP"], [103, 0, 0, "-", "abstract"]], "PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP": [[245, 1, 1, "", "TopkPFPGrowth"]], "PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP.TopkPFPGrowth": [[245, 2, 1, "", "Mine"], [245, 2, 1, "", "getMemoryRSS"], [245, 2, 1, "", "getMemoryUSS"], [245, 2, 1, "", "getPatterns"], [245, 2, 1, "", "getPatternsAsDataFrame"], [245, 2, 1, "", "getRuntime"], [245, 2, 1, "", "printResults"], [245, 2, 1, "", "save"], [245, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.topk.kPFPMiner": [[104, 0, 0, "-", "abstract"], [246, 0, 0, "-", "kPFPMiner"]], "PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner": [[246, 1, 1, "", "kPFPMiner"]], "PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner.kPFPMiner": [[246, 2, 1, "", "getMemoryRSS"], [246, 2, 1, "", "getMemoryUSS"], [246, 2, 1, "", "getPatterns"], [246, 2, 1, "", "getPatternsAsDataFrame"], [246, 2, 1, "", "getPer_Sup"], [246, 2, 1, "", "getRuntime"], [246, 3, 1, "", "lno"], [246, 2, 1, "", "printResults"], [246, 2, 1, "", "save"], [246, 2, 1, "", "startMine"]], "PAMI.recurringPattern": [[106, 0, 0, "-", "basic"]], "PAMI.recurringPattern.basic": [[248, 0, 0, "-", "RPGrowth"], [106, 0, 0, "-", "abstract"]], "PAMI.recurringPattern.basic.RPGrowth": [[248, 1, 1, "", "RPGrowth"]], "PAMI.recurringPattern.basic.RPGrowth.RPGrowth": [[248, 2, 1, "", "Mine"], [248, 2, 1, "", "getMemoryRSS"], [248, 2, 1, "", "getMemoryUSS"], [248, 2, 1, "", "getPatterns"], [248, 2, 1, "", "getPatternsAsDataFrame"], [248, 2, 1, "", "getRuntime"], [248, 2, 1, "", "printResults"], [248, 2, 1, "", "save"], [248, 2, 1, "", "startMine"]], "PAMI.relativeFrequentPattern": [[108, 0, 0, "-", "basic"]], "PAMI.relativeFrequentPattern.basic": [[251, 0, 0, "-", "RSFPGrowth"], [108, 0, 0, "-", "abstract"]], "PAMI.relativeFrequentPattern.basic.RSFPGrowth": [[251, 1, 1, "", "RSFPGrowth"]], "PAMI.relativeFrequentPattern.basic.RSFPGrowth.RSFPGrowth": [[251, 2, 1, "", "Mine"], [251, 2, 1, "", "getMemoryRSS"], [251, 2, 1, "", "getMemoryUSS"], [251, 2, 1, "", "getPatterns"], [251, 2, 1, "", "getPatternsAsDataFrame"], [251, 2, 1, "", "getRuntime"], [251, 2, 1, "", "printResults"], [251, 2, 1, "", "save"], [251, 2, 1, "", "startMine"]], "PAMI.relativeHighUtilityPattern": [[110, 0, 0, "-", "basic"]], "PAMI.relativeHighUtilityPattern.basic": [[252, 0, 0, "-", "RHUIM"], [110, 0, 0, "-", "abstract"]], "PAMI.relativeHighUtilityPattern.basic.RHUIM": [[252, 1, 1, "", "RHUIM"]], "PAMI.relativeHighUtilityPattern.basic.RHUIM.RHUIM": [[252, 2, 1, "", "getMemoryRSS"], [252, 2, 1, "", "getMemoryUSS"], [252, 2, 1, "", "getPatterns"], [252, 2, 1, "", "getPatternsAsDataFrame"], [252, 2, 1, "", "getRuntime"], [252, 2, 1, "", "printResults"], [252, 2, 1, "", "save"], [252, 2, 1, "", "sortDatabase"], [252, 2, 1, "", "sort_transaction"], [252, 2, 1, "", "startMine"]], "PAMI.sequentialPatternMining": [[113, 0, 0, "-", "basic"], [114, 0, 0, "-", "closed"]], "PAMI.sequentialPatternMining.basic": [[256, 0, 0, "-", "SPADE"], [257, 0, 0, "-", "SPAM"], [113, 0, 0, "-", "abstract"], [258, 0, 0, "-", "prefixSpan"]], "PAMI.sequentialPatternMining.basic.SPADE": [[256, 1, 1, "", "SPADE"]], "PAMI.sequentialPatternMining.basic.SPADE.SPADE": [[256, 2, 1, "", "Mine"], [256, 2, 1, "", "getMemoryRSS"], [256, 2, 1, "", "getMemoryUSS"], [256, 2, 1, "", "getPatterns"], [256, 2, 1, "", "getPatternsAsDataFrame"], [256, 2, 1, "", "getRuntime"], [256, 2, 1, "", "make1LenDatabase"], [256, 2, 1, "", "make2LenDatabase"], [256, 2, 1, "", "make3LenDatabase"], [256, 2, 1, "", "makeNextRow"], [256, 2, 1, "", "makeNextRowSame"], [256, 2, 1, "", "makeNextRowSame2"], [256, 2, 1, "", "makeNextRowSame3"], [256, 2, 1, "", "makexLenDatabase"], [256, 2, 1, "", "makexLenDatabaseSame"], [256, 2, 1, "", "printResults"], [256, 2, 1, "", "save"], [256, 2, 1, "", "startMine"]], "PAMI.sequentialPatternMining.basic.SPAM": [[257, 1, 1, "", "SPAM"]], "PAMI.sequentialPatternMining.basic.SPAM.SPAM": [[257, 2, 1, "", "DfsPruning"], [257, 2, 1, "", "Sstep"], [257, 2, 1, "", "countSup"], [257, 2, 1, "", "getMemoryRSS"], [257, 2, 1, "", "getMemoryUSS"], [257, 2, 1, "", "getPatterns"], [257, 2, 1, "", "getPatternsAsDataFrame"], [257, 2, 1, "", "getRuntime"], [257, 2, 1, "", "make2BitDatabase"], [257, 2, 1, "", "printResults"], [257, 2, 1, "", "save"], [257, 2, 1, "", "startMine"]], "PAMI.sequentialPatternMining.basic.prefixSpan": [[258, 1, 1, "", "prefixSpan"]], "PAMI.sequentialPatternMining.basic.prefixSpan.prefixSpan": [[258, 2, 1, "", "Mine"], [258, 2, 1, "", "getMemoryRSS"], [258, 2, 1, "", "getMemoryUSS"], [258, 2, 1, "", "getPatterns"], [258, 2, 1, "", "getPatternsAsDataFrame"], [258, 2, 1, "", "getRuntime"], [258, 2, 1, "", "getSameSeq"], [258, 2, 1, "", "makeNext"], [258, 2, 1, "", "makeNextSame"], [258, 2, 1, "", "makeSeqDatabaseFirst"], [258, 2, 1, "", "makeSeqDatabaseSame"], [258, 2, 1, "", "makeSupDatabase"], [258, 2, 1, "", "printResults"], [258, 2, 1, "", "save"], [258, 2, 1, "", "serchSame"], [258, 2, 1, "", "startMine"]], "PAMI.sequentialPatternMining.closed": [[114, 0, 0, "-", "abstract"], [259, 0, 0, "-", "bide"]], "PAMI.stablePeriodicFrequentPattern": [[116, 0, 0, "-", "basic"], [117, 0, 0, "-", "topK"]], "PAMI.stablePeriodicFrequentPattern.basic": [[260, 0, 0, "-", "SPPEclat"], [261, 0, 0, "-", "SPPGrowth"], [116, 0, 0, "-", "abstract"]], "PAMI.stablePeriodicFrequentPattern.basic.SPPEclat": [[260, 1, 1, "", "SPPEclat"]], "PAMI.stablePeriodicFrequentPattern.basic.SPPEclat.SPPEclat": [[260, 2, 1, "", "getMemoryRSS"], [260, 2, 1, "", "getMemoryUSS"], [260, 2, 1, "", "getPatterns"], [260, 2, 1, "", "getPatternsAsDataFrame"], [260, 2, 1, "", "getRuntime"], [260, 2, 1, "", "mine"], [260, 2, 1, "", "printResults"], [260, 2, 1, "", "save"], [260, 2, 1, "", "startMine"]], "PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth": [[261, 1, 1, "", "SPPGrowth"]], "PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth.SPPGrowth": [[261, 3, 1, "", "SPPList"], [261, 2, 1, "", "getMemoryRSS"], [261, 2, 1, "", "getMemoryUSS"], [261, 2, 1, "", "getPatterns"], [261, 2, 1, "", "getPatternsAsDataFrame"], [261, 2, 1, "", "getRuntime"], [261, 2, 1, "", "mine"], [261, 2, 1, "", "printResults"], [261, 2, 1, "", "save"], [261, 2, 1, "", "startMine"]], "PAMI.stablePeriodicFrequentPattern.topK": [[262, 0, 0, "-", "TSPIN"], [117, 0, 0, "-", "abstract"]], "PAMI.stablePeriodicFrequentPattern.topK.TSPIN": [[262, 1, 1, "", "TSPIN"]], "PAMI.stablePeriodicFrequentPattern.topK.TSPIN.TSPIN": [[262, 2, 1, "", "getMemoryRSS"], [262, 2, 1, "", "getMemoryUSS"], [262, 2, 1, "", "getPatterns"], [262, 2, 1, "", "getPatternsAsDataFrame"], [262, 2, 1, "", "getRuntime"], [262, 2, 1, "", "printResults"], [262, 2, 1, "", "save"], [262, 2, 1, "", "startMine"]], "PAMI.subgraphMining": [[119, 0, 0, "-", "basic"], [120, 0, 0, "-", "topK"]], "PAMI.subgraphMining.basic": [[119, 0, 0, "-", "abstract"], [119, 0, 0, "-", "dfsCode"], [119, 0, 0, "-", "edge"], [119, 0, 0, "-", "extendedEdge"], [119, 0, 0, "-", "frequentSubgraph"], [119, 0, 0, "-", "graph"], [119, 0, 0, "-", "gspan"], [119, 0, 0, "-", "sparseTriangularMatrix"], [119, 0, 0, "-", "vertex"]], "PAMI.subgraphMining.basic.dfsCode": [[119, 1, 1, "", "DFSCode"]], "PAMI.subgraphMining.basic.dfsCode.DFSCode": [[119, 2, 1, "", "add"], [119, 2, 1, "", "containEdge"], [119, 2, 1, "", "copy"], [119, 2, 1, "", "getAllVLabels"], [119, 2, 1, "", "getAt"], [119, 2, 1, "", "getEeList"], [119, 2, 1, "", "getRightMost"], [119, 2, 1, "", "getRightMostPath"], [119, 2, 1, "", "isEmpty"], [119, 2, 1, "", "notPreOfRm"], [119, 2, 1, "", "onRightMostPath"]], "PAMI.subgraphMining.basic.edge": [[119, 1, 1, "", "Edge"]], "PAMI.subgraphMining.basic.edge.Edge": [[119, 2, 1, "", "another"], [119, 2, 1, "", "getEdgeLabel"]], "PAMI.subgraphMining.basic.extendedEdge": [[119, 1, 1, "", "ExtendedEdge"]], "PAMI.subgraphMining.basic.extendedEdge.ExtendedEdge": [[119, 2, 1, "", "getEdgeLabel"], [119, 2, 1, "", "getV1"], [119, 2, 1, "", "getV2"], [119, 2, 1, "", "getVLabel1"], [119, 2, 1, "", "getVLabel2"], [119, 2, 1, "", "pairSmallerThan"], [119, 2, 1, "", "smallerThan"], [119, 2, 1, "", "smallerThanOriginal"]], "PAMI.subgraphMining.basic.frequentSubgraph": [[119, 1, 1, "", "FrequentSubgraph"]], "PAMI.subgraphMining.basic.graph": [[119, 1, 1, "", "Graph"]], "PAMI.subgraphMining.basic.graph.Graph": [[119, 3, 1, "", "emptyIntegerArray"], [119, 3, 1, "", "emptyVertexList"], [119, 2, 1, "", "findAllWithLabel"], [119, 2, 1, "", "getAllNeighbors"], [119, 2, 1, "", "getAllVertices"], [119, 2, 1, "", "getEdge"], [119, 2, 1, "", "getEdgeCount"], [119, 2, 1, "", "getEdgeLabel"], [119, 2, 1, "", "getId"], [119, 2, 1, "", "getNonPrecalculatedAllVertices"], [119, 2, 1, "", "getVLabel"], [119, 2, 1, "", "isNeighboring"], [119, 2, 1, "", "precalculateLabelsToVertices"], [119, 2, 1, "", "precalculateVertexList"], [119, 2, 1, "", "precalculateVertexNeighbors"], [119, 2, 1, "", "removeInfrequentLabel"]], "PAMI.subgraphMining.basic.gspan": [[119, 1, 1, "", "GSpan"]], "PAMI.subgraphMining.basic.gspan.GSpan": [[119, 1, 1, "", "Pair"], [119, 3, 1, "", "edge_count_pruning"], [119, 3, 1, "", "eliminate_infrequent_edge_labels"], [119, 3, 1, "", "eliminate_infrequent_vertex_pairs"], [119, 3, 1, "", "eliminate_infrequent_vertices"], [119, 2, 1, "", "findAllOnlyOneVertex"], [119, 2, 1, "", "gSpan"], [119, 2, 1, "", "getFrequentSubgraphs"], [119, 2, 1, "", "getMemoryRSS"], [119, 2, 1, "", "getMemoryUSS"], [119, 2, 1, "", "getRuntime"], [119, 2, 1, "", "getSubgraphGraphMapping"], [119, 2, 1, "", "gspanDFS"], [119, 2, 1, "", "isCanonical"], [119, 2, 1, "", "mine"], [119, 2, 1, "", "readGraphs"], [119, 2, 1, "", "removeInfrequentVertexPairs"], [119, 2, 1, "", "rightMostPathExtensions"], [119, 2, 1, "", "rightMostPathExtensionsFromSingle"], [119, 2, 1, "", "save"], [119, 2, 1, "", "saveSubgraphsByGraphId"], [119, 2, 1, "", "subgraphIsomorphisms"]], "PAMI.subgraphMining.basic.sparseTriangularMatrix": [[119, 1, 1, "", "SparseTriangularMatrix"]], "PAMI.subgraphMining.basic.sparseTriangularMatrix.SparseTriangularMatrix": [[119, 2, 1, "", "getSupportForItems"], [119, 2, 1, "", "incrementCount"], [119, 2, 1, "", "removeInfrequentEntriesFromMatrix"], [119, 2, 1, "", "setSupport"]], "PAMI.subgraphMining.basic.vertex": [[119, 1, 1, "", "Vertex"]], "PAMI.subgraphMining.basic.vertex.Vertex": [[119, 2, 1, "", "addEdge"], [119, 2, 1, "", "getEdgeList"], [119, 2, 1, "", "getId"], [119, 2, 1, "", "getLabel"], [119, 2, 1, "", "removeEdge"]], "PAMI.subgraphMining.topK": [[120, 0, 0, "-", "DFSCode"], [120, 0, 0, "-", "DFSThread"], [120, 0, 0, "-", "abstract"], [120, 0, 0, "-", "edge"], [120, 0, 0, "-", "extendedEdge"], [120, 0, 0, "-", "frequentSubgraph"], [120, 0, 0, "-", "graph"], [120, 0, 0, "-", "sparseTriangularMatrix"], [120, 0, 0, "-", "tkg"], [120, 0, 0, "-", "vertex"]], "PAMI.subgraphMining.topK.DFSCode": [[120, 1, 1, "", "DfsCode"]], "PAMI.subgraphMining.topK.DFSCode.DfsCode": [[120, 2, 1, "", "add"], [120, 2, 1, "", "containEdge"], [120, 2, 1, "", "copy"], [120, 2, 1, "", "getAllVLabels"], [120, 2, 1, "", "getAt"], [120, 2, 1, "", "getEeList"], [120, 2, 1, "", "getRightMost"], [120, 2, 1, "", "getRightMostPath"], [120, 2, 1, "", "isEmpty"], [120, 2, 1, "", "notPreOfRm"], [120, 2, 1, "", "onRightMostPath"]], "PAMI.subgraphMining.topK.DFSThread": [[120, 1, 1, "", "DfsThread"]], "PAMI.subgraphMining.topK.DFSThread.DfsThread": [[120, 2, 1, "", "run"]], "PAMI.subgraphMining.topK.edge": [[120, 1, 1, "", "Edge"]], "PAMI.subgraphMining.topK.edge.Edge": [[120, 2, 1, "", "another"], [120, 2, 1, "", "getEdgeLabel"]], "PAMI.subgraphMining.topK.extendedEdge": [[120, 1, 1, "", "ExtendedEdge"]], "PAMI.subgraphMining.topK.extendedEdge.ExtendedEdge": [[120, 2, 1, "", "getEdgeLabel"], [120, 2, 1, "", "getV1"], [120, 2, 1, "", "getV2"], [120, 2, 1, "", "getVLabel1"], [120, 2, 1, "", "getVLabel2"], [120, 2, 1, "", "pairSmallerThan"], [120, 2, 1, "", "smallerThan"], [120, 2, 1, "", "smallerThanOriginal"]], "PAMI.subgraphMining.topK.frequentSubgraph": [[120, 1, 1, "", "FrequentSubgraph"]], "PAMI.subgraphMining.topK.graph": [[120, 1, 1, "", "Graph"]], "PAMI.subgraphMining.topK.graph.Graph": [[120, 3, 1, "", "EMPTY_INTEGER_ARRAY"], [120, 3, 1, "", "EMPTY_VERTEX_LIST"], [120, 2, 1, "", "findAllWithLabel"], [120, 2, 1, "", "getAllNeighbors"], [120, 2, 1, "", "getAllVertices"], [120, 2, 1, "", "getEdge"], [120, 2, 1, "", "getEdgeCount"], [120, 2, 1, "", "getEdgeLabel"], [120, 2, 1, "", "getId"], [120, 2, 1, "", "getNonPrecalculatedAllVertices"], [120, 2, 1, "", "getVLabel"], [120, 2, 1, "", "isNeighboring"], [120, 2, 1, "", "precalculateLabelsToVertices"], [120, 2, 1, "", "precalculateVertexList"], [120, 2, 1, "", "precalculateVertexNeighbors"], [120, 2, 1, "", "removeInfrequentLabel"]], "PAMI.subgraphMining.topK.sparseTriangularMatrix": [[120, 1, 1, "", "SparseTriangularMatrix"]], "PAMI.subgraphMining.topK.sparseTriangularMatrix.SparseTriangularMatrix": [[120, 2, 1, "", "getSupportForItems"], [120, 2, 1, "", "incrementCount"], [120, 2, 1, "", "removeInfrequentEntriesFromMatrix"], [120, 2, 1, "", "setSupport"]], "PAMI.subgraphMining.topK.tkg": [[120, 1, 1, "", "TKG"]], "PAMI.subgraphMining.topK.tkg.TKG": [[120, 3, 1, "", "DYNAMIC_SEARCH"], [120, 3, 1, "", "EDGE_COUNT_PRUNING"], [120, 3, 1, "", "ELIMINATE_INFREQUENT_EDGE_LABELS"], [120, 3, 1, "", "ELIMINATE_INFREQUENT_VERTEX_PAIRS"], [120, 3, 1, "", "ELIMINATE_INFREQUENT_VERTICES"], [120, 1, 1, "", "Pair"], [120, 3, 1, "", "THREADED_DYNAMIC_SEARCH"], [120, 2, 1, "", "findAllOnlyOneVertex"], [120, 2, 1, "", "gSpan"], [120, 2, 1, "", "getKSubgraphs"], [120, 2, 1, "", "getMemoryRSS"], [120, 2, 1, "", "getMemoryUSS"], [120, 2, 1, "", "getMinSupport"], [120, 2, 1, "", "getQueueSize"], [120, 2, 1, "", "getRuntime"], [120, 2, 1, "", "getSubgraphsList"], [120, 2, 1, "", "gspanDfs"], [120, 2, 1, "", "gspanDynamicDFS"], [120, 2, 1, "", "isCanonical"], [120, 2, 1, "", "mine"], [120, 2, 1, "", "readGraphs"], [120, 2, 1, "", "registerAsCandidate"], [120, 2, 1, "", "removeInfrequentVertexPairs"], [120, 2, 1, "", "rightMostPathExtensions"], [120, 2, 1, "", "rightMostPathExtensionsFromSingle"], [120, 2, 1, "", "save"], [120, 2, 1, "", "savePattern"], [120, 2, 1, "", "startThreads"], [120, 2, 1, "", "subgraphIsomorphisms"]], "PAMI.subgraphMining.topK.vertex": [[120, 1, 1, "", "Vertex"]], "PAMI.subgraphMining.topK.vertex.Vertex": [[120, 2, 1, "", "addEdge"], [120, 2, 1, "", "getEdgeList"], [120, 2, 1, "", "getId"], [120, 2, 1, "", "getLabel"], [120, 2, 1, "", "removeEdge"]], "PAMI.uncertainFaultTolerantFrequentPattern": [[121, 0, 0, "-", "VBFTMine"], [121, 0, 0, "-", "abstract"]], "PAMI.uncertainFaultTolerantFrequentPattern.VBFTMine": [[121, 1, 1, "", "VBFTMine"]], "PAMI.uncertainFaultTolerantFrequentPattern.VBFTMine.VBFTMine": [[121, 2, 1, "", "getMemoryRSS"], [121, 2, 1, "", "getMemoryUSS"], [121, 2, 1, "", "getPatterns"], [121, 2, 1, "", "getPatternsAsDataFrame"], [121, 2, 1, "", "getRuntime"], [121, 2, 1, "", "mine"], [121, 2, 1, "", "printResults"], [121, 2, 1, "", "save"], [121, 2, 1, "", "startMine"]], "PAMI.uncertainFrequentPattern": [[123, 0, 0, "-", "basic"]], "PAMI.uncertainFrequentPattern.basic": [[266, 0, 0, "-", "CUFPTree"], [267, 0, 0, "-", "PUFGrowth"], [268, 0, 0, "-", "TUFP"], [269, 0, 0, "-", "TubeP"], [270, 0, 0, "-", "TubeS"], [271, 0, 0, "-", "UFGrowth"], [272, 0, 0, "-", "UVECLAT"], [123, 0, 0, "-", "abstract"]], "PAMI.uncertainFrequentPattern.basic.CUFPTree": [[266, 1, 1, "", "CUFPTree"]], "PAMI.uncertainFrequentPattern.basic.CUFPTree.CUFPTree": [[266, 2, 1, "", "getMemoryRSS"], [266, 2, 1, "", "getMemoryUSS"], [266, 2, 1, "", "getPatterns"], [266, 2, 1, "", "getPatternsAsDataFrame"], [266, 2, 1, "", "getRuntime"], [266, 2, 1, "", "mine"], [266, 2, 1, "", "printResults"], [266, 2, 1, "", "save"], [266, 2, 1, "", "startMine"]], "PAMI.uncertainFrequentPattern.basic.PUFGrowth": [[267, 1, 1, "", "PUFGrowth"]], "PAMI.uncertainFrequentPattern.basic.PUFGrowth.PUFGrowth": [[267, 2, 1, "", "getMemoryRSS"], [267, 2, 1, "", "getMemoryUSS"], [267, 2, 1, "", "getPatterns"], [267, 2, 1, "", "getPatternsAsDataFrame"], [267, 2, 1, "", "getRuntime"], [267, 2, 1, "", "mine"], [267, 2, 1, "", "printResults"], [267, 2, 1, "", "save"], [267, 2, 1, "", "startMine"]], "PAMI.uncertainFrequentPattern.basic.TUFP": [[268, 1, 1, "", "TUFP"]], "PAMI.uncertainFrequentPattern.basic.TUFP.TUFP": [[268, 2, 1, "", "getMemoryRSS"], [268, 2, 1, "", "getMemoryUSS"], [268, 2, 1, "", "getPatterns"], [268, 2, 1, "", "getPatternsAsDataFrame"], [268, 2, 1, "", "getRuntime"], [268, 2, 1, "", "mine"], [268, 2, 1, "", "printResults"], [268, 2, 1, "", "save"], [268, 2, 1, "", "startMine"]], "PAMI.uncertainFrequentPattern.basic.TubeP": [[269, 1, 1, "", "TUFP"]], "PAMI.uncertainFrequentPattern.basic.TubeP.TUFP": [[269, 2, 1, "", "getMemoryRSS"], [269, 2, 1, "", "getMemoryUSS"], [269, 2, 1, "", "getPatterns"], [269, 2, 1, "", "getPatternsAsDataFrame"], [269, 2, 1, "", "getRuntime"], [269, 2, 1, "", "mine"], [269, 2, 1, "", "printResults"], [269, 2, 1, "", "save"], [269, 2, 1, "", "startMine"]], "PAMI.uncertainFrequentPattern.basic.TubeS": [[270, 4, 1, "", "Second"], [270, 1, 1, "", "TubeS"], [270, 4, 1, "", "printTree"]], "PAMI.uncertainFrequentPattern.basic.TubeS.TubeS": [[270, 2, 1, "", "getMemoryRSS"], [270, 2, 1, "", "getMemoryUSS"], [270, 2, 1, "", "getPatterns"], [270, 2, 1, "", "getPatternsAsDataFrame"], [270, 2, 1, "", "getRuntime"], [270, 2, 1, "", "mine"], [270, 2, 1, "", "printResults"], [270, 2, 1, "", "save"], [270, 2, 1, "", "updateTransactions"]], "PAMI.uncertainFrequentPattern.basic.UFGrowth": [[271, 1, 1, "", "UFGrowth"]], "PAMI.uncertainFrequentPattern.basic.UFGrowth.UFGrowth": [[271, 2, 1, "", "getMemoryRSS"], [271, 2, 1, "", "getMemoryUSS"], [271, 2, 1, "", "getPatterns"], [271, 2, 1, "", "getPatternsAsDataFrame"], [271, 2, 1, "", "getRuntime"], [271, 2, 1, "", "mine"], [271, 2, 1, "", "printResults"], [271, 2, 1, "", "save"]], "PAMI.uncertainFrequentPattern.basic.UVECLAT": [[272, 1, 1, "", "UVEclat"]], "PAMI.uncertainFrequentPattern.basic.UVECLAT.UVEclat": [[272, 2, 1, "", "getMemoryRSS"], [272, 2, 1, "", "getMemoryUSS"], [272, 2, 1, "", "getPatterns"], [272, 2, 1, "", "getPatternsAsDataFrame"], [272, 2, 1, "", "getRuntime"], [272, 2, 1, "", "mine"], [272, 2, 1, "", "printResults"], [272, 2, 1, "", "save"]], "PAMI.uncertainGeoreferencedFrequentPattern": [[125, 0, 0, "-", "basic"]], "PAMI.uncertainGeoreferencedFrequentPattern.basic": [[275, 0, 0, "-", "GFPGrowth"], [125, 0, 0, "-", "abstract"]], "PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth": [[275, 1, 1, "", "GFPGrowth"]], "PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth.GFPGrowth": [[275, 2, 1, "", "getMemoryRSS"], [275, 2, 1, "", "getMemoryUSS"], [275, 2, 1, "", "getPatterns"], [275, 2, 1, "", "getPatternsAsDataFrame"], [275, 2, 1, "", "getRuntime"], [275, 2, 1, "", "mine"], [275, 2, 1, "", "printResults"], [275, 2, 1, "", "save"], [275, 2, 1, "", "startMine"]], "PAMI.uncertainPeriodicFrequentPattern": [[127, 0, 0, "-", "basic"]], "PAMI.uncertainPeriodicFrequentPattern.basic": [[277, 0, 0, "-", "UPFPGrowth"], [278, 0, 0, "-", "UPFPGrowthPlus"], [127, 0, 0, "-", "abstract"]], "PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth": [[277, 1, 1, "", "UPFPGrowth"]], "PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth.UPFPGrowth": [[277, 2, 1, "", "getMemoryRSS"], [277, 2, 1, "", "getMemoryUSS"], [277, 2, 1, "", "getPatterns"], [277, 2, 1, "", "getPatternsAsDataFrame"], [277, 2, 1, "", "getRuntime"], [277, 2, 1, "", "mine"], [277, 2, 1, "", "printResults"], [277, 2, 1, "", "save"], [277, 2, 1, "", "startMine"]], "PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus": [[278, 1, 1, "", "UPFPGrowthPlus"], [278, 4, 1, "", "printTree"]], "PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus.UPFPGrowthPlus": [[278, 2, 1, "", "getMemoryRSS"], [278, 2, 1, "", "getMemoryUSS"], [278, 2, 1, "", "getPatterns"], [278, 2, 1, "", "getPatternsAsDataFrame"], [278, 2, 1, "", "getRuntime"], [278, 2, 1, "", "mine"], [278, 2, 1, "", "printResults"], [278, 2, 1, "", "save"], [278, 2, 1, "", "startMine"]], "PAMI.weightedFrequentNeighbourhoodPattern": [[129, 0, 0, "-", "basic"]], "PAMI.weightedFrequentNeighbourhoodPattern.basic": [[281, 0, 0, "-", "SWFPGrowth"], [129, 0, 0, "-", "abstract"]], "PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth": [[281, 1, 1, "", "SWFPGrowth"]], "PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth.SWFPGrowth": [[281, 2, 1, "", "getMemoryRSS"], [281, 2, 1, "", "getMemoryUSS"], [281, 2, 1, "", "getPatterns"], [281, 2, 1, "", "getPatternsAsDataFrame"], [281, 2, 1, "", "getRuntime"], [281, 2, 1, "", "mine"], [281, 2, 1, "", "printResults"], [281, 2, 1, "", "save"], [281, 2, 1, "", "startMine"]], "PAMI.weightedFrequentPattern": [[131, 0, 0, "-", "basic"]], "PAMI.weightedFrequentPattern.basic": [[283, 0, 0, "-", "WFIM"], [131, 0, 0, "-", "abstract"]], "PAMI.weightedFrequentPattern.basic.WFIM": [[283, 1, 1, "", "WFIM"]], "PAMI.weightedFrequentPattern.basic.WFIM.WFIM": [[283, 2, 1, "", "getMemoryRSS"], [283, 2, 1, "", "getMemoryUSS"], [283, 2, 1, "", "getPatterns"], [283, 2, 1, "", "getPatternsAsDataFrame"], [283, 2, 1, "", "getRuntime"], [283, 2, 1, "", "mine"], [283, 2, 1, "", "printResults"], [283, 2, 1, "", "save"], [283, 2, 1, "", "startMine"]], "PAMI.weightedFrequentRegularPattern": [[133, 0, 0, "-", "basic"]], "PAMI.weightedFrequentRegularPattern.basic": [[285, 0, 0, "-", "WFRIMiner"], [133, 0, 0, "-", "abstract"]], "PAMI.weightedFrequentRegularPattern.basic.WFRIMiner": [[285, 1, 1, "", "WFRIMiner"]], "PAMI.weightedFrequentRegularPattern.basic.WFRIMiner.WFRIMiner": [[285, 2, 1, "", "getMemoryRSS"], [285, 2, 1, "", "getMemoryUSS"], [285, 2, 1, "", "getPatterns"], [285, 2, 1, "", "getPatternsAsDataFrame"], [285, 2, 1, "", "getRuntime"], [285, 2, 1, "", "mine"], [285, 2, 1, "", "printResults"], [285, 2, 1, "", "save"], [285, 2, 1, "", "startMine"]], "PAMI.weightedUncertainFrequentPattern": [[135, 0, 0, "-", "basic"]], "PAMI.weightedUncertainFrequentPattern.basic": [[135, 0, 0, "-", "WUFIM"], [135, 0, 0, "-", "abstract"]], "PAMI.weightedUncertainFrequentPattern.basic.WUFIM": [[135, 1, 1, "", "WUFIM"]], "PAMI.weightedUncertainFrequentPattern.basic.WUFIM.WUFIM": [[135, 2, 1, "", "getMemoryRSS"], [135, 2, 1, "", "getMemoryUSS"], [135, 2, 1, "", "getPatterns"], [135, 2, 1, "", "getPatternsAsDataFrame"], [135, 2, 1, "", "getRuntime"], [135, 2, 1, "", "mine"], [135, 2, 1, "", "printResults"], [135, 2, 1, "", "save"], [135, 2, 1, "", "startMine"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:attribute", "4": "py:function"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"]}, "titleterms": {"contigu": [0, 151], "frequent": [0, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 136, 139, 142, 144, 145, 146, 147, 148, 149, 161, 249], "pattern": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 151, 161, 190, 196, 249, 280], "correl": [1, 5, 138], "mine": [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 161, 190, 196, 280], "coverag": 2, "fault": 3, "toler": 3, "With": 4, "multipl": [4, 19, 223], "minimum": 4, "support": 4, "fuzzi": [5, 6, 7, 8, 9, 190], "geo": [7, 8, 10, 11, 12, 13, 15, 145, 196], "referenc": [7, 8, 10, 11, 12, 13, 15, 145, 196], "period": [8, 9, 12, 13, 18, 19, 136, 137, 138, 139, 143, 146], "sequenc": [11, 111], "partial": [12, 19, 136, 137], "high": [14, 15, 16, 17, 141], "util": [14, 15, 16, 17, 141, 280], "spatial": 17, "local": 18, "pami": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 214, 219], "packag": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135], "subpackag": [20, 21, 23, 25, 27, 42, 44, 51, 53, 55, 57, 59, 61, 63, 65, 68, 70, 72, 74, 78, 81, 83, 85, 87, 94, 96, 102, 105, 107, 109, 112, 115, 118, 122, 124, 126, 128, 130, 132, 134], "modul": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135], "content": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135], "associationrul": [21, 22], "basic": [22, 24, 26, 43, 45, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 82, 84, 86, 88, 95, 97, 106, 108, 110, 113, 116, 119, 123, 125, 127, 129, 131, 133, 135, 154, 157, 160, 175, 180, 182, 184, 186, 187, 191, 193, 195, 197, 203, 204, 209, 212, 215, 222, 224, 228, 235, 237, 247, 250, 253, 254, 263, 273, 274, 279, 282, 284, 286], "submodul": [22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 45, 46, 47, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 67, 69, 71, 73, 75, 76, 77, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110, 113, 114, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135], "arwithconfid": 22, "arwithleverag": 22, "arwithlift": 22, "rulemin": 22, "abstract": [22, 24, 26, 31, 43, 45, 46, 47, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 67, 69, 71, 73, 75, 76, 77, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110, 113, 114, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135], "correlatedpattern": [23, 24], "comin": [24, 152], "comineplu": [24, 153], "coveragepattern": [25, 26], "cmine": [26, 155], "cppg": [26, 156], "extra": [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41], "convertmultitsintofuzzi": 27, "generatelatexgraphfil": 27, "plotpointonmap": 27, "plotpointonmap_dump": 27, "scatterplotspatialpoint": 27, "topkpattern": 27, "uncertaindb_convert": 27, "df2db": 28, "df2dbplu": 28, "denseformatdf": 28, "sparseformatdf": 28, "createtdb": 28, "densedf2dbplu": 28, "densedf2db_dump": 28, "sparsedf2dbplu": 28, "calculatemisvalu": 29, "usingbeta": 29, "usingsd": 29, "dbstat": 30, "fuzzydatabas": [30, 40], "multipletimeseriesfuzzydatabasestat": 30, "sequentialdatabas": [30, 39], "temporaldatabas": [30, 39, 40], "transactionaldatabas": [30, 39, 40], "uncertaintemporaldatabas": 30, "uncertaintransactionaldatabas": 30, "utilitydatabas": [30, 39, 40], "fuzzytransform": 31, "temporaltofuzzi": 31, "transactionaltofuzzi": 31, "utilitytofuzzi": 31, "generatedatabas": 32, "generatespatiotemporaldatabas": 32, "generatetemporaldatabas": 32, "generatetransactionaldatabas": 32, "graph": [33, 41, 119, 120], "df2fig": 33, "df2tex": 33, "plotlinegraphfromdictionari": 33, "plotlinegraphsfromdatafram": 33, "visualizefuzzypattern": 33, "visualizepattern": 33, "image2databas": 34, "imageprocess": 35, "imagery2databas": 35, "messag": 36, "discord": 36, "gmail": 36, "neighbour": 37, "findneighborsusingeuclideandistanceforpointinfo": 37, "findneighboursusingeuclidean": 37, "findneighboursusinggeodes": 37, "sampledataset": 38, "stat": 39, "graphdatabas": 39, "syntheticdatagener": 40, "createsyntheticgeoreferentialtempor": 40, "createsyntheticgeoreferentialtransact": 40, "createsyntheticgeoreferentialuncertaintransact": 40, "createsynthetictempor": 40, "createsynthetictransact": 40, "createsyntheticuncertaintempor": 40, "createsyntheticuncertaintransact": 40, "createsyntheticutil": 40, "generatetempor": 40, "generatetransact": 40, "generateuncertaintempor": 40, "generateuncertaintransact": 40, "generateutilitytempor": 40, "generateutilitytransact": 40, "georeferencedtemporaldatabas": 40, "georeferencedtransactionaldatabas": 40, "syntheticutilitydatabas": 40, "temporaldatabasegen": 40, "visual": 41, "faulttolerantfrequentpattern": [42, 43], "ftapriori": [43, 158], "ftfpgrowth": [43, 159], "frequentpattern": [44, 45, 46, 47, 48, 49, 50], "apriori": [45, 162], "eclat": [45, 163], "eclatdiffset": [45, 164], "eclatbitset": [45, 165], "fpgrowth": [45, 166], "close": [46, 89, 98, 114, 175, 228, 237, 254], "charm": [46, 181], "cuda": [47, 99, 175, 228], "cuapriori": [47, 167], "cuaprioribit": [47, 168], "cueclat": [47, 171], "cueclatbit": [47, 172], "cudaapriorigct": [47, 169], "cudaaprioritid": [47, 170], "cudaeclatgct": [47, 173], "maxim": [48, 90, 100, 175, 228, 237], "maxfpgrowth": [48, 174], "pyspark": [49, 91, 101, 175], "parallelapriori": [49, 176], "paralleleclat": [49, 177], "parallelfpgrowth": [49, 178], "topk": [50, 80, 92, 102, 103, 104, 117, 120, 228, 263], "fae": [50, 179], "fuzzycorrelatedpattern": [51, 52], "fcpgrowth": [52, 183], "fuzzyfrequentpattern": [53, 54], "ffimin": [54, 185], "ffiminer_old": 54, "fuzzygeoreferencedfrequentpattern": [55, 56], "ffspminer": [56, 188], "ffspminer_old": 56, "fuzzygeoreferencedperiodicfrequentpattern": [57, 58], "fgpfpminer": [58, 189], "fgpfpminer_old": 58, "fuzzypartialperiodicpattern": [59, 60], "f3pminer": 60, "fuzzyperiodicfrequentpattern": [61, 62], "fpfpminer": [62, 192], "fpfpminer_old": 62, "georeferencedperiodicfrequentpattern": [63, 64], "gpfpminer": [64, 198], "georeferencedfrequentpattern": [65, 66], "fspgrowth": [66, 199], "spatialeclat": [66, 200], "georeferencedfrequentsequencepattern": 67, "georeferencedpartialperiodicpattern": [68, 69], "steclat": [69, 201], "highutilityfrequentpattern": [70, 71], "hufim": [71, 202], "highutilitygeoreferencedfrequentpattern": [72, 73], "shufim": [73, 205], "highutilitypattern": [74, 75, 76], "efim": [75, 206], "hminer": [75, 207], "upgrowth": [75, 208], "efimparallel": [75, 76], "parallel": 76, "highutilitypatternsinstream": 77, "hupm": 77, "shugrowth": 77, "highutilityspatialpattern": [78, 79, 80], "hdshuim": [79, 210], "shuim": [79, 211], "tkshuim": [80, 213], "localperiodicpattern": [81, 82], "lppgrowth": [82, 216], "lppmbreadth": [82, 217], "lppmdepth": [82, 218], "multipleminimumsupportbasedfrequentpattern": [83, 84], "cfpgrowth": [84, 220], "cfpgrowthplu": [84, 221], "partialperiodicfrequentpattern": [85, 86], "gpfgrowth": [86, 225], "ppf_df": [86, 226], "partialperiodicpattern": [87, 88, 89, 90, 91, 92], "gthreepgrowth": [88, 229], "gabstract": 88, "pppgrowth": [88, 230], "ppp_eclat": [88, 231], "pppclose": [89, 232], "max3pgrowth": [90, 233], "parallel3pgrowth": 91, "k3pminer": [92, 234], "partialperiodicpatterninmultipletimeseri": 93, "ppgrowth": [93, 227], "periodiccorrelatedpattern": [94, 95], "epcpgrowth": [95, 236], "periodicfrequentpattern": [96, 97, 98, 99, 100, 101, 102, 103, 104], "pfeclat": [97, 238], "pfpgrowth": [97, 239], "pfpgrowthplu": [97, 240], "pfpmc": [97, 241], "psgrowth": [97, 242], "parallelpfpgrowth": [97, 101], "cpfpminer": [98, 243], "cugpfmin": 99, "gpfminerbit": 99, "maxpfgrowth": [100, 244], "topkpfp": [103, 245], "kpfpminer": [104, 246], "recurringpattern": [105, 106], "rpgrowth": [106, 248], "relativefrequentpattern": [107, 108], "rsfpgrowth": [108, 251], "relativehighutilitypattern": [109, 110], "rhuim": [110, 252], "sequentialpatternmin": [112, 113, 114], "spade": [113, 256], "spam": [113, 257], "prefixspan": [113, 258], "bide": [114, 259], "stableperiodicfrequentpattern": [115, 116, 117], "sppeclat": [116, 260], "sppgrowth": [116, 261], "sppgrowthdump": 116, "tspin": [117, 262], "subgraphmin": [118, 119, 120], "dfscode": [119, 120], "edg": [119, 120], "extendededg": [119, 120], "frequentsubgraph": [119, 120], "gspan": 119, "sparsetriangularmatrix": [119, 120], "vertex": [119, 120], "dfsthread": 120, "tkg": 120, "uncertainfaulttolerantfrequentpattern": 121, "vbftmine": 121, "uncertainfrequentpattern": [122, 123], "cufptre": [123, 266], "pufgrowth": [123, 267], "tufp": [123, 268], "tubep": [123, 269], "tube": [123, 270], "ufgrowth": [123, 271], "uveclat": [123, 272], "uncertaingeoreferencedfrequentpattern": [124, 125], "gfpgrowth": [125, 275], "uncertainperiodicfrequentpattern": [126, 127], "upfpgrowth": [127, 277], "upfpgrowthplu": [127, 278], "weightedfrequentneighbourhoodpattern": [128, 129], "swfpgrowth": [129, 281], "weightedfrequentpattern": [130, 131], "wfim": [131, 283], "weightedfrequentregularpattern": [132, 133], "wfrimin": [133, 285], "weighteduncertainfrequentpattern": [134, 135], "wufim": 135, "recur": 140, "rel": [141, 249], "sequenti": [142, 255], "stabl": 143, "uncertain": [144, 145, 146, 276], "weight": [147, 148, 149], "neighbourhood": 147, "regular": 149, "top": [175, 212, 237], "k": [175, 212, 237], "welcom": 214, "s": 214, "document": 214, "indic": 214, "tabl": 214, "timeseri": 223, "databas": [255, 264, 265, 276], "tempor": 264, "transact": 265}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["ContiguousFrequentPatterns1", "CorrelatedPatternMining1", "CoveragePatternMining1", "FaultTolerantPatternMining1", "FrequentPatternWithMultipleMinimumSupport1", "FuzzyCorrelatedPatternMining1", "FuzzyFrequentPatternMining1", "FuzzyGeoReferencedFrequentPatternMining1", "FuzzyGeoReferencedPeriodicFrequentPatternMining1", "FuzzyPeriodicFrequentPatternMining1", "GeoReferencedFrequentPatternMining1", "GeoReferencedFrequentSequencePatternMining1", "GeoReferencedPartialPeriodicPatternMining1", "GeoReferencedPeriodicFrequentPatternMining1", "HighUtilityFrequentPatternMining1", "HighUtilityGeo-referencedFrequentPatternMining1", "HighUtilityPatternMining1", "HighUtilitySpatialPatternMining1", "LocalPeriodicPatternMining1", "MultiplePartialPeriodicPatternMining1", "PAMI", "PAMI.AssociationRules", "PAMI.AssociationRules.basic", "PAMI.correlatedPattern", "PAMI.correlatedPattern.basic", "PAMI.coveragePattern", "PAMI.coveragePattern.basic", "PAMI.extras", "PAMI.extras.DF2DB", "PAMI.extras.calculateMISValues", "PAMI.extras.dbStats", "PAMI.extras.fuzzyTransformation", "PAMI.extras.generateDatabase", "PAMI.extras.graph", "PAMI.extras.image2Database", "PAMI.extras.imageProcessing", "PAMI.extras.messaging", "PAMI.extras.neighbours", "PAMI.extras.sampleDatasets", "PAMI.extras.stats", "PAMI.extras.syntheticDataGenerator", "PAMI.extras.visualize", "PAMI.faultTolerantFrequentPattern", "PAMI.faultTolerantFrequentPattern.basic", "PAMI.frequentPattern", "PAMI.frequentPattern.basic", "PAMI.frequentPattern.closed", "PAMI.frequentPattern.cuda", "PAMI.frequentPattern.maximal", "PAMI.frequentPattern.pyspark", "PAMI.frequentPattern.topk", "PAMI.fuzzyCorrelatedPattern", "PAMI.fuzzyCorrelatedPattern.basic", "PAMI.fuzzyFrequentPattern", "PAMI.fuzzyFrequentPattern.basic", "PAMI.fuzzyGeoreferencedFrequentPattern", "PAMI.fuzzyGeoreferencedFrequentPattern.basic", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic", "PAMI.fuzzyPartialPeriodicPatterns", "PAMI.fuzzyPartialPeriodicPatterns.basic", "PAMI.fuzzyPeriodicFrequentPattern", "PAMI.fuzzyPeriodicFrequentPattern.basic", "PAMI.geoReferencedPeriodicFrequentPattern", "PAMI.geoReferencedPeriodicFrequentPattern.basic", "PAMI.georeferencedFrequentPattern", "PAMI.georeferencedFrequentPattern.basic", "PAMI.georeferencedFrequentSequencePattern", "PAMI.georeferencedPartialPeriodicPattern", "PAMI.georeferencedPartialPeriodicPattern.basic", "PAMI.highUtilityFrequentPattern", "PAMI.highUtilityFrequentPattern.basic", "PAMI.highUtilityGeoreferencedFrequentPattern", "PAMI.highUtilityGeoreferencedFrequentPattern.basic", "PAMI.highUtilityPattern", "PAMI.highUtilityPattern.basic", "PAMI.highUtilityPattern.parallel", "PAMI.highUtilityPatternsInStreams", "PAMI.highUtilitySpatialPattern", "PAMI.highUtilitySpatialPattern.basic", "PAMI.highUtilitySpatialPattern.topk", "PAMI.localPeriodicPattern", "PAMI.localPeriodicPattern.basic", "PAMI.multipleMinimumSupportBasedFrequentPattern", "PAMI.multipleMinimumSupportBasedFrequentPattern.basic", "PAMI.partialPeriodicFrequentPattern", "PAMI.partialPeriodicFrequentPattern.basic", "PAMI.partialPeriodicPattern", "PAMI.partialPeriodicPattern.basic", "PAMI.partialPeriodicPattern.closed", "PAMI.partialPeriodicPattern.maximal", "PAMI.partialPeriodicPattern.pyspark", "PAMI.partialPeriodicPattern.topk", "PAMI.partialPeriodicPatternInMultipleTimeSeries", "PAMI.periodicCorrelatedPattern", "PAMI.periodicCorrelatedPattern.basic", "PAMI.periodicFrequentPattern", "PAMI.periodicFrequentPattern.basic", "PAMI.periodicFrequentPattern.closed", "PAMI.periodicFrequentPattern.cuda", "PAMI.periodicFrequentPattern.maximal", "PAMI.periodicFrequentPattern.pyspark", "PAMI.periodicFrequentPattern.topk", "PAMI.periodicFrequentPattern.topk.TopkPFP", "PAMI.periodicFrequentPattern.topk.kPFPMiner", "PAMI.recurringPattern", "PAMI.recurringPattern.basic", "PAMI.relativeFrequentPattern", "PAMI.relativeFrequentPattern.basic", "PAMI.relativeHighUtilityPattern", "PAMI.relativeHighUtilityPattern.basic", "PAMI.sequence", "PAMI.sequentialPatternMining", "PAMI.sequentialPatternMining.basic", "PAMI.sequentialPatternMining.closed", "PAMI.stablePeriodicFrequentPattern", "PAMI.stablePeriodicFrequentPattern.basic", "PAMI.stablePeriodicFrequentPattern.topK", "PAMI.subgraphMining", "PAMI.subgraphMining.basic", "PAMI.subgraphMining.topK", "PAMI.uncertainFaultTolerantFrequentPattern", "PAMI.uncertainFrequentPattern", "PAMI.uncertainFrequentPattern.basic", "PAMI.uncertainGeoreferencedFrequentPattern", "PAMI.uncertainGeoreferencedFrequentPattern.basic", "PAMI.uncertainPeriodicFrequentPattern", "PAMI.uncertainPeriodicFrequentPattern.basic", "PAMI.weightedFrequentNeighbourhoodPattern", "PAMI.weightedFrequentNeighbourhoodPattern.basic", "PAMI.weightedFrequentPattern", "PAMI.weightedFrequentPattern.basic", "PAMI.weightedFrequentRegularPattern", "PAMI.weightedFrequentRegularPattern.basic", "PAMI.weightedUncertainFrequentPattern", "PAMI.weightedUncertainFrequentPattern.basic", "PartialPeriodicFrequentPatternMining1", "PartialPeriodicPatternMining1", "PeriodicCorrelatedPatternMining1", "PeriodicFrequentPatternMining1", "RecurringPatternMining1", "RelativeHighUtilityPatternMining1", "SequentialFrequentPatternMining1", "StablePeriodicPatternMining1", "UncertainFrequentPatternMining1", "UncertainGeoReferencedFrequentPatternMining1", "UncertainPeriodicFrequentPatternMining1", "WeightedFrequentNeighbourhoodPatternMining1", "WeightedFrequentPatternMining1", "WeightedFrequentRegularPatternMining1", "contiguousFrequentPatterns", "contiguousPatternMining", "correlatedPatternBasicCoMine", "correlatedPatternBasicCoMinePlus", "correlatedPatternMining", "coveragePatternBasicCMine", "coveragePatternBasicCPPG", "coveragePatternMining", "faultTolerantFrequentPatternBasicFTApriori", "faultTolerantFrequentPatternBasicFTFPGrowth", "faultTolerantPatternMining", "frequent1", "frequentPatternBasicApriori", "frequentPatternBasicECLAT", "frequentPatternBasicECLATDiffset", "frequentPatternBasicECLATbitset", "frequentPatternBasicFPGrowth", "frequentPatternCUDAcuApriori", "frequentPatternCUDAcuAprioriBit", "frequentPatternCUDAcuAprioriGCT", "frequentPatternCUDAcuAprioriTID", "frequentPatternCUDAcuECLAT", "frequentPatternCUDAcuECLATBit", "frequentPatternCUDAcuECLATGCT", "frequentPatternMaximalmaxFPGrowth", "frequentPatternMining", "frequentPatternPysparkParallelApriori", "frequentPatternPysparkParallelECLAT", "frequentPatternPysparkParallelFPGrowth", "frequentPatternTopkFAE", "frequentPatternWithMultipleMinimumSupport", "frequentPatternclosedCHARM", "fuzzyCorrelatedPatternMining", "fuzzyCorrelatedPatternbasicFCPGrowth", "fuzzyFrequentPatternMining", "fuzzyFrequentPatternbasicFFIMiner", "fuzzyGeoReferencedFrequentPatternMining", "fuzzyGeoReferencedPeriodicFrequentPatternMining", "fuzzyGeoreferencedFrequentPatternbasicFFSPMiner", "fuzzyGeoreferencedPeriodicFrequentPatternbasicFGPFPMiner", "fuzzyPatternMining", "fuzzyPeriodicFrequentPatternMining", "fuzzyPeriodicFrequentPatternbasicFPFPMiner", "geoReferencedFrequentPatternMining", "geoReferencedFrequentSequencePatternMining", "geoReferencedPartialPeriodicPatternMining", "geoReferencedPatternMining", "geoReferencedPeriodicFrequentPatternMining", "geoReferencedPeriodicFrequentPatternbasicGPFPMiner", "georeferencedFrequentPatternbasicFSPGrowth", "georeferencedFrequentPatternbasicSpatialECLAT", "georeferencedPartialPeriodicPatternbasicSTEclat", "highUtilityFrequentPatternBasicHUFIM", "highUtilityFrequentPatternMining", "highUtilityGeo-referencedFrequentPatternMining", "highUtilityGeoreferencedFrequentPatternBasicSHUFIM", "highUtilityPatternBasicEFIM", "highUtilityPatternBasicHMiner", "highUtilityPatternBasicUPGrowth", "highUtilityPatternMining", "highUtilitySpatialPatternBasicHDSHUIM", "highUtilitySpatialPatternBasicSHUIM", "highUtilitySpatialPatternMining", "highUtilitySpatialPatternTopkTKSHUIM", "index", "localPeriodicPatternMining", "localPeriodicPatternbasicLPPGrowth", "localPeriodicPatternbasicLPPMBreadth", "localPeriodicPatternbasicLPPMDepth", "modules", "multipleMinimumSupportBasedFrequentPatternBasicCFPGrowth", "multipleMinimumSupportBasedFrequentPatternBasicCFPGrowthPlus", "multiplePartialPeriodicPatternMining", "multipleTimeseriesPatternMining", "partialPeriodicFrequentPatternMining", "partialPeriodicFrequentPatternbasicGPFgrowth", "partialPeriodicFrequentPatternbasicPPF_DFS", "partialPeriodicPatternInMultipleTimeSeriesPPGrowth", "partialPeriodicPatternMining", "partialPeriodicPatternbasicGThreePGrowth", "partialPeriodicPatternbasicPPPGrowth", "partialPeriodicPatternbasicPPP_ECLAT", "partialPeriodicPatternclosedPPPClose", "partialPeriodicPatternmaximalMax3PGrowth", "partialPeriodicPatterntopkk3PMiner", "periodicCorrelatedPatternMining", "periodicCorrelatedPatternbasicEPCPGrowth", "periodicFrequentPatternMining", "periodicFrequentPatternbasicPFECLAT", "periodicFrequentPatternbasicPFPGrowth", "periodicFrequentPatternbasicPFPGrowthPlus", "periodicFrequentPatternbasicPFPMC", "periodicFrequentPatternbasicPSGrowth", "periodicFrequentPatternclosedCPFPMiner", "periodicFrequentPatternmaximalMaxPFGrowth", "periodicFrequentPatterntopkTopkPFPTopkPFP", "periodicFrequentPatterntopkkPFPMinerkPFPMiner", "recurringPatternMining", "recurringPatternbasicRPGrowth", "relativeFrequent", "relativeFrequentPattern", "relativeFrequentPatternBasicRSFPGrowth", "relativeHighUtilityPatternBasicRHUIM", "relativeHighUtilityPatternMining", "sequentialFrequentPatternMining", "sequentialPatternMining", "sequentialPatternMiningBasicSPADE", "sequentialPatternMiningBasicSPAM", "sequentialPatternMiningBasicprefixSpan", "sequentialPatternMiningClosedbide", "stablePeriodicFrequentPatternbasicSPPEclat", "stablePeriodicFrequentPatternbasicSPPGrowth", "stablePeriodicFrequentPatterntopKTSPIN", "stablePeriodicPatternMining", "temporalPatternMining", "transactionalPatternMining", "uncertainFrequentPatternBasicCUFPTree", "uncertainFrequentPatternBasicPUFGrowth", "uncertainFrequentPatternBasicTUFP", "uncertainFrequentPatternBasicTubeP", "uncertainFrequentPatternBasicTubeS", "uncertainFrequentPatternBasicUFGrowth", "uncertainFrequentPatternBasicUVECLAT", "uncertainFrequentPatternMining", "uncertainGeoReferencedFrequentPatternMining", "uncertainGeoreferencedFrequentPatternBasicGFPGrowth", "uncertainPatternMining", "uncertainPeriodicFrequentPatternBasicUPFPGrowth", "uncertainPeriodicFrequentPatternBasicUPFPGrowthPlus", "uncertainPeriodicFrequentPatternMining", "utilityPatternMining", "weightedFrequentNeighbourhoodPatternBasicSWFPGrowth", "weightedFrequentNeighbourhoodPatternMining", "weightedFrequentPatternBasicWFIM", "weightedFrequentPatternMining", "weightedFrequentRegularPatternBasicWFRIMiner", "weightedFrequentRegularPatternMining"], "filenames": ["ContiguousFrequentPatterns1.rst", "CorrelatedPatternMining1.rst", "CoveragePatternMining1.rst", "FaultTolerantPatternMining1.rst", "FrequentPatternWithMultipleMinimumSupport1.rst", "FuzzyCorrelatedPatternMining1.rst", "FuzzyFrequentPatternMining1.rst", "FuzzyGeoReferencedFrequentPatternMining1.rst", "FuzzyGeoReferencedPeriodicFrequentPatternMining1.rst", "FuzzyPeriodicFrequentPatternMining1.rst", "GeoReferencedFrequentPatternMining1.rst", "GeoReferencedFrequentSequencePatternMining1.rst", "GeoReferencedPartialPeriodicPatternMining1.rst", "GeoReferencedPeriodicFrequentPatternMining1.rst", "HighUtilityFrequentPatternMining1.rst", "HighUtilityGeo-referencedFrequentPatternMining1.rst", "HighUtilityPatternMining1.rst", "HighUtilitySpatialPatternMining1.rst", "LocalPeriodicPatternMining1.rst", "MultiplePartialPeriodicPatternMining1.rst", "PAMI.rst", "PAMI.AssociationRules.rst", "PAMI.AssociationRules.basic.rst", "PAMI.correlatedPattern.rst", "PAMI.correlatedPattern.basic.rst", "PAMI.coveragePattern.rst", "PAMI.coveragePattern.basic.rst", "PAMI.extras.rst", "PAMI.extras.DF2DB.rst", "PAMI.extras.calculateMISValues.rst", "PAMI.extras.dbStats.rst", "PAMI.extras.fuzzyTransformation.rst", "PAMI.extras.generateDatabase.rst", "PAMI.extras.graph.rst", "PAMI.extras.image2Database.rst", "PAMI.extras.imageProcessing.rst", "PAMI.extras.messaging.rst", "PAMI.extras.neighbours.rst", "PAMI.extras.sampleDatasets.rst", "PAMI.extras.stats.rst", "PAMI.extras.syntheticDataGenerator.rst", "PAMI.extras.visualize.rst", "PAMI.faultTolerantFrequentPattern.rst", "PAMI.faultTolerantFrequentPattern.basic.rst", "PAMI.frequentPattern.rst", "PAMI.frequentPattern.basic.rst", "PAMI.frequentPattern.closed.rst", "PAMI.frequentPattern.cuda.rst", "PAMI.frequentPattern.maximal.rst", "PAMI.frequentPattern.pyspark.rst", "PAMI.frequentPattern.topk.rst", "PAMI.fuzzyCorrelatedPattern.rst", "PAMI.fuzzyCorrelatedPattern.basic.rst", "PAMI.fuzzyFrequentPattern.rst", "PAMI.fuzzyFrequentPattern.basic.rst", "PAMI.fuzzyGeoreferencedFrequentPattern.rst", "PAMI.fuzzyGeoreferencedFrequentPattern.basic.rst", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.rst", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.rst", "PAMI.fuzzyPartialPeriodicPatterns.rst", "PAMI.fuzzyPartialPeriodicPatterns.basic.rst", "PAMI.fuzzyPeriodicFrequentPattern.rst", "PAMI.fuzzyPeriodicFrequentPattern.basic.rst", "PAMI.geoReferencedPeriodicFrequentPattern.rst", "PAMI.geoReferencedPeriodicFrequentPattern.basic.rst", "PAMI.georeferencedFrequentPattern.rst", "PAMI.georeferencedFrequentPattern.basic.rst", "PAMI.georeferencedFrequentSequencePattern.rst", "PAMI.georeferencedPartialPeriodicPattern.rst", "PAMI.georeferencedPartialPeriodicPattern.basic.rst", "PAMI.highUtilityFrequentPattern.rst", "PAMI.highUtilityFrequentPattern.basic.rst", "PAMI.highUtilityGeoreferencedFrequentPattern.rst", "PAMI.highUtilityGeoreferencedFrequentPattern.basic.rst", "PAMI.highUtilityPattern.rst", "PAMI.highUtilityPattern.basic.rst", "PAMI.highUtilityPattern.parallel.rst", "PAMI.highUtilityPatternsInStreams.rst", "PAMI.highUtilitySpatialPattern.rst", "PAMI.highUtilitySpatialPattern.basic.rst", "PAMI.highUtilitySpatialPattern.topk.rst", "PAMI.localPeriodicPattern.rst", "PAMI.localPeriodicPattern.basic.rst", "PAMI.multipleMinimumSupportBasedFrequentPattern.rst", "PAMI.multipleMinimumSupportBasedFrequentPattern.basic.rst", "PAMI.partialPeriodicFrequentPattern.rst", "PAMI.partialPeriodicFrequentPattern.basic.rst", "PAMI.partialPeriodicPattern.rst", "PAMI.partialPeriodicPattern.basic.rst", "PAMI.partialPeriodicPattern.closed.rst", "PAMI.partialPeriodicPattern.maximal.rst", "PAMI.partialPeriodicPattern.pyspark.rst", "PAMI.partialPeriodicPattern.topk.rst", "PAMI.partialPeriodicPatternInMultipleTimeSeries.rst", "PAMI.periodicCorrelatedPattern.rst", "PAMI.periodicCorrelatedPattern.basic.rst", "PAMI.periodicFrequentPattern.rst", "PAMI.periodicFrequentPattern.basic.rst", "PAMI.periodicFrequentPattern.closed.rst", "PAMI.periodicFrequentPattern.cuda.rst", "PAMI.periodicFrequentPattern.maximal.rst", "PAMI.periodicFrequentPattern.pyspark.rst", "PAMI.periodicFrequentPattern.topk.rst", "PAMI.periodicFrequentPattern.topk.TopkPFP.rst", "PAMI.periodicFrequentPattern.topk.kPFPMiner.rst", "PAMI.recurringPattern.rst", "PAMI.recurringPattern.basic.rst", "PAMI.relativeFrequentPattern.rst", "PAMI.relativeFrequentPattern.basic.rst", "PAMI.relativeHighUtilityPattern.rst", "PAMI.relativeHighUtilityPattern.basic.rst", "PAMI.sequence.rst", "PAMI.sequentialPatternMining.rst", "PAMI.sequentialPatternMining.basic.rst", "PAMI.sequentialPatternMining.closed.rst", "PAMI.stablePeriodicFrequentPattern.rst", "PAMI.stablePeriodicFrequentPattern.basic.rst", "PAMI.stablePeriodicFrequentPattern.topK.rst", "PAMI.subgraphMining.rst", "PAMI.subgraphMining.basic.rst", "PAMI.subgraphMining.topK.rst", "PAMI.uncertainFaultTolerantFrequentPattern.rst", "PAMI.uncertainFrequentPattern.rst", "PAMI.uncertainFrequentPattern.basic.rst", "PAMI.uncertainGeoreferencedFrequentPattern.rst", "PAMI.uncertainGeoreferencedFrequentPattern.basic.rst", "PAMI.uncertainPeriodicFrequentPattern.rst", "PAMI.uncertainPeriodicFrequentPattern.basic.rst", "PAMI.weightedFrequentNeighbourhoodPattern.rst", "PAMI.weightedFrequentNeighbourhoodPattern.basic.rst", "PAMI.weightedFrequentPattern.rst", "PAMI.weightedFrequentPattern.basic.rst", "PAMI.weightedFrequentRegularPattern.rst", "PAMI.weightedFrequentRegularPattern.basic.rst", "PAMI.weightedUncertainFrequentPattern.rst", "PAMI.weightedUncertainFrequentPattern.basic.rst", "PartialPeriodicFrequentPatternMining1.rst", "PartialPeriodicPatternMining1.rst", "PeriodicCorrelatedPatternMining1.rst", "PeriodicFrequentPatternMining1.rst", "RecurringPatternMining1.rst", "RelativeHighUtilityPatternMining1.rst", "SequentialFrequentPatternMining1.rst", "StablePeriodicPatternMining1.rst", "UncertainFrequentPatternMining1.rst", "UncertainGeoReferencedFrequentPatternMining1.rst", "UncertainPeriodicFrequentPatternMining1.rst", "WeightedFrequentNeighbourhoodPatternMining1.rst", "WeightedFrequentPatternMining1.rst", "WeightedFrequentRegularPatternMining1.rst", "contiguousFrequentPatterns.rst", "contiguousPatternMining.rst", "correlatedPatternBasicCoMine.rst", "correlatedPatternBasicCoMinePlus.rst", "correlatedPatternMining.rst", "coveragePatternBasicCMine.rst", "coveragePatternBasicCPPG.rst", "coveragePatternMining.rst", "faultTolerantFrequentPatternBasicFTApriori.rst", "faultTolerantFrequentPatternBasicFTFPGrowth.rst", "faultTolerantPatternMining.rst", "frequent1.rst", "frequentPatternBasicApriori.rst", "frequentPatternBasicECLAT.rst", "frequentPatternBasicECLATDiffset.rst", "frequentPatternBasicECLATbitset.rst", "frequentPatternBasicFPGrowth.rst", "frequentPatternCUDAcuApriori.rst", "frequentPatternCUDAcuAprioriBit.rst", "frequentPatternCUDAcuAprioriGCT.rst", "frequentPatternCUDAcuAprioriTID.rst", "frequentPatternCUDAcuECLAT.rst", "frequentPatternCUDAcuECLATBit.rst", "frequentPatternCUDAcuECLATGCT.rst", "frequentPatternMaximalmaxFPGrowth.rst", "frequentPatternMining.rst", "frequentPatternPysparkParallelApriori.rst", "frequentPatternPysparkParallelECLAT.rst", "frequentPatternPysparkParallelFPGrowth.rst", "frequentPatternTopkFAE.rst", "frequentPatternWithMultipleMinimumSupport.rst", "frequentPatternclosedCHARM.rst", "fuzzyCorrelatedPatternMining.rst", "fuzzyCorrelatedPatternbasicFCPGrowth.rst", "fuzzyFrequentPatternMining.rst", "fuzzyFrequentPatternbasicFFIMiner.rst", "fuzzyGeoReferencedFrequentPatternMining.rst", "fuzzyGeoReferencedPeriodicFrequentPatternMining.rst", "fuzzyGeoreferencedFrequentPatternbasicFFSPMiner.rst", "fuzzyGeoreferencedPeriodicFrequentPatternbasicFGPFPMiner.rst", "fuzzyPatternMining.rst", "fuzzyPeriodicFrequentPatternMining.rst", "fuzzyPeriodicFrequentPatternbasicFPFPMiner.rst", "geoReferencedFrequentPatternMining.rst", "geoReferencedFrequentSequencePatternMining.rst", "geoReferencedPartialPeriodicPatternMining.rst", "geoReferencedPatternMining.rst", "geoReferencedPeriodicFrequentPatternMining.rst", "geoReferencedPeriodicFrequentPatternbasicGPFPMiner.rst", "georeferencedFrequentPatternbasicFSPGrowth.rst", "georeferencedFrequentPatternbasicSpatialECLAT.rst", "georeferencedPartialPeriodicPatternbasicSTEclat.rst", "highUtilityFrequentPatternBasicHUFIM.rst", "highUtilityFrequentPatternMining.rst", "highUtilityGeo-referencedFrequentPatternMining.rst", "highUtilityGeoreferencedFrequentPatternBasicSHUFIM.rst", "highUtilityPatternBasicEFIM.rst", "highUtilityPatternBasicHMiner.rst", "highUtilityPatternBasicUPGrowth.rst", "highUtilityPatternMining.rst", "highUtilitySpatialPatternBasicHDSHUIM.rst", "highUtilitySpatialPatternBasicSHUIM.rst", "highUtilitySpatialPatternMining.rst", "highUtilitySpatialPatternTopkTKSHUIM.rst", "index.rst", "localPeriodicPatternMining.rst", "localPeriodicPatternbasicLPPGrowth.rst", "localPeriodicPatternbasicLPPMBreadth.rst", "localPeriodicPatternbasicLPPMDepth.rst", "modules.rst", "multipleMinimumSupportBasedFrequentPatternBasicCFPGrowth.rst", "multipleMinimumSupportBasedFrequentPatternBasicCFPGrowthPlus.rst", "multiplePartialPeriodicPatternMining.rst", "multipleTimeseriesPatternMining.rst", "partialPeriodicFrequentPatternMining.rst", "partialPeriodicFrequentPatternbasicGPFgrowth.rst", "partialPeriodicFrequentPatternbasicPPF_DFS.rst", "partialPeriodicPatternInMultipleTimeSeriesPPGrowth.rst", "partialPeriodicPatternMining.rst", "partialPeriodicPatternbasicGThreePGrowth.rst", "partialPeriodicPatternbasicPPPGrowth.rst", "partialPeriodicPatternbasicPPP_ECLAT.rst", "partialPeriodicPatternclosedPPPClose.rst", "partialPeriodicPatternmaximalMax3PGrowth.rst", "partialPeriodicPatterntopkk3PMiner.rst", "periodicCorrelatedPatternMining.rst", "periodicCorrelatedPatternbasicEPCPGrowth.rst", "periodicFrequentPatternMining.rst", "periodicFrequentPatternbasicPFECLAT.rst", "periodicFrequentPatternbasicPFPGrowth.rst", "periodicFrequentPatternbasicPFPGrowthPlus.rst", "periodicFrequentPatternbasicPFPMC.rst", "periodicFrequentPatternbasicPSGrowth.rst", "periodicFrequentPatternclosedCPFPMiner.rst", "periodicFrequentPatternmaximalMaxPFGrowth.rst", "periodicFrequentPatterntopkTopkPFPTopkPFP.rst", "periodicFrequentPatterntopkkPFPMinerkPFPMiner.rst", "recurringPatternMining.rst", "recurringPatternbasicRPGrowth.rst", "relativeFrequent.rst", "relativeFrequentPattern.rst", "relativeFrequentPatternBasicRSFPGrowth.rst", "relativeHighUtilityPatternBasicRHUIM.rst", "relativeHighUtilityPatternMining.rst", "sequentialFrequentPatternMining.rst", "sequentialPatternMining.rst", "sequentialPatternMiningBasicSPADE.rst", "sequentialPatternMiningBasicSPAM.rst", "sequentialPatternMiningBasicprefixSpan.rst", "sequentialPatternMiningClosedbide.rst", "stablePeriodicFrequentPatternbasicSPPEclat.rst", "stablePeriodicFrequentPatternbasicSPPGrowth.rst", "stablePeriodicFrequentPatterntopKTSPIN.rst", "stablePeriodicPatternMining.rst", "temporalPatternMining.rst", "transactionalPatternMining.rst", "uncertainFrequentPatternBasicCUFPTree.rst", "uncertainFrequentPatternBasicPUFGrowth.rst", "uncertainFrequentPatternBasicTUFP.rst", "uncertainFrequentPatternBasicTubeP.rst", "uncertainFrequentPatternBasicTubeS.rst", "uncertainFrequentPatternBasicUFGrowth.rst", "uncertainFrequentPatternBasicUVECLAT.rst", "uncertainFrequentPatternMining.rst", "uncertainGeoReferencedFrequentPatternMining.rst", "uncertainGeoreferencedFrequentPatternBasicGFPGrowth.rst", "uncertainPatternMining.rst", "uncertainPeriodicFrequentPatternBasicUPFPGrowth.rst", "uncertainPeriodicFrequentPatternBasicUPFPGrowthPlus.rst", "uncertainPeriodicFrequentPatternMining.rst", "utilityPatternMining.rst", "weightedFrequentNeighbourhoodPatternBasicSWFPGrowth.rst", "weightedFrequentNeighbourhoodPatternMining.rst", "weightedFrequentPatternBasicWFIM.rst", "weightedFrequentPatternMining.rst", "weightedFrequentRegularPatternBasicWFRIMiner.rst", "weightedFrequentRegularPatternMining.rst"], "titles": ["Contiguous Frequent Patterns", "Correlated Pattern Mining", "Coverage Pattern Mining", "Fault-Tolerant Frequent Pattern Mining", "Frequent pattern With Multiple Minimum Support", "Fuzzy Correlated Pattern Mining", "Fuzzy Frequent Pattern Mining", "Fuzzy Geo-referenced Frequent Pattern Mining", "Fuzzy Geo-referenced Periodic Frequent Pattern Mining", "Fuzzy Periodic Frequent Pattern Mining", "Geo-referenced Frequent Pattern Mining", "Geo-referenced Frequent Sequence Pattern mining", "Geo-referenced Partial Periodic Pattern Mining", "Geo-referenced Periodic Frequent Pattern Mining", "High-Utility Frequent Pattern Mining", "High-Utility Geo-referenced Frequent Pattern Mining", "High-Utility Pattern mining", "High-Utility Spatial Pattern Mining", "Local Periodic Pattern Mining", "Multiple Partial Periodic Pattern Mining", "PAMI package", "PAMI.AssociationRules package", "PAMI.AssociationRules.basic package", "PAMI.correlatedPattern package", "PAMI.correlatedPattern.basic package", "PAMI.coveragePattern package", "PAMI.coveragePattern.basic package", "PAMI.extras package", "PAMI.extras.DF2DB package", "PAMI.extras.calculateMISValues package", "PAMI.extras.dbStats package", "PAMI.extras.fuzzyTransformation package", "PAMI.extras.generateDatabase package", "PAMI.extras.graph package", "PAMI.extras.image2Database package", "PAMI.extras.imageProcessing package", "PAMI.extras.messaging package", "PAMI.extras.neighbours package", "PAMI.extras.sampleDatasets package", "PAMI.extras.stats package", "PAMI.extras.syntheticDataGenerator package", "PAMI.extras.visualize package", "PAMI.faultTolerantFrequentPattern package", "PAMI.faultTolerantFrequentPattern.basic package", "PAMI.frequentPattern package", "PAMI.frequentPattern.basic package", "PAMI.frequentPattern.closed package", "PAMI.frequentPattern.cuda package", "PAMI.frequentPattern.maximal package", "PAMI.frequentPattern.pyspark package", "PAMI.frequentPattern.topk package", "PAMI.fuzzyCorrelatedPattern package", "PAMI.fuzzyCorrelatedPattern.basic package", "PAMI.fuzzyFrequentPattern package", "PAMI.fuzzyFrequentPattern.basic package", "PAMI.fuzzyGeoreferencedFrequentPattern package", "PAMI.fuzzyGeoreferencedFrequentPattern.basic package", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern package", "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic package", "PAMI.fuzzyPartialPeriodicPatterns package", "PAMI.fuzzyPartialPeriodicPatterns.basic package", "PAMI.fuzzyPeriodicFrequentPattern package", "PAMI.fuzzyPeriodicFrequentPattern.basic package", "PAMI.geoReferencedPeriodicFrequentPattern package", "PAMI.geoReferencedPeriodicFrequentPattern.basic package", "PAMI.georeferencedFrequentPattern package", "PAMI.georeferencedFrequentPattern.basic package", "PAMI.georeferencedFrequentSequencePattern package", "PAMI.georeferencedPartialPeriodicPattern package", "PAMI.georeferencedPartialPeriodicPattern.basic package", "PAMI.highUtilityFrequentPattern package", "PAMI.highUtilityFrequentPattern.basic package", "PAMI.highUtilityGeoreferencedFrequentPattern package", "PAMI.highUtilityGeoreferencedFrequentPattern.basic package", "PAMI.highUtilityPattern package", "PAMI.highUtilityPattern.basic package", "PAMI.highUtilityPattern.parallel package", "PAMI.highUtilityPatternsInStreams package", "PAMI.highUtilitySpatialPattern package", "PAMI.highUtilitySpatialPattern.basic package", "PAMI.highUtilitySpatialPattern.topk package", "PAMI.localPeriodicPattern package", "PAMI.localPeriodicPattern.basic package", "PAMI.multipleMinimumSupportBasedFrequentPattern package", "PAMI.multipleMinimumSupportBasedFrequentPattern.basic package", "PAMI.partialPeriodicFrequentPattern package", "PAMI.partialPeriodicFrequentPattern.basic package", "PAMI.partialPeriodicPattern package", "PAMI.partialPeriodicPattern.basic package", "PAMI.partialPeriodicPattern.closed package", "PAMI.partialPeriodicPattern.maximal package", "PAMI.partialPeriodicPattern.pyspark package", "PAMI.partialPeriodicPattern.topk package", "PAMI.partialPeriodicPatternInMultipleTimeSeries package", "PAMI.periodicCorrelatedPattern package", "PAMI.periodicCorrelatedPattern.basic package", "PAMI.periodicFrequentPattern package", "PAMI.periodicFrequentPattern.basic package", "PAMI.periodicFrequentPattern.closed package", "PAMI.periodicFrequentPattern.cuda package", "PAMI.periodicFrequentPattern.maximal package", "PAMI.periodicFrequentPattern.pyspark package", "PAMI.periodicFrequentPattern.topk package", "PAMI.periodicFrequentPattern.topk.TopkPFP package", "PAMI.periodicFrequentPattern.topk.kPFPMiner package", "PAMI.recurringPattern package", "PAMI.recurringPattern.basic package", "PAMI.relativeFrequentPattern package", "PAMI.relativeFrequentPattern.basic package", "PAMI.relativeHighUtilityPattern package", "PAMI.relativeHighUtilityPattern.basic package", "PAMI.sequence package", "PAMI.sequentialPatternMining package", "PAMI.sequentialPatternMining.basic package", "PAMI.sequentialPatternMining.closed package", "PAMI.stablePeriodicFrequentPattern package", "PAMI.stablePeriodicFrequentPattern.basic package", "PAMI.stablePeriodicFrequentPattern.topK package", "PAMI.subgraphMining package", "PAMI.subgraphMining.basic package", "PAMI.subgraphMining.topK package", "PAMI.uncertainFaultTolerantFrequentPattern package", "PAMI.uncertainFrequentPattern package", "PAMI.uncertainFrequentPattern.basic package", "PAMI.uncertainGeoreferencedFrequentPattern package", "PAMI.uncertainGeoreferencedFrequentPattern.basic package", "PAMI.uncertainPeriodicFrequentPattern package", "PAMI.uncertainPeriodicFrequentPattern.basic package", "PAMI.weightedFrequentNeighbourhoodPattern package", "PAMI.weightedFrequentNeighbourhoodPattern.basic package", "PAMI.weightedFrequentPattern package", "PAMI.weightedFrequentPattern.basic package", "PAMI.weightedFrequentRegularPattern package", "PAMI.weightedFrequentRegularPattern.basic package", "PAMI.weightedUncertainFrequentPattern package", "PAMI.weightedUncertainFrequentPattern.basic package", "Partial Periodic Frequent Pattern Mining", "Partial Periodic Pattern Mining", "Periodic correlated pattern mining", "Periodic Frequent Pattern Mining", "Recurring Pattern Mining", "Relative High-Utility Pattern Mining", "Sequential Frequent Pattern mining", "Stable Periodic Pattern Mining", "Uncertain Frequent Pattern mining", "Uncertain Geo-Referenced Frequent Pattern mining", "Uncertain Periodic Frequent Pattern mining", "Weighted Frequent Neighbourhood Pattern Mining", "Weighted Frequent Pattern Mining", "Weighted Frequent Regular Pattern Mining", "<no title>", "Contiguous Patterns", "CoMine", "CoMinePlus", "Basic", "CMine", "CPPG", "Basic", "FTApriori", "FTFPGrowth", "Basic", "Frequent Pattern mining", "Apriori", "ECLAT", "ECLATDiffset", "ECLATbitset", "FPGrowth", "cuApriori", "cuAprioriBit", "cudaAprioriGCT", "cudaAprioriTID", "cuEclat", "cuEclatBit", "cudaEclatGCT", "MaxFPGrowth", "Basic", "parallelApriori", "parallelECLAT", "parallelFPGrowth", "FAE", "Basic", "CHARM", "Basic", "FCPGrowth", "Basic", "FFIMiner", "Basic", "Basic", "FFSPMiner", "FGPFPMiner", "Fuzzy Pattern Mining", "Basic", "FPFPMiner", "Basic", "<no title>", "Basic", "Geo-referenced Pattern Mining", "Basic", "GPFPMiner", "FSPGrowth", "SpatialECLAT", "STEclat", "HUFIM", "Basic", "Basic", "SHUFIM", "EFIM", "HMiner", "UPGrowth", "Basic", "HDSHUIM", "SHUIM", "Basic", "TKSHUIM", "Welcome to PAMI\u2019s documentation!", "Basic", "LPPGrowth", "LPPMBreadth", "LPPMDepth", "PAMI", "CFPGrowth", "CFPGrowthPlus", "Basic", "Multiple Timeseries", "Basic", "GPFgrowth", "PPF_DFS", "PPGrowth", "Basic", "GThreePGrowth", "PPPGrowth", "PPP_ECLAT", "PPPClose", "Max3PGrowth", "k3PMiner", "Basic", "EPCPGrowth", "Basic", "PFECLAT", "PFPGrowth", "PFPGrowthPlus", "PFPMC", "PSGrowth", "CPFPMiner", "MaxPFGrowth", "TopkPFP", "kPFPMiner", "Basic", "RPGrowth", "Relative Frequent Pattern", "Basic", "RSFPGrowth", "RHUIM", "Basic", "Basic", "Sequential Database", "SPADE", "SPAM", "prefixSpan", "bide", "SPPEclat", "SPPGrowth", "TSPIN", "Basic", "Temporal Database", "Transactional Database", "CUFPTree", "PUFGrowth", "TUFP", "TubeP", "TubeS", "UFGrowth", "UVECLAT", "Basic", "Basic", "GFPGrowth", "Uncertain Database", "UPFPGrowth", "UPFPGrowthPlus", "Basic", "Utility Pattern mining", "SWFPGrowth", "Basic", "WFIM", "Basic", "WFRIMiner", "Basic"], "terms": {"ar": [1, 2, 6, 7, 8, 9, 11, 14, 15, 18, 46, 54, 56, 58, 62, 71, 73, 75, 79, 80, 82, 86, 88, 90, 91, 97, 100, 110, 113, 116, 119, 123, 125, 127, 135, 136, 138, 142, 147, 148, 149, 154, 157, 181, 184, 185, 186, 187, 188, 189, 190, 191, 192, 194, 196, 202, 203, 204, 205, 206, 211, 213, 215, 216, 217, 218, 223, 224, 225, 229, 230, 231, 233, 235, 238, 240, 241, 242, 244, 252, 254, 255, 257, 260, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 282, 284, 286], "specif": [1, 13, 119, 120, 136, 138, 139, 140, 143, 154, 197, 224, 235, 237, 247, 263], "type": [1, 5, 24, 26, 28, 29, 30, 32, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 154, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 182, 183, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "regular": [1, 13, 18, 19, 133, 136, 137, 139, 147, 154, 197, 214, 215, 222, 224, 228, 237, 264, 280, 282, 285, 286], "associ": [1, 5, 8, 10, 15, 45, 66, 75, 84, 139, 144, 145, 146, 154, 161, 162, 163, 165, 182, 187, 193, 200, 204, 208, 220, 237, 273, 274, 276, 279], "exist": [1, 19, 46, 80, 154, 181, 190, 213, 222, 264, 276, 280], "within": [1, 2, 12, 18, 24, 26, 52, 82, 86, 97, 98, 100, 101, 103, 108, 119, 136, 137, 138, 139, 140, 143, 152, 153, 154, 155, 156, 157, 161, 183, 190, 195, 215, 216, 217, 218, 223, 224, 225, 226, 228, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 247, 251, 263, 276, 280], "dataset": [1, 2, 3, 4, 10, 11, 12, 14, 15, 17, 18, 19, 30, 39, 43, 71, 73, 75, 79, 80, 84, 88, 90, 91, 92, 93, 95, 97, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 123, 125, 127, 129, 131, 133, 135, 137, 139, 140, 141, 142, 144, 145, 146, 147, 148, 149, 154, 157, 159, 160, 161, 180, 193, 194, 195, 202, 203, 204, 205, 206, 211, 212, 213, 215, 220, 221, 222, 227, 228, 229, 230, 233, 234, 236, 237, 239, 240, 242, 244, 245, 246, 247, 248, 251, 252, 253, 254, 258, 261, 262, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 279, 281, 282, 283, 284, 285, 286], "where": [1, 2, 4, 8, 9, 11, 12, 14, 15, 17, 19, 82, 88, 91, 97, 110, 113, 119, 120, 123, 125, 127, 129, 135, 136, 137, 139, 141, 142, 144, 145, 146, 147, 148, 149, 154, 157, 180, 187, 190, 191, 194, 195, 203, 204, 212, 216, 217, 218, 222, 224, 228, 229, 230, 237, 240, 249, 250, 252, 253, 254, 256, 257, 258, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 281, 282, 284, 286], "occurr": [1, 2, 5, 8, 9, 12, 136, 138, 143, 145, 154, 157, 182, 187, 190, 191, 195, 224, 235, 249, 250, 263, 274, 276], "certain": [1, 3, 18, 119, 154, 160, 215], "item": [1, 4, 6, 14, 15, 17, 24, 26, 27, 28, 29, 30, 31, 32, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 145, 146, 148, 149, 152, 153, 154, 155, 156, 158, 159, 161, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 180, 181, 183, 184, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 210, 211, 212, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 255, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 274, 275, 276, 277, 278, 279, 280, 281, 283, 284, 285, 286], "attribut": [1, 7, 8, 9, 10, 24, 26, 27, 28, 30, 31, 32, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 139, 144, 145, 146, 152, 153, 154, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 186, 187, 188, 189, 191, 192, 193, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 279, 281, 283, 285], "statist": [1, 88, 91, 154, 229, 230], "other": [1, 10, 12, 71, 82, 106, 110, 113, 116, 141, 147, 148, 154, 193, 195, 196, 202, 216, 217, 218, 223, 248, 249, 250, 252, 253, 256, 260, 264, 265, 282, 284], "These": [1, 2, 7, 8, 9, 13, 14, 15, 17, 119, 136, 137, 138, 141, 143, 148, 154, 157, 186, 187, 191, 197, 203, 204, 212, 224, 228, 235, 253, 263, 284], "repres": [1, 15, 19, 24, 28, 43, 45, 46, 48, 52, 54, 56, 58, 60, 62, 80, 82, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 116, 117, 119, 120, 123, 125, 127, 129, 131, 133, 135, 136, 139, 141, 148, 152, 153, 154, 159, 166, 174, 181, 183, 185, 188, 189, 190, 192, 196, 204, 213, 216, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 233, 236, 237, 238, 239, 240, 241, 242, 244, 248, 249, 250, 251, 253, 255, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 284, 285], "meaning": [1, 5, 16, 140, 154, 182, 209, 247], "relationship": [1, 5, 7, 8, 9, 10, 113, 138, 154, 182, 186, 187, 191, 193, 235, 257], "depend": [1, 32, 40, 71, 73, 75, 79, 80, 110, 154, 202, 205, 206, 211, 213, 223, 252], "between": [1, 5, 6, 7, 8, 9, 24, 30, 39, 45, 46, 56, 75, 76, 82, 97, 108, 119, 121, 123, 125, 127, 129, 131, 133, 135, 138, 143, 152, 153, 154, 162, 163, 164, 165, 166, 181, 182, 184, 186, 187, 188, 190, 191, 216, 217, 218, 235, 238, 239, 251, 263, 264, 266, 267, 268, 269, 270, 272, 275, 276, 277, 278, 281, 283, 285], "differ": [1, 4, 18, 113, 147, 148, 149, 154, 180, 215, 249, 250, 256, 282, 284, 286], "set": [1, 14, 24, 26, 28, 29, 31, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 154, 155, 156, 158, 159, 161, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 203, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "discoveri": [1, 3, 8, 15, 43, 45, 75, 97, 108, 113, 116, 123, 139, 141, 143, 144, 145, 146, 147, 148, 149, 154, 159, 160, 164, 166, 187, 204, 208, 237, 238, 240, 251, 253, 257, 261, 263, 267, 271, 273, 274, 276, 279, 282, 284, 286], "can": [1, 2, 24, 26, 27, 29, 31, 32, 37, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 140, 152, 153, 154, 155, 156, 157, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "provid": [1, 2, 119, 139, 140, 154, 157, 237, 247], "valuabl": [1, 154], "insight": [1, 2, 139, 140, 154, 157, 161, 237, 247], "underli": [1, 140, 154, 247], "structur": [1, 24, 82, 86, 119, 123, 141, 147, 149, 152, 153, 154, 161, 216, 225, 253, 267, 271, 282, 286], "behavior": [1, 13, 18, 82, 136, 137, 138, 139, 140, 143, 154, 197, 215, 216, 217, 218, 224, 228, 235, 237, 247, 263], "data": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 19, 24, 27, 28, 29, 30, 31, 32, 33, 35, 39, 40, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 104, 106, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 138, 139, 140, 141, 142, 143, 144, 145, 146, 149, 152, 153, 154, 157, 158, 159, 160, 162, 163, 164, 165, 166, 174, 176, 177, 178, 180, 181, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 205, 207, 208, 210, 211, 213, 216, 217, 218, 222, 223, 227, 229, 230, 231, 232, 233, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 252, 253, 254, 256, 257, 258, 260, 261, 262, 263, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 279, 280, 281, 283, 285, 286], "applic": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 79, 116, 121, 123, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 154, 157, 160, 161, 180, 182, 184, 186, 187, 191, 193, 194, 195, 197, 203, 204, 209, 210, 212, 215, 222, 224, 228, 235, 237, 247, 249, 250, 253, 254, 260, 263, 266, 273, 274, 279, 280, 282, 284, 286], "fraud": [1, 14, 154, 203], "detect": [1, 14, 18, 24, 29, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 82, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 137, 140, 152, 153, 154, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 203, 205, 207, 210, 211, 215, 216, 217, 218, 227, 228, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 247, 248, 249, 250, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "suppli": [1, 154, 249, 250], "chain": [1, 154, 249, 250], "manag": [1, 12, 13, 17, 18, 136, 145, 154, 195, 197, 212, 215, 224, 274], "healthcar": [1, 2, 4, 5, 7, 14, 19, 137, 138, 139, 142, 144, 146, 148, 149, 154, 157, 180, 182, 186, 203, 222, 228, 235, 237, 254, 273, 279, 284, 286], "analysi": [1, 2, 3, 4, 5, 6, 8, 9, 14, 19, 50, 137, 138, 139, 141, 143, 148, 149, 154, 157, 160, 179, 180, 182, 184, 187, 191, 203, 222, 228, 235, 237, 249, 250, 253, 263, 284, 286], "retail": [1, 2, 4, 7, 138, 139, 141, 149, 154, 157, 180, 186, 235, 237, 253, 286], "market": [1, 4, 5, 7, 14, 19, 141, 142, 143, 148, 154, 180, 182, 186, 203, 222, 249, 250, 253, 254, 263, 284], "basic": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 28, 42, 44, 48, 51, 53, 55, 57, 59, 61, 63, 65, 68, 70, 72, 74, 78, 81, 83, 85, 87, 89, 91, 93, 94, 96, 98, 100, 101, 105, 107, 109, 112, 115, 117, 118, 121, 122, 124, 126, 128, 130, 132, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 155, 156, 158, 159, 161, 162, 163, 164, 165, 166, 174, 183, 185, 188, 189, 192, 196, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 236, 238, 239, 240, 241, 242, 243, 244, 248, 249, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "techniqu": [2, 3, 11, 12, 19, 24, 45, 46, 54, 56, 58, 62, 84, 113, 137, 142, 152, 153, 157, 160, 162, 181, 185, 188, 189, 192, 194, 195, 221, 222, 228, 254, 256, 257, 258], "focus": [2, 11, 12, 19, 119, 138, 139, 142, 143, 157, 194, 195, 222, 235, 237, 254, 263], "identifi": [2, 7, 12, 19, 119, 139, 142, 143, 157, 161, 186, 190, 195, 222, 237, 254, 255, 263, 265, 276, 280], "cover": [2, 12, 19, 157, 195, 222], "substanti": [2, 157], "portion": [2, 157], "irrespect": [2, 157], "frequenc": [2, 5, 24, 30, 39, 43, 45, 46, 48, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 136, 147, 149, 152, 153, 157, 158, 159, 165, 166, 174, 181, 182, 220, 221, 224, 226, 227, 229, 230, 231, 233, 236, 238, 239, 240, 241, 242, 244, 248, 249, 250, 251, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 282, 283, 285, 286], "unlik": [2, 3, 4, 6, 18, 136, 137, 138, 139, 143, 144, 146, 157, 160, 180, 184, 215, 224, 228, 235, 237, 263, 273, 279], "tradit": [2, 3, 4, 6, 18, 24, 52, 137, 138, 139, 143, 144, 146, 152, 153, 157, 160, 180, 183, 184, 215, 228, 235, 237, 263, 273, 279], "frequent": [2, 12, 17, 26, 28, 29, 31, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 143, 150, 151, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 180, 181, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 210, 211, 212, 213, 214, 216, 217, 218, 220, 221, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286], "which": [2, 3, 4, 6, 14, 18, 26, 27, 54, 56, 58, 62, 64, 66, 71, 75, 82, 86, 88, 97, 98, 100, 101, 103, 108, 110, 113, 116, 119, 120, 123, 136, 138, 139, 144, 146, 148, 155, 156, 157, 160, 180, 184, 185, 188, 189, 192, 198, 200, 202, 203, 206, 215, 216, 217, 218, 224, 225, 226, 231, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 251, 252, 256, 258, 260, 270, 273, 279, 284], "priorit": [2, 157], "high": [2, 48, 52, 54, 56, 62, 71, 73, 75, 76, 79, 80, 110, 148, 157, 174, 183, 190, 192, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 252, 253, 280, 284], "emphas": [2, 157], "have": [2, 18, 49, 75, 79, 80, 82, 86, 113, 116, 119, 144, 146, 148, 157, 178, 190, 206, 210, 211, 213, 215, 216, 217, 218, 225, 249, 250, 255, 256, 257, 258, 260, 261, 264, 273, 276, 279, 280, 284], "wide": [2, 157], "across": [2, 18, 157, 215], "consid": [2, 4, 5, 8, 18, 26, 40, 43, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 84, 97, 98, 100, 101, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 138, 139, 156, 157, 158, 159, 174, 176, 177, 178, 179, 180, 182, 183, 185, 187, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 215, 220, 221, 235, 237, 238, 239, 240, 241, 242, 243, 244, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 271, 275, 277, 278, 281, 283, 285], "signific": [2, 4, 17, 40, 147, 148, 149, 157, 180, 212, 282, 284, 286], "thei": [2, 119, 157], "overal": [2, 14, 157, 203], "characterist": [2, 4, 157, 180], "trend": [2, 13, 116, 139, 157, 197, 237, 261], "present": [2, 142, 157, 249, 250, 254], "understand": [2, 157], "broad": [2, 157], "inform": [2, 3, 6, 11, 24, 26, 43, 45, 46, 48, 82, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 103, 106, 108, 116, 117, 119, 120, 123, 125, 127, 129, 131, 133, 135, 152, 153, 156, 157, 159, 160, 166, 174, 181, 184, 194, 216, 217, 218, 220, 221, 226, 227, 229, 230, 231, 233, 236, 238, 239, 240, 241, 242, 244, 245, 248, 251, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "decis": [2, 16, 157, 209], "make": [2, 6, 16, 113, 137, 143, 157, 184, 209, 228, 256, 257, 258, 263], "process": [2, 4, 7, 9, 10, 24, 26, 31, 35, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 142, 143, 149, 152, 153, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 180, 181, 183, 185, 186, 188, 189, 191, 192, 193, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 254, 256, 257, 258, 260, 261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285, 286], "optim": [2, 4, 142, 143, 149, 157, 180, 254, 263, 286], "oper": [2, 43, 45, 75, 79, 84, 108, 119, 131, 157, 159, 166, 207, 210, 211, 220, 221, 251, 283], "improv": [2, 97, 157, 240], "effici": [2, 24, 26, 46, 54, 56, 58, 62, 66, 71, 75, 76, 97, 108, 113, 116, 121, 127, 135, 152, 153, 155, 157, 181, 185, 188, 189, 192, 200, 202, 206, 208, 238, 240, 242, 251, 256, 261, 278], "effect": [2, 43, 45, 49, 97, 113, 121, 131, 133, 157, 158, 159, 162, 166, 176, 177, 178, 190, 240, 256, 257, 258, 276, 280, 283, 285], "web": [2, 14, 138, 142, 157, 203, 235, 249, 250, 254], "usag": [2, 14, 24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 97, 100, 101, 106, 108, 110, 113, 116, 120, 121, 123, 125, 127, 129, 131, 133, 135, 138, 152, 153, 155, 156, 157, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 203, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 235, 238, 239, 241, 244, 248, 249, 250, 251, 252, 256, 257, 258, 260, 261, 266, 267, 268, 269, 270, 272, 275, 276, 277, 278, 280, 281, 283, 285], "manufactur": [2, 4, 6, 9, 143, 149, 157, 180, 184, 191, 249, 250, 263, 286], "social": [2, 157], "network": [2, 4, 9, 49, 137, 139, 148, 157, 176, 180, 191, 228, 237, 249, 250, 284], "approach": [3, 4, 5, 43, 45, 88, 91, 97, 113, 121, 123, 143, 159, 160, 166, 180, 182, 229, 230, 231, 238, 240, 241, 258, 263, 266], "aim": [3, 12, 16, 26, 73, 79, 80, 116, 138, 143, 155, 160, 195, 205, 209, 211, 213, 235, 260, 261, 263], "discov": [3, 7, 10, 11, 12, 14, 16, 24, 26, 43, 45, 46, 48, 49, 50, 52, 56, 60, 62, 66, 69, 73, 75, 76, 78, 79, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 138, 139, 140, 143, 152, 153, 155, 156, 158, 159, 160, 162, 163, 165, 166, 174, 176, 177, 178, 179, 181, 183, 186, 188, 192, 193, 194, 195, 200, 201, 203, 205, 209, 210, 211, 213, 220, 225, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 239, 240, 242, 243, 244, 245, 246, 247, 248, 252, 256, 257, 258, 260, 262, 263, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "larg": [3, 45, 56, 66, 79, 80, 90, 97, 98, 100, 104, 110, 160, 161, 162, 188, 200, 210, 213, 233, 240, 243, 244, 246, 252], "contain": [3, 10, 33, 71, 73, 75, 76, 79, 80, 110, 119, 144, 145, 146, 160, 193, 196, 202, 205, 206, 211, 213, 223, 252, 264, 265, 273, 274, 279, 280], "both": [3, 12, 80, 113, 138, 139, 160, 195, 213, 235, 237, 256], "uncertain": [3, 6, 40, 84, 121, 123, 125, 127, 135, 160, 184, 214, 220, 221, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 279], "record": [3, 24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 139, 152, 153, 155, 156, 158, 159, 160, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 220, 221, 227, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "reli": [3, 5, 160, 182], "exact": [3, 6, 160, 184], "match": [3, 6, 32, 40, 160, 184], "base": [3, 4, 7, 10, 15, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 145, 147, 148, 149, 152, 153, 155, 156, 158, 159, 160, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 180, 181, 183, 185, 186, 188, 189, 192, 193, 198, 200, 201, 202, 204, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 274, 275, 277, 278, 281, 282, 283, 284, 285, 286], "support": [3, 16, 24, 29, 45, 46, 49, 52, 54, 56, 58, 60, 62, 71, 73, 78, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 103, 106, 108, 113, 116, 117, 119, 120, 123, 125, 127, 129, 131, 133, 135, 139, 152, 153, 160, 162, 163, 164, 165, 166, 178, 180, 181, 183, 185, 188, 189, 192, 202, 205, 209, 214, 220, 221, 225, 226, 227, 229, 230, 231, 233, 236, 237, 238, 239, 240, 241, 242, 244, 245, 248, 251, 257, 258, 260, 261, 262, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 281, 283, 285], "confid": [3, 24, 152, 153, 160], "valu": [3, 14, 15, 24, 27, 28, 29, 30, 32, 33, 35, 37, 39, 40, 45, 46, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 86, 91, 93, 95, 97, 101, 106, 110, 113, 116, 117, 119, 123, 125, 127, 129, 135, 144, 152, 153, 160, 162, 163, 164, 165, 166, 178, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 223, 225, 227, 236, 239, 248, 252, 257, 261, 262, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 280, 281], "emploi": [3, 43, 45, 46, 49, 78, 80, 86, 92, 101, 113, 121, 131, 133, 158, 159, 160, 162, 166, 176, 177, 178, 181, 256, 257, 258, 283, 285], "approxim": [3, 160], "find": [3, 24, 27, 37, 45, 46, 52, 54, 56, 58, 60, 62, 71, 75, 76, 79, 80, 82, 84, 86, 101, 108, 113, 119, 120, 123, 125, 127, 129, 131, 135, 152, 153, 160, 161, 162, 181, 183, 185, 188, 189, 192, 202, 207, 210, 213, 216, 220, 221, 225, 251, 256, 257, 258, 266, 275, 277, 278, 281, 283], "therebi": [3, 160], "accommod": [3, 6, 160, 184], "error": [3, 121, 160], "miss": [3, 160], "chang": [3, 13, 113, 160, 197, 258], "thi": [3, 4, 5, 24, 26, 27, 28, 29, 30, 31, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 139, 152, 153, 155, 156, 158, 159, 160, 161, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 180, 181, 182, 183, 185, 188, 189, 192, 196, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "allow": [3, 4, 6, 12, 82, 160, 180, 184, 195, 216, 217, 218], "even": [3, 160], "presenc": [3, 138, 160, 235], "uncertainti": [3, 6, 7, 8, 9, 144, 145, 146, 160, 184, 186, 187, 191, 273, 274, 279], "geo": [3, 40, 64, 66, 69, 71, 73, 125, 160, 186, 187, 190, 193, 194, 195, 197, 198, 200, 201, 202, 205, 214, 255, 274, 275, 276, 280], "spatial": [3, 7, 8, 10, 11, 12, 13, 15, 52, 54, 56, 58, 60, 62, 66, 69, 73, 75, 79, 80, 129, 147, 160, 183, 185, 186, 187, 188, 189, 190, 192, 193, 194, 195, 196, 197, 200, 201, 204, 205, 208, 210, 211, 212, 213, 214, 276, 280, 281, 282], "remot": [3, 160], "sens": [3, 160], "imag": [3, 160], "weather": [3, 160], "forecast": [3, 5, 18, 139, 140, 146, 160, 182, 215, 237, 247, 279], "refer": [4, 7, 9, 24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 140, 145, 147, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 180, 181, 183, 185, 186, 188, 189, 191, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 274, 275, 277, 278, 281, 282, 283, 285], "occur": [4, 7, 11, 12, 13, 14, 15, 17, 19, 137, 139, 140, 142, 147, 148, 149, 161, 180, 186, 194, 195, 197, 203, 204, 212, 222, 228, 237, 247, 254, 264, 282, 284, 286], "meet": [4, 24, 152, 153, 180], "threshold": [4, 24, 27, 28, 29, 35, 75, 76, 79, 80, 84, 103, 110, 119, 123, 125, 127, 129, 131, 135, 152, 153, 180, 210, 211, 213, 220, 221, 245, 252, 266, 275, 277, 278, 281, 283], "mine": [4, 20, 24, 26, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 151, 152, 153, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 192, 193, 194, 195, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 281, 282, 283, 284, 285, 286], "us": [4, 14, 15, 24, 26, 27, 29, 30, 31, 32, 33, 35, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 180, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 255, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "singl": [4, 45, 71, 75, 80, 110, 119, 120, 165, 180, 202, 206, 213, 252], "uniform": [4, 180, 264], "all": [4, 24, 26, 28, 30, 35, 39, 49, 54, 56, 58, 60, 62, 71, 73, 75, 78, 79, 80, 82, 84, 86, 89, 90, 91, 92, 106, 108, 110, 116, 119, 127, 152, 153, 155, 176, 178, 180, 185, 188, 189, 190, 192, 202, 205, 206, 207, 210, 211, 213, 216, 220, 221, 225, 226, 232, 233, 248, 249, 250, 251, 252, 260, 261, 264, 265, 276, 278], "vari": [4, 18, 136, 143, 145, 180, 215, 224, 263, 274, 280], "level": [4, 33, 101, 180], "By": [4, 180], "more": [4, 18, 66, 113, 143, 180, 200, 215, 256, 257, 258, 263, 264], "nuanc": [4, 180], "each": [4, 12, 14, 17, 19, 30, 39, 49, 73, 75, 79, 80, 82, 86, 113, 119, 139, 141, 145, 146, 176, 177, 178, 180, 190, 195, 203, 205, 208, 210, 211, 212, 213, 216, 217, 218, 222, 225, 226, 237, 249, 250, 253, 255, 256, 257, 264, 265, 274, 276, 279, 280], "evalu": [4, 180], "individu": [4, 180, 190, 276, 280], "its": [4, 17, 29, 30, 39, 54, 56, 58, 62, 82, 86, 113, 119, 136, 147, 149, 180, 185, 188, 189, 192, 212, 216, 217, 218, 224, 225, 257, 265, 280, 282, 286], "import": [4, 14, 15, 17, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 180, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 210, 211, 212, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "context": [4, 14, 15, 17, 139, 180, 203, 204, 212, 237], "traffic": [4, 8, 9, 19, 136, 137, 139, 143, 148, 180, 187, 191, 222, 224, 228, 237, 263, 284], "involv": [5, 7, 8, 9, 10, 11, 14, 15, 17, 19, 79, 137, 139, 141, 142, 144, 145, 146, 147, 148, 149, 182, 186, 187, 191, 193, 194, 203, 204, 210, 212, 222, 228, 237, 253, 254, 273, 274, 279, 282, 284, 286], "explor": [5, 71, 110, 113, 119, 182, 202, 252, 257], "itemset": [5, 24, 45, 46, 48, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 86, 88, 91, 101, 110, 123, 129, 131, 133, 135, 141, 149, 152, 153, 165, 174, 181, 182, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 226, 229, 230, 252, 253, 255, 270, 272, 281, 283, 285, 286], "exhibit": [5, 7, 8, 9, 12, 136, 137, 138, 139, 143, 147, 149, 182, 186, 187, 191, 195, 224, 228, 235, 237, 263, 282, 286], "linear": [5, 182], "assess": [5, 182], "through": [5, 119, 123, 182, 270], "instead": [5, 182], "sole": [5, 138, 182, 235], "co": [5, 182], "strength": [5, 182], "uncov": [5, 182], "basket": [5, 14, 91, 101, 141, 148, 182, 203, 249, 250, 253, 284], "analyt": [5, 14, 104, 148, 149, 182, 203, 246, 284, 286], "financi": [5, 6, 9, 137, 140, 141, 143, 146, 182, 184, 191, 228, 247, 253, 263, 279], "ffp": [6, 184], "captur": [6, 8, 136, 184, 187, 224], "inher": [6, 184], "partial": [6, 60, 69, 86, 88, 89, 90, 91, 92, 101, 184, 195, 196, 201, 214, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 264], "event": [6, 8, 9, 10, 11, 12, 13, 15, 17, 19, 82, 136, 139, 142, 145, 147, 184, 187, 191, 193, 194, 195, 197, 204, 212, 216, 217, 218, 222, 223, 224, 237, 254, 274, 282], "requir": [6, 40, 73, 75, 136, 184, 205, 208, 224], "variat": [6, 12, 137, 184, 195, 228], "degre": [6, 136, 137, 184, 224, 228], "membership": [6, 54, 184, 185], "similar": [6, 184, 196], "them": [6, 113, 119, 137, 143, 184, 228, 257, 263], "suitabl": [6, 143, 184, 263], "imprecis": [6, 8, 9, 184, 187, 191], "medic": [6, 16, 184, 209], "qualiti": [6, 184], "control": [6, 26, 82, 86, 97, 98, 100, 101, 103, 108, 155, 156, 184, 216, 217, 218, 225, 226, 238, 239, 240, 241, 242, 243, 244, 245, 251], "geograph": [7, 8, 10, 11, 13, 145, 186, 187, 193, 194, 197, 274], "mai": [7, 9, 12, 13, 18, 19, 120, 136, 137, 143, 145, 146, 186, 191, 195, 197, 215, 222, 224, 228, 263, 264, 274, 279], "object": [7, 27, 28, 29, 30, 32, 33, 35, 36, 37, 39, 40, 41, 49, 52, 80, 82, 86, 91, 97, 101, 116, 119, 120, 147, 178, 183, 186, 190, 213, 216, 225, 242, 261, 276, 280, 282], "epidemiolog": [7, 8, 186, 187], "environment": [7, 8, 10, 11, 12, 13, 15, 136, 144, 146, 147, 186, 187, 193, 194, 195, 197, 204, 224, 273, 279, 282], "monitor": [7, 8, 10, 11, 12, 13, 15, 19, 136, 137, 138, 139, 142, 146, 147, 186, 187, 193, 194, 195, 197, 204, 222, 224, 228, 235, 237, 254, 279, 282], "recur": [8, 9, 12, 13, 19, 106, 136, 137, 138, 139, 187, 191, 195, 197, 214, 222, 224, 228, 235, 237, 247, 248, 264], "tempor": [8, 9, 10, 11, 12, 13, 18, 28, 31, 32, 40, 62, 79, 86, 88, 89, 90, 91, 92, 95, 97, 98, 100, 103, 104, 116, 127, 136, 138, 139, 187, 190, 191, 192, 193, 194, 195, 196, 197, 210, 214, 215, 223, 224, 225, 229, 230, 232, 233, 234, 235, 236, 237, 238, 240, 242, 243, 244, 245, 246, 260, 261, 276, 277, 278, 280], "locat": [8, 10, 15, 145, 187, 193, 196, 204, 274], "repetit": [8, 136, 143, 187, 224, 263], "natur": [8, 9, 123, 138, 145, 187, 191, 235, 268, 269, 274, 280], "phenomena": [8, 11, 13, 139, 187, 194, 197, 237], "over": [8, 18, 80, 119, 136, 138, 139, 142, 143, 187, 196, 213, 215, 223, 224, 235, 237, 254, 263], "time": [8, 9, 11, 12, 13, 18, 24, 26, 28, 30, 32, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 142, 143, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 187, 188, 189, 191, 192, 194, 195, 196, 197, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 215, 216, 217, 218, 220, 221, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 251, 252, 254, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "space": [8, 12, 24, 26, 27, 29, 30, 31, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 187, 188, 189, 190, 192, 195, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 255, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "while": [8, 11, 43, 64, 66, 69, 75, 82, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 158, 159, 187, 194, 198, 200, 201, 208, 216, 217, 218, 227, 229, 230, 231, 232, 233, 236, 240, 241, 242, 243, 244, 248, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 281, 283, 285], "entiti": [8, 187], "flow": [8, 143, 187, 263], "studi": [8, 187], "character": [9, 14, 15, 18, 138, 191, 203, 204, 215, 235], "seri": [9, 11, 18, 28, 30, 93, 97, 106, 137, 140, 191, 194, 215, 223, 227, 228, 242, 247, 248], "product": [9, 191, 280], "among": [10, 193], "It": [10, 11, 19, 24, 27, 28, 30, 35, 39, 40, 43, 45, 46, 49, 66, 79, 82, 86, 89, 90, 92, 97, 98, 101, 103, 104, 106, 113, 119, 123, 131, 133, 135, 142, 152, 153, 159, 166, 178, 181, 193, 194, 196, 200, 210, 216, 222, 232, 233, 234, 238, 239, 240, 243, 245, 246, 248, 254, 258, 266, 267, 268, 269, 271, 272, 280, 283, 285], "analyz": [10, 11, 19, 142, 161, 193, 194, 222, 254], "coordin": [10, 193], "timestamp": [10, 32, 46, 82, 86, 88, 97, 101, 116, 127, 139, 181, 190, 193, 196, 216, 223, 225, 231, 237, 238, 241, 242, 260, 264, 276, 278, 280], "possibl": [10, 106, 193, 248], "relat": [10, 106, 119, 139, 147, 193, 237, 248, 282], "servic": [10, 15, 145, 193, 204, 274], "conserv": [10, 13, 193, 197], "tourism": [10, 193], "hospit": [10, 193], "sequenti": [11, 30, 39, 113, 120, 194, 214, 254, 256, 257, 258], "preserv": [11, 194], "order": [11, 54, 60, 73, 79, 80, 119, 142, 185, 194, 205, 211, 213, 223, 254, 255, 264], "instanc": [11, 119, 142, 194, 254], "transport": [11, 13, 147, 194, 197, 282], "urban": [11, 13, 15, 145, 147, 194, 197, 204, 274, 282], "plan": [11, 13, 15, 16, 145, 147, 194, 197, 204, 209, 274, 282], "alwai": [12, 195, 264], "entir": [12, 19, 195, 222, 280], "interest": [12, 78, 79, 80, 116, 195, 210, 260, 261], "In": [12, 24, 30, 39, 45, 75, 113, 116, 119, 121, 123, 127, 131, 135, 139, 145, 147, 149, 152, 153, 162, 195, 196, 208, 223, 237, 257, 261, 264, 270, 274, 277, 280, 282, 283, 286], "word": [12, 113, 195, 196, 223, 256, 258, 264], "agricultur": [12, 17, 195, 212], "crop": [12, 195], "public": [12, 54, 185, 195], "health": [12, 195], "surveil": [12, 195], "disast": [12, 17, 145, 195, 212, 274], "describ": [13, 197, 276], "consist": [13, 14, 17, 18, 143, 190, 197, 203, 212, 215, 263, 276, 280], "activ": [13, 120, 197], "area": [13, 197], "interv": [13, 18, 19, 28, 82, 136, 137, 138, 139, 140, 143, 197, 215, 216, 217, 218, 222, 224, 228, 235, 237, 247, 263], "reveal": [13, 197], "movement": [13, 197], "human": [13, 197], "logist": [13, 197], "infrastructur": [13, 197], "transact": [14, 24, 26, 27, 28, 29, 30, 31, 32, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 141, 142, 143, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 203, 205, 206, 207, 208, 210, 211, 213, 214, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "databas": [14, 16, 24, 26, 27, 28, 29, 30, 31, 32, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 136, 138, 139, 143, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 203, 205, 206, 207, 208, 209, 210, 211, 213, 214, 216, 220, 221, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 263, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 280, 281, 283, 285], "contribut": [14, 16, 17, 141, 203, 209, 212, 253], "significantli": [14, 17, 141, 203, 212, 253], "reflect": [14, 15, 17, 203, 204, 212], "domain": [14, 15, 17, 203, 204, 212], "georeferenc": [15, 204], "combin": [15, 45, 46, 66, 86, 88, 92, 103, 104, 108, 148, 165, 181, 196, 200, 204, 226, 231, 234, 245, 246, 251, 284], "distribut": [15, 17, 30, 39, 49, 101, 176, 204, 212], "lb": [15, 204], "develop": [15, 145, 204, 274], "The": [16, 24, 26, 27, 29, 30, 31, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 136, 139, 140, 148, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 205, 206, 207, 208, 209, 210, 211, 213, 216, 217, 218, 220, 221, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 251, 252, 255, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 284, 285], "hupm": [16, 20, 209, 219], "maxim": [16, 20, 44, 82, 87, 96, 137, 139, 161, 174, 209, 216, 217, 218, 233, 244], "from": [16, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 144, 145, 146, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 209, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 283, 285], "perspect": [16, 209], "diagnosi": [16, 209], "howev": [16, 24, 26, 27, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 209, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "pai": [16, 209], "less": [16, 37, 116, 190, 209, 260, 261], "attent": [16, 209], "interpret": [16, 209], "explain": [16, 209], "scenario": [16, 209], "clinic": [16, 209], "drug": [16, 161, 209], "prescript": [16, 209], "therapi": [16, 209], "diseas": [16, 209], "predict": [16, 27, 136, 140, 143, 209, 224, 247, 263], "identif": [17, 137, 212, 228], "ha": [17, 46, 86, 97, 106, 141, 181, 212, 226, 241, 248, 253], "predefin": [17, 18, 82, 141, 212, 215, 216, 217, 218, 253], "measur": [17, 82, 110, 113, 136, 141, 212, 216, 217, 218, 224, 252, 253, 256, 257, 258], "resourc": [17, 18, 212, 215], "precis": [17, 144, 212, 273], "emerg": [17, 145, 212, 274], "respons": [17, 91, 101, 119, 145, 212, 274], "top": [17, 27, 50, 79, 80, 92, 103, 104, 117, 123, 139, 161, 179, 210, 213, 234, 245, 246, 262, 268, 269], "k": [17, 24, 27, 50, 56, 69, 71, 79, 80, 92, 93, 97, 103, 104, 110, 117, 120, 123, 127, 129, 133, 139, 152, 153, 161, 179, 188, 201, 202, 210, 213, 227, 234, 242, 245, 246, 252, 262, 268, 269, 277, 281, 285], "lpp": [18, 215], "some": [18, 30, 39, 82, 106, 137, 215, 216, 217, 218, 228, 248, 264], "non": [18, 82, 106, 123, 125, 135, 190, 215, 216, 217, 218, 223, 248, 264, 266, 267, 268, 269, 270, 271, 275, 276, 280], "A": [18, 20, 26, 40, 43, 45, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 86, 91, 97, 101, 110, 113, 123, 127, 156, 159, 162, 166, 183, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 215, 216, 217, 218, 223, 225, 242, 252, 255, 256, 264, 265, 267, 271, 276, 277, 280], "said": [18, 82, 196, 215, 216, 217, 218], "appear": [18, 26, 82, 97, 98, 100, 101, 108, 110, 113, 155, 156, 161, 215, 216, 217, 218, 240, 241, 242, 243, 244, 251, 252, 256, 257, 258], "regularli": [18, 82, 215, 216, 217, 218], "continu": [18, 82, 215, 216, 217, 218], "s": [18, 26, 33, 56, 71, 73, 75, 76, 79, 82, 86, 88, 89, 90, 91, 92, 93, 97, 98, 100, 101, 103, 104, 108, 110, 113, 116, 117, 120, 156, 188, 202, 205, 206, 207, 208, 210, 211, 215, 216, 217, 218, 225, 226, 227, 229, 230, 231, 232, 233, 234, 240, 241, 242, 243, 244, 245, 246, 251, 252, 257, 261, 262], "demonstr": [18, 136, 140, 143, 215, 224, 247, 263], "one": [18, 24, 26, 27, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 215, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 281, 283, 285], "distinct": [18, 215, 264], "indic": [18, 119, 120, 215], "segment": [18, 215], "assum": [18, 215], "anomali": [18, 140, 215, 247], "sequenc": [19, 20, 30, 39, 71, 73, 82, 113, 137, 141, 142, 149, 161, 194, 202, 205, 214, 216, 217, 218, 219, 222, 223, 228, 253, 254, 255, 256, 257, 258, 286], "durat": [19, 82, 216, 217, 218, 222, 223], "cycl": [19, 222], "subset": [19, 148, 222, 284], "stock": [19, 222], "internet": [19, 222], "associationrul": [20, 219], "submodul": [20, 21, 23, 25, 42, 44, 51, 53, 55, 57, 59, 61, 63, 65, 68, 70, 72, 74, 81, 83, 85, 87, 94, 96, 102, 105, 107, 109, 112, 115, 118, 122, 124, 126, 128, 130, 132, 134, 219], "arwithconfid": [20, 21], "arwithleverag": [20, 21], "arwithlift": [20, 21], "rulemin": [20, 21], "abstract": [20, 21, 23, 25, 27, 42, 44, 51, 53, 55, 57, 59, 61, 63, 65, 68, 70, 72, 74, 81, 83, 85, 87, 94, 96, 102, 105, 107, 109, 112, 115, 118, 122, 124, 126, 128, 130, 132, 134, 219], "correlatedpattern": [20, 152, 153, 219], "comin": [20, 23, 153, 154], "comineplu": [20, 23, 154], "coveragepattern": [20, 155, 156, 219], "cmine": [20, 25, 157], "cppg": [20, 25, 157], "extra": [20, 219], "df2db": [20, 27], "df2dbplu": [20, 27], "denseformatdf": [20, 27], "sparseformatdf": [20, 27], "createtdb": [20, 27], "densedf2dbplu": [20, 27], "densedf2db_dump": [20, 27], "sparsedf2dbplu": [20, 27], "calculatemisvalu": [20, 27], "usingbeta": [20, 27], "usingsd": [20, 27], "dbstat": [20, 27, 39], "fuzzydatabas": [20, 27], "multipletimeseriesfuzzydatabasestat": [20, 27], "sequentialdatabas": [20, 27], "temporaldatabas": [20, 27, 32], "transactionaldatabas": [20, 27], "uncertaintemporaldatabas": [20, 27], "uncertaintransactionaldatabas": [20, 27], "utilitydatabas": [20, 27], "fuzzytransform": [20, 27], "temporaltofuzzi": [20, 27], "transactionaltofuzzi": [20, 27], "utilitytofuzzi": [20, 27], "generatedatabas": [20, 27], "generatespatiotemporaldatabas": [20, 27], "generatetemporaldatabas": [20, 27], "generatetransactionaldatabas": [20, 27], "graph": [20, 27, 30, 118], "df2fig": [20, 27], "df2tex": [20, 27], "plotlinegraphfromdictionari": [20, 27], "plotlinegraphsfromdatafram": [20, 27], "visualizefuzzypattern": [20, 27], "visualizepattern": [20, 27], "image2databas": [20, 27], "imageprocess": [20, 27], "imagery2databas": [20, 27], "messag": [20, 27], "discord": [20, 27], "gmail": [20, 27], "neighbour": [20, 27, 56, 58, 64, 66, 69, 73, 75, 79, 80, 188, 189, 198, 200, 201, 205, 208, 210, 211, 213], "findneighborsusingeuclideandistanceforpointinfo": [20, 27], "findneighboursusingeuclidean": [20, 27], "findneighboursusinggeodes": [20, 27], "sampledataset": [20, 27], "stat": [20, 27, 30, 49, 176], "graphdatabas": [20, 27, 41], "syntheticdatagener": [20, 27], "createsyntheticgeoreferentialtempor": [20, 27], "createsyntheticgeoreferentialtransact": [20, 27], "createsyntheticgeoreferentialuncertaintransact": [20, 27], "createsynthetictempor": [20, 27], "createsynthetictransact": [20, 27], "createsyntheticuncertaintempor": [20, 27], "createsyntheticuncertaintransact": [20, 27], "createsyntheticutil": [20, 27], "generatetempor": [20, 27], "generatetransact": [20, 27], "generateuncertaintempor": [20, 27], "generateuncertaintransact": [20, 27], "generateutilitytempor": [20, 27], "generateutilitytransact": [20, 27], "georeferencedtemporaldatabas": [20, 27], "georeferencedtransactionaldatabas": [20, 27], "syntheticutilitydatabas": [20, 27], "temporaldatabasegen": [20, 27], "visual": [20, 27, 33], "convertmultitsintofuzzi": [20, 219], "generatelatexgraphfil": [20, 219], "plotpointonmap": [20, 219], "plotpointonmap_dump": [20, 219], "scatterplotspatialpoint": [20, 219], "topkpattern": [20, 219], "uncertaindb_convert": [20, 219], "faulttolerantfrequentpattern": [20, 121, 158, 159, 219], "ftapriori": [20, 42, 160], "ftfpgrowth": [20, 42, 160], "frequentpattern": [20, 24, 28, 79, 84, 86, 108, 110, 113, 123, 129, 131, 153, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 211, 219, 220, 221, 226, 251, 252, 256, 257, 258, 266, 267, 268, 269, 270, 271, 272, 281, 283], "apriori": [20, 43, 44, 49, 66, 121, 158, 175, 176, 177, 200], "eclat": [20, 44, 66, 175, 200, 264], "eclatdiffset": [20, 44, 175], "eclatbitset": [20, 44, 175], "fpgrowth": [20, 28, 43, 44, 49, 159, 175, 178], "close": [20, 44, 75, 79, 86, 87, 96, 97, 112, 137, 139, 142, 161, 181, 190, 207, 210, 226, 232, 238, 241, 243], "charm": [20, 44, 175], "cuda": [20, 44, 96, 137, 161], "cuapriori": [20, 44, 175], "cuaprioribit": [20, 44, 175], "cueclat": [20, 44, 175], "cueclatbit": [20, 44, 175], "cudaapriorigct": [20, 44, 175], "cudaaprioritid": [20, 44, 175], "cudaeclatgct": [20, 44, 175], "maxfpgrowth": [20, 44, 175], "pyspark": [20, 44, 87, 96, 161, 176, 177, 178], "parallelapriori": [20, 44, 175], "paralleleclat": [20, 44, 175], "parallelfpgrowth": [20, 44, 175], "topk": [20, 33, 44, 78, 87, 96, 115, 116, 118, 137, 143, 179, 213, 234, 245, 246, 261, 262], "fae": [20, 44, 175], "fuzzycorrelatedpattern": [20, 183, 219], "fcpgrowth": [20, 51, 182], "fuzzyfrequentpattern": [20, 185, 219], "ffimin": [20, 53, 184], "ffiminer_old": [20, 53], "fuzzygeoreferencedfrequentpattern": [20, 188, 219], "ffspminer": [20, 55, 58, 186, 189], "ffspminer_old": [20, 55], "fuzzygeoreferencedperiodicfrequentpattern": [20, 189, 219], "fgpfpminer": [20, 57, 187], "fgpfpminer_old": [20, 57], "fuzzypartialperiodicpattern": [20, 219], "f3pminer": [20, 59], "fuzzyperiodicfrequentpattern": [20, 192, 219], "fpfpminer": [20, 61, 191], "fpfpminer_old": [20, 61], "georeferencedperiodicfrequentpattern": [20, 198, 219], "gpfpminer": [20, 63, 197], "georeferencedfrequentpattern": [20, 200, 219], "fspgrowth": [20, 65, 193], "spatialeclat": [20, 65, 193], "georeferencedfrequentsequencepattern": [20, 219], "georeferencedpartialperiodicpattern": [20, 201, 219], "steclat": [20, 68, 195], "highutilityfrequentpattern": [20, 202, 219], "hufim": [20, 70, 203], "highutilitygeoreferencedfrequentpattern": [20, 79, 205, 210, 219], "shufim": [20, 72, 204], "highutilitypattern": [20, 206, 207, 208, 219], "efim": [20, 74, 76, 253], "hminer": [20, 74, 253], "upgrowth": [20, 74, 253], "efimparallel": [20, 74], "parallel": [20, 49, 74, 101, 106, 176, 177, 178, 248], "highutilitypatternsinstream": [20, 219], "shugrowth": [20, 219], "highutilityspatialpattern": [20, 210, 211, 213, 219], "hdshuim": [20, 78, 212], "shuim": [20, 78, 210, 212], "tkshuim": [20, 78, 212], "localperiodicpattern": [20, 216, 217, 218, 219], "lppgrowth": [20, 81, 215], "lppmbreadth": [20, 81, 215], "lppmdepth": [20, 81, 215], "multipleminimumsupportbasedfrequentpattern": [20, 219, 220, 221], "cfpgrowth": [20, 83, 180], "cfpgrowthplu": [20, 83, 180], "partialperiodicfrequentpattern": [20, 219, 225, 226], "gpfgrowth": [20, 85, 224], "ppf_df": [20, 85, 224], "partialperiodicpattern": [20, 86, 219, 225, 226, 229, 230, 231, 232, 233, 234], "gthreepgrowth": [20, 87, 228], "gabstract": [20, 87], "pppgrowth": [20, 87, 228, 229], "ppp_eclat": [20, 87, 228], "pppclose": [20, 87, 228], "max3pgrowth": [20, 87, 228], "parallel3pgrowth": [20, 87], "k3pminer": [20, 87, 228], "partialperiodicpatterninmultipletimeseri": [20, 219, 227], "ppgrowth": [20, 219, 222], "periodiccorrelatedpattern": [20, 219, 236], "epcpgrowth": [20, 94, 235], "periodicfrequentpattern": [20, 62, 88, 89, 90, 93, 106, 127, 192, 219, 227, 229, 230, 231, 232, 233, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 277, 278], "pfeclat": [20, 96, 237], "pfpgrowth": [20, 95, 96, 236, 237, 240], "pfpgrowthplu": [20, 96, 237], "pfpmc": [20, 96, 237], "psgrowth": [20, 96, 237], "parallelpfpgrowth": [20, 96], "cpfpminer": [20, 96, 237], "cugpfmin": [20, 96], "gpfminerbit": [20, 96], "maxpfgrowth": [20, 96, 237], "recurringpattern": [20, 219, 248], "rpgrowth": [20, 105, 247], "relativefrequentpattern": [20, 219, 251], "rsfpgrowth": [20, 107, 250], "relativehighutilitypattern": [20, 219, 252], "rhuim": [20, 109, 209], "sequentialpatternmin": [20, 219, 256, 257, 258], "spade": [20, 112, 254], "spam": [20, 112, 254], "prefixspan": [20, 112, 254], "bide": [20, 112, 254], "stableperiodicfrequentpattern": [20, 219, 260, 261, 262], "sppeclat": [20, 115, 263], "sppgrowth": [20, 115, 263], "sppgrowthdump": [20, 115], "tspin": [20, 115, 263], "subgraphmin": [20, 219], "dfscode": [20, 118], "edg": [20, 118], "extendededg": [20, 118], "frequentsubgraph": [20, 118], "gspan": [20, 118, 120], "sparsetriangularmatrix": [20, 118], "vertex": [20, 118], "dfsthread": [20, 118], "tkg": [20, 118], "uncertainfaulttolerantfrequentpattern": [20, 219], "vbftmine": [20, 219], "uncertainfrequentpattern": [20, 219, 266, 267, 268, 269, 270, 271, 272], "cufptre": [20, 122, 273], "pufgrowth": [20, 122, 271, 273], "tufp": [20, 122, 269, 273], "tubep": [20, 122, 273], "tube": [20, 122, 273], "ufgrowth": [20, 122, 273], "uveclat": [20, 122, 273], "uncertaingeoreferencedfrequentpattern": [20, 219, 275], "gfpgrowth": [20, 124, 274], "uncertainperiodicfrequentpattern": [20, 219, 277, 278], "upfpgrowth": [20, 126, 279], "upfpgrowthplu": [20, 126, 279], "weightedfrequentneighbourhoodpattern": [20, 219, 281], "swfpgrowth": [20, 128, 282], "weightedfrequentpattern": [20, 219, 283], "wfim": [20, 130, 284], "weightedfrequentregularpattern": [20, 219, 285], "wfrimin": [20, 132, 286], "weighteduncertainfrequentpattern": [20, 219], "wufim": [20, 134], "pattern": [20, 24, 26, 27, 28, 29, 31, 33, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 197, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 281, 282, 283, 284, 285, 286], "python": [20, 24, 26, 45, 46, 50, 56, 58, 86, 88, 92, 97, 98, 101, 103, 116, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 162, 163, 164, 165, 166, 179, 181, 188, 189, 225, 226, 231, 234, 238, 239, 243, 245, 260, 266, 267, 268, 269, 270, 275, 277, 278, 281, 283, 285], "librari": 20, "class": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "ifil": [24, 26, 27, 29, 30, 31, 33, 37, 39, 41, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "union": [24, 28, 30, 39, 43, 62, 71, 82, 88, 100, 101, 108, 129, 152, 153, 159, 192, 202, 217, 218, 229, 244, 251, 281], "str": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "datafram": [24, 26, 27, 28, 29, 30, 32, 33, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "minsup": [24, 26, 33, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 71, 73, 75, 79, 84, 86, 93, 95, 97, 98, 100, 101, 103, 108, 110, 113, 116, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 139, 152, 153, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 181, 183, 185, 188, 189, 192, 198, 200, 202, 205, 207, 210, 211, 220, 221, 225, 226, 227, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 251, 252, 256, 257, 258, 260, 261, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "int": [24, 26, 27, 28, 29, 30, 32, 33, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "float": [24, 26, 27, 28, 30, 32, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "minallconf": [24, 52, 95, 152, 153, 183, 236], "sep": [24, 26, 27, 29, 30, 31, 32, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 255, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "t": [24, 26, 27, 30, 31, 32, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "sourc": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "_correlatedpattern": [24, 152, 153], "descript": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 280, 281, 283, 285], "fundament": [24, 43, 45, 48, 49, 69, 84, 88, 91, 93, 97, 100, 101, 106, 113, 121, 123, 131, 133, 152, 153, 158, 159, 162, 163, 165, 166, 174, 178, 201, 220, 227, 229, 230, 231, 238, 239, 240, 241, 242, 244, 248, 256, 257, 258, 266, 267, 268, 269, 271, 272, 283, 285], "algorithm": [24, 26, 33, 43, 45, 46, 48, 49, 50, 52, 54, 60, 64, 66, 69, 71, 75, 76, 78, 79, 80, 82, 84, 86, 89, 90, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 198, 200, 201, 202, 206, 207, 208, 210, 211, 216, 217, 218, 220, 221, 225, 226, 227, 232, 233, 234, 236, 239, 240, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 278, 281, 283, 285], "correl": [24, 52, 95, 152, 153, 154, 182, 183, 190, 214, 235, 236, 264, 265], "fp": [24, 28, 43, 45, 49, 131, 152, 153, 159, 166, 178, 283], "growth": [24, 48, 49, 75, 82, 86, 90, 97, 100, 113, 127, 152, 153, 174, 178, 208, 216, 225, 233, 242, 244, 258, 278], "depth": [24, 46, 82, 89, 98, 113, 119, 152, 153, 181, 216, 217, 218, 232, 243, 256, 258], "first": [24, 45, 46, 49, 75, 80, 82, 86, 89, 98, 110, 113, 119, 152, 153, 162, 178, 181, 206, 213, 216, 217, 218, 223, 225, 232, 243, 252, 256, 257, 258, 264, 276], "search": [24, 43, 45, 46, 49, 54, 56, 58, 62, 75, 76, 82, 84, 89, 98, 113, 119, 121, 131, 133, 152, 153, 158, 159, 162, 166, 176, 177, 178, 181, 185, 188, 189, 192, 214, 216, 217, 218, 221, 232, 243, 256, 257, 258, 283, 285], "lee": [24, 97, 127, 152, 153, 239, 277], "y": [24, 32, 33, 43, 45, 71, 97, 104, 116, 117, 119, 120, 152, 153, 159, 166, 202, 238, 246, 261, 262], "kim": [24, 152, 153], "w": [24, 79, 116, 127, 152, 153, 211, 260, 277], "cao": [24, 152, 153], "d": [24, 152, 153, 255, 264, 265], "han": [24, 43, 45, 84, 113, 152, 153, 158, 159, 166, 220, 258], "j": [24, 43, 45, 46, 48, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 91, 97, 110, 113, 116, 119, 120, 123, 127, 131, 152, 153, 159, 166, 174, 181, 202, 205, 206, 211, 213, 216, 217, 218, 220, 225, 231, 232, 240, 252, 256, 257, 258, 260, 266, 277, 283], "2003": [24, 45, 152, 153, 164], "icdm": [24, 123, 152, 153, 270], "pp": [24, 45, 49, 56, 62, 69, 79, 80, 93, 97, 110, 116, 129, 131, 133, 152, 153, 162, 176, 188, 192, 201, 210, 213, 227, 242, 252, 260, 281, 283, 285], "581": [24, 152, 153], "584": [24, 152, 153], "paramet": [24, 26, 27, 28, 29, 31, 32, 33, 35, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 272, 275, 277, 278, 281, 283, 285], "name": [24, 26, 27, 28, 29, 30, 31, 32, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 281, 283, 285], "input": [24, 26, 27, 29, 30, 31, 32, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "file": [24, 26, 27, 28, 29, 30, 31, 32, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "complet": [24, 26, 28, 29, 30, 31, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 136, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 281, 283, 285], "ofil": [24, 26, 27, 28, 29, 30, 31, 32, 35, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "output": [24, 26, 27, 28, 29, 30, 31, 32, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "store": [24, 26, 27, 29, 30, 31, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "user": [24, 26, 27, 28, 29, 31, 37, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 139, 142, 143, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 254, 256, 257, 258, 260, 261, 262, 263, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "specifi": [24, 29, 32, 33, 37, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "either": [24, 29, 40, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 207, 210, 211, 225, 226, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 248, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 280, 281, 283, 285], "count": [24, 29, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 110, 113, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 207, 210, 211, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "proport": [24, 29, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 136, 152, 153, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 207, 210, 211, 224, 225, 226, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 248, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "size": [24, 29, 30, 32, 33, 39, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 207, 210, 211, 225, 226, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 248, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "If": [24, 29, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 207, 210, 211, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 248, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 281, 283, 285], "program": [24, 26, 29, 30, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "integ": [24, 29, 30, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 207, 210, 211, 216, 223, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 248, 252, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "treat": [24, 29, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 207, 210, 211, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 248, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "express": [24, 29, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 207, 210, 211, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 248, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "rang": [24, 30, 39, 40, 52, 84, 123, 125, 127, 129, 131, 135, 152, 153, 183, 220, 221, 266, 275, 276, 277, 278, 281, 283], "0": [24, 26, 27, 30, 32, 33, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 64, 66, 69, 75, 76, 80, 82, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 188, 190, 196, 198, 200, 201, 206, 213, 216, 217, 218, 225, 226, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "1": [24, 30, 39, 43, 45, 46, 52, 56, 62, 75, 76, 79, 82, 84, 86, 88, 91, 97, 108, 113, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 158, 162, 163, 164, 165, 166, 181, 183, 188, 190, 192, 196, 211, 216, 217, 218, 220, 223, 225, 226, 229, 230, 238, 239, 242, 251, 255, 256, 257, 258, 264, 265, 266, 267, 268, 269, 270, 272, 275, 276, 277, 278, 280, 281, 283, 285], "variabl": [24, 26, 27, 29, 30, 31, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 137, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "distinguish": [24, 26, 27, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "anoth": [24, 26, 27, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "default": [24, 26, 27, 29, 30, 31, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "seper": [24, 26, 27, 29, 31, 32, 37, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 255, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "tab": [24, 26, 27, 29, 30, 31, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 255, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "overrid": [24, 26, 27, 29, 31, 37, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "separ": [24, 26, 27, 29, 30, 31, 37, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "memoryuss": [24, 26, 43, 45, 46, 48, 49, 50, 64, 66, 69, 75, 76, 78, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 198, 200, 201, 213, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "To": [24, 26, 28, 29, 30, 32, 33, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "total": [24, 26, 28, 30, 32, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "amount": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "uss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "memori": [24, 26, 28, 33, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "consum": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "memoryrss": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "rss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "starttim": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "start": [24, 26, 33, 43, 45, 46, 48, 49, 50, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "endtim": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "given": [24, 27, 28, 29, 32, 33, 40, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 86, 90, 108, 110, 119, 152, 153, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 233, 249, 250, 251, 252], "minimum": [24, 26, 27, 29, 30, 32, 39, 43, 50, 54, 56, 58, 60, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 97, 98, 100, 101, 106, 108, 110, 113, 116, 119, 121, 123, 125, 127, 129, 131, 135, 139, 152, 153, 155, 156, 158, 179, 180, 185, 188, 189, 205, 208, 210, 211, 213, 214, 216, 217, 218, 220, 221, 225, 229, 230, 231, 232, 233, 234, 237, 240, 241, 242, 243, 244, 248, 251, 252, 256, 257, 258, 260, 261, 265, 266, 275, 277, 278, 281, 283], "ratio": [24, 52, 86, 136, 152, 153, 183, 224, 226], "should": [24, 52, 119, 152, 153, 183], "list": [24, 26, 27, 28, 30, 32, 35, 39, 40, 43, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 90, 91, 92, 93, 95, 97, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 178, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 220, 221, 225, 227, 229, 230, 231, 233, 234, 236, 238, 239, 240, 241, 242, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "mapsupport": [24, 43, 45, 46, 48, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 152, 153, 159, 166, 174, 181, 220, 221, 226, 227, 229, 230, 231, 233, 236, 238, 239, 240, 241, 242, 244, 248, 251, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "dictionari": [24, 26, 27, 30, 31, 39, 43, 45, 46, 48, 49, 50, 54, 64, 66, 69, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 185, 198, 200, 201, 205, 211, 213, 216, 220, 221, 225, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "maintain": [24, 43, 45, 46, 48, 49, 82, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 152, 153, 159, 166, 174, 178, 181, 216, 220, 221, 225, 226, 227, 229, 230, 231, 233, 236, 238, 239, 240, 241, 242, 244, 248, 251, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "lno": [24, 43, 48, 49, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 104, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 152, 153, 159, 174, 176, 177, 178, 220, 221, 226, 227, 229, 230, 231, 233, 236, 238, 239, 240, 241, 242, 244, 246, 248, 251, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 278, 281, 283, 285], "tree": [24, 43, 45, 46, 48, 49, 71, 73, 75, 79, 80, 82, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 110, 116, 117, 123, 125, 127, 129, 131, 133, 135, 152, 153, 159, 166, 174, 178, 181, 202, 205, 206, 208, 211, 213, 216, 220, 221, 225, 227, 229, 230, 231, 233, 236, 238, 239, 240, 241, 242, 244, 248, 251, 252, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "itemsetcount": [24, 46, 48, 90, 93, 95, 97, 100, 101, 106, 108, 116, 117, 123, 125, 127, 135, 152, 153, 174, 181, 227, 233, 236, 238, 239, 240, 241, 242, 244, 248, 251, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 278], "finalpattern": [24, 26, 31, 43, 45, 46, 48, 49, 50, 64, 66, 69, 78, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 198, 200, 201, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "dict": [24, 26, 27, 30, 31, 33, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "itemsetbuff": [24, 54, 56, 58, 60, 62, 108, 152, 153, 185, 188, 189, 251], "maxpatternlength": [24, 108, 152, 153, 251], "constraint": [24, 73, 79, 101, 108, 110, 113, 116, 139, 143, 152, 153, 205, 211, 237, 251, 252, 256, 257, 258, 260, 261, 263], "length": [24, 27, 30, 32, 39, 40, 43, 75, 79, 82, 108, 113, 121, 123, 125, 127, 135, 152, 153, 158, 207, 210, 216, 217, 218, 251, 256, 257, 258, 266, 267, 268, 269, 270, 271, 272, 275, 278], "termin": [24, 26, 45, 46, 50, 56, 93, 97, 98, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 162, 163, 164, 165, 166, 179, 181, 188, 227, 238, 239, 243, 266, 267, 268, 269, 270, 272, 275, 277, 278, 281, 283, 285], "command": [24, 26, 45, 46, 50, 56, 93, 97, 98, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 162, 163, 164, 165, 166, 179, 181, 188, 227, 238, 239, 243, 266, 267, 268, 269, 270, 272, 275, 277, 278, 281, 283, 285], "format": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 255, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "venv": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 88, 89, 91, 93, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 227, 230, 231, 232, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 266, 267, 268, 269, 270, 272, 275, 277, 278, 281, 283, 285], "python3": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "py": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "inputfil": [24, 26, 27, 30, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "outputfil": [24, 26, 27, 28, 30, 32, 35, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "exampl": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 196, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 223, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 255, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "sampletdb": [24, 26, 48, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 89, 90, 93, 95, 97, 98, 100, 101, 106, 110, 116, 117, 123, 125, 127, 135, 152, 153, 155, 156, 174, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 227, 232, 233, 236, 240, 241, 242, 243, 244, 248, 252, 260, 261, 262, 266, 271, 275, 277, 278], "txt": [24, 26, 30, 32, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "25": [24, 152, 153], "2": [24, 40, 48, 50, 52, 54, 56, 58, 60, 62, 69, 73, 79, 80, 88, 89, 91, 97, 98, 100, 106, 108, 113, 116, 121, 127, 129, 152, 153, 174, 179, 183, 185, 188, 189, 190, 192, 196, 201, 205, 211, 213, 223, 229, 230, 232, 240, 241, 242, 243, 244, 248, 251, 256, 258, 260, 264, 265, 276, 277, 278, 280, 281], "call": [24, 26, 45, 46, 50, 56, 58, 78, 80, 82, 97, 98, 113, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 162, 163, 164, 165, 166, 179, 181, 188, 189, 218, 238, 239, 243, 256, 257, 266, 267, 268, 269, 270, 275, 276, 277, 278, 281, 283, 285], "alg": [24, 26, 30, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "obj": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "getpattern": [24, 26, 29, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "print": [24, 26, 28, 30, 32, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "number": [24, 26, 30, 32, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 280, 281, 283, 285], "len": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "savepattern": [24, 45, 46, 48, 75, 76, 84, 101, 104, 106, 110, 113, 117, 120, 125, 127, 131, 152, 153, 164, 166, 174, 181, 221, 246, 248, 252, 256, 257, 258, 262, 275, 278, 283], "df": [24, 26, 28, 43, 45, 46, 48, 49, 50, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "getpatternsasdatafram": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "memuss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "getmemoryuss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "memrss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "getmemoryrss": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "run": [24, 26, 28, 30, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "getruntim": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "executiontim": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "second": [24, 26, 28, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "wa": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "written": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "b": [24, 52, 54, 56, 58, 62, 66, 75, 79, 88, 108, 113, 121, 152, 153, 183, 185, 188, 189, 192, 200, 207, 210, 223, 231, 251, 255, 257, 258, 264, 265], "sai": [24, 40, 52, 54, 56, 58, 62, 66, 75, 79, 108, 152, 153, 183, 185, 188, 189, 192, 200, 207, 210, 211, 251], "chitra": [24, 52, 54, 56, 58, 62, 66, 75, 79, 108, 152, 153, 183, 185, 188, 189, 192, 200, 207, 210, 251], "under": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "supervis": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "professor": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "rage": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "udai": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "kiran": [24, 26, 30, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "retriev": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "function": [24, 26, 30, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "return": [24, 26, 27, 28, 29, 30, 32, 33, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "tupl": [24, 26, 32, 43, 49, 82, 97, 100, 152, 153, 155, 158, 178, 217, 218, 239, 240, 242, 244], "send": [24, 26, 36, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "after": [24, 26, 32, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "final": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "pd": [24, 26, 29, 32, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "calcul": [24, 26, 29, 30, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "runtim": [24, 26, 33, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "taken": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "none": [24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 39, 40, 43, 45, 52, 54, 56, 62, 71, 75, 79, 80, 82, 84, 88, 95, 97, 100, 101, 108, 110, 117, 119, 120, 123, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 183, 185, 188, 192, 202, 206, 208, 210, 211, 213, 216, 217, 218, 220, 221, 229, 230, 231, 236, 238, 239, 240, 241, 242, 244, 251, 252, 262, 266, 267, 268, 269, 277, 281, 283, 285], "main": [24, 26, 31, 43, 45, 52, 73, 75, 79, 80, 84, 86, 88, 90, 91, 92, 97, 100, 103, 104, 108, 113, 120, 123, 125, 127, 131, 148, 152, 153, 155, 159, 166, 183, 205, 207, 210, 211, 213, 220, 221, 226, 229, 230, 231, 233, 234, 240, 244, 245, 246, 251, 257, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 283, 284], "method": [24, 26, 27, 30, 31, 32, 33, 37, 39, 40, 43, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 159, 176, 178, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "printresult": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "result": [24, 26, 27, 30, 39, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 106, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "recurs": [24, 71, 73, 75, 79, 80, 86, 88, 97, 110, 113, 116, 119, 123, 152, 153, 202, 205, 206, 208, 211, 213, 226, 231, 238, 241, 252, 257, 260, 270], "node": [24, 49, 75, 82, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 123, 125, 127, 135, 152, 153, 176, 177, 178, 208, 216, 225, 227, 229, 230, 233, 236, 239, 240, 242, 244, 248, 261, 262, 266, 267, 268, 269, 270, 271, 275, 277, 278], "root": [24, 49, 82, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 123, 125, 127, 135, 152, 153, 178, 216, 225, 227, 229, 230, 233, 236, 239, 240, 242, 244, 248, 261, 262, 266, 267, 268, 269, 270, 271, 275, 277, 278], "build": [24, 49, 75, 152, 153, 178, 208], "ani": [24, 26, 82, 86, 97, 98, 100, 101, 103, 120, 148, 152, 153, 155, 156, 216, 217, 218, 225, 226, 238, 239, 240, 241, 242, 243, 244, 245, 264, 284], "current": [24, 80, 152, 153, 213, 276], "being": [24, 152, 153, 264], "_node": [24, 152, 153], "save": [24, 26, 27, 28, 29, 30, 32, 33, 35, 37, 39, 40, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "outfil": [24, 26, 28, 29, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 275, 277, 278, 281, 283, 285], "an": [24, 26, 28, 29, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 62, 64, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 92, 95, 97, 98, 108, 110, 113, 116, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 139, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 196, 198, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 223, 225, 226, 229, 231, 234, 236, 237, 238, 239, 240, 241, 242, 243, 249, 250, 251, 252, 255, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "startmin": [24, 26, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 271, 275, 277, 278, 281, 283, 285], "revis": [24, 45, 46, 50, 97, 153, 162, 163, 164, 165, 166, 179, 181, 238, 239], "tarun": [24, 45, 46, 50, 75, 97, 153, 162, 163, 164, 165, 166, 179, 181, 238, 239], "sreepad": [24, 153], "code": [24, 29, 32, 35, 56, 78, 80, 86, 88, 92, 97, 101, 103, 116, 119, 153, 225, 226, 231, 234, 238, 239, 245, 260], "minrf": [26, 155, 156], "minc": [26, 155, 156], "maxor": [26, 155, 156], "_coveragepattern": [26, 155, 156], "coverag": [26, 155, 156, 157, 214, 265], "bhargav": [26, 155, 156], "sripada": [26, 155], "polep": [26, 155], "krishna": [26, 69, 84, 86, 88, 89, 93, 101, 129, 155, 156, 201, 221, 225, 227, 231, 232, 281], "reddi": [26, 69, 71, 84, 86, 88, 93, 97, 101, 110, 129, 155, 156, 201, 202, 221, 225, 227, 231, 242, 252, 281], "banner": [26, 155], "advertis": [26, 155], "placement": [26, 155], "www": [26, 54, 88, 89, 95, 106, 155, 185, 231, 232, 236, 248], "companion": [26, 155], "volum": [26, 86, 123, 155, 225, 266], "2011": [26, 84, 123, 155, 221, 266, 272], "131": [26, 155], "132": [26, 155], "__http": [26, 155], "dl": [26, 92, 155, 234], "acm": [26, 45, 49, 75, 92, 113, 123, 155, 164, 178, 208, 234, 257, 272], "org": [26, 43, 45, 46, 50, 75, 76, 84, 86, 88, 90, 91, 92, 97, 98, 100, 104, 113, 116, 117, 121, 123, 125, 127, 131, 155, 159, 162, 163, 164, 165, 166, 179, 181, 206, 208, 220, 221, 225, 229, 230, 233, 234, 239, 240, 242, 243, 244, 246, 256, 261, 262, 266, 268, 269, 270, 272, 275, 277, 278, 283], "doi": [26, 43, 45, 46, 49, 50, 52, 56, 62, 69, 71, 75, 76, 79, 80, 82, 84, 86, 88, 91, 92, 93, 97, 104, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 155, 159, 162, 164, 166, 176, 179, 181, 183, 188, 192, 201, 202, 206, 208, 210, 213, 216, 217, 218, 220, 221, 225, 227, 229, 230, 234, 239, 240, 242, 246, 252, 256, 261, 262, 266, 268, 269, 270, 272, 275, 277, 278, 281, 283, 285], "10": [26, 27, 32, 37, 40, 43, 45, 46, 49, 50, 52, 54, 56, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 155, 156, 158, 159, 162, 163, 164, 165, 166, 176, 177, 178, 179, 181, 183, 185, 188, 190, 192, 196, 198, 200, 201, 202, 205, 206, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 280, 281, 283, 285], "1145": [26, 45, 75, 84, 88, 91, 123, 155, 162, 164, 208, 221, 229, 230, 272], "1963192": [26, 155], "1963259": [26, 155], "everi": [26, 78, 80, 82, 86, 92, 97, 98, 100, 101, 108, 155, 156, 216, 225, 240, 241, 242, 243, 244, 251, 264, 276, 280], "must": [26, 78, 80, 86, 92, 97, 98, 100, 101, 108, 110, 113, 155, 156, 190, 223, 240, 241, 242, 243, 244, 251, 252, 256, 257, 258, 264, 265, 276, 280], "least": [26, 32, 108, 155, 156, 251], "maximum": [26, 30, 32, 39, 40, 62, 71, 73, 75, 76, 79, 80, 82, 86, 90, 97, 98, 100, 101, 103, 106, 110, 113, 116, 117, 127, 129, 139, 155, 156, 192, 202, 205, 206, 208, 210, 211, 213, 216, 217, 218, 225, 226, 233, 237, 238, 239, 240, 241, 242, 243, 244, 245, 248, 252, 257, 260, 261, 262, 277, 278, 281], "two": [26, 40, 71, 73, 75, 79, 80, 82, 86, 97, 98, 100, 101, 103, 110, 113, 155, 156, 202, 205, 206, 208, 211, 213, 216, 217, 218, 223, 225, 226, 238, 239, 240, 241, 242, 243, 244, 245, 252, 256, 264, 276], "reappear": [26, 82, 86, 97, 98, 100, 101, 103, 155, 156, 216, 217, 218, 225, 226, 238, 239, 240, 241, 242, 243, 244, 245], "4": [26, 52, 58, 69, 82, 88, 89, 90, 93, 95, 97, 98, 100, 101, 106, 116, 117, 123, 127, 131, 155, 156, 183, 189, 190, 196, 201, 216, 217, 218, 223, 227, 231, 232, 233, 236, 240, 241, 242, 243, 244, 248, 260, 261, 262, 264, 266, 276, 277, 278, 280, 283], "7": [26, 155, 156, 190, 264, 276, 280], "5": [26, 32, 40, 64, 66, 69, 82, 86, 91, 97, 101, 116, 123, 133, 155, 156, 190, 196, 198, 200, 201, 216, 217, 218, 223, 225, 226, 241, 260, 268, 269, 276, 280, 285], "p": [26, 40, 43, 45, 46, 48, 50, 52, 56, 64, 69, 71, 73, 75, 76, 79, 80, 82, 84, 86, 88, 89, 90, 92, 93, 95, 97, 98, 100, 101, 103, 104, 110, 116, 117, 121, 123, 125, 127, 129, 131, 133, 155, 156, 158, 159, 162, 166, 174, 179, 181, 183, 188, 198, 201, 202, 205, 206, 210, 211, 213, 216, 217, 218, 220, 221, 225, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 252, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "likhitha": [26, 40, 43, 45, 46, 48, 50, 60, 69, 84, 88, 89, 90, 92, 93, 95, 97, 98, 100, 103, 104, 116, 117, 121, 123, 125, 127, 129, 131, 133, 155, 156, 158, 159, 162, 166, 174, 179, 181, 201, 220, 221, 227, 229, 230, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "creatingcoverageitem": [26, 155], "creat": [26, 28, 29, 32, 35, 37, 40, 49, 75, 79, 80, 82, 86, 119, 120, 155, 178, 190, 196, 207, 210, 213, 216, 217, 218, 223, 225, 255, 264, 265, 276, 280], "_databas": [26, 155], "coveragetiddata": [26, 155], "tid": [26, 32, 40, 52, 54, 56, 58, 60, 62, 82, 86, 91, 101, 104, 155, 183, 185, 188, 189, 190, 192, 196, 216, 225, 226, 246, 264, 265, 276, 280], "genpattern": [26, 155], "prefix": [26, 46, 49, 52, 54, 56, 58, 60, 62, 75, 79, 80, 82, 86, 88, 91, 97, 108, 113, 116, 155, 178, 181, 183, 185, 188, 189, 192, 207, 210, 213, 216, 225, 226, 231, 238, 241, 251, 258, 260], "tiddata": [26, 155], "gener": [26, 32, 40, 43, 45, 46, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 75, 78, 79, 80, 82, 86, 88, 91, 92, 97, 103, 104, 113, 116, 119, 127, 155, 159, 166, 178, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 208, 210, 216, 217, 218, 225, 226, 231, 234, 238, 241, 245, 246, 256, 257, 258, 260, 264, 276, 277, 280], "about": [26, 30, 39, 119, 155], "string": [26, 54, 60, 80, 82, 86, 106, 120, 155, 185, 213, 216, 225, 248, 264, 265], "generateallpattern": [26, 155], "coverageitem": [26, 155], "load": [26, 28, 29, 43, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "tidtobitset": [26, 155], "item_set": [26, 155], "convert": [26, 27, 30, 31, 32, 33, 52, 54, 56, 58, 60, 62, 64, 66, 69, 93, 95, 97, 101, 106, 113, 116, 117, 123, 125, 127, 135, 155, 183, 185, 188, 189, 192, 198, 200, 201, 227, 236, 239, 248, 257, 261, 262, 266, 267, 268, 269, 270, 271, 275, 277, 278], "bitset": [26, 45, 121, 155, 165], "gowtham": [26, 156], "sriniva": [26, 156], "trinath": [26, 156], "v": [26, 119, 120, 156], "r": [26, 45, 56, 62, 69, 71, 82, 84, 86, 88, 89, 90, 93, 97, 100, 101, 104, 108, 110, 127, 129, 156, 162, 188, 192, 201, 202, 216, 217, 218, 221, 225, 227, 231, 232, 233, 238, 240, 242, 244, 246, 251, 252, 277, 281], "2015": [26, 54, 97, 156, 185, 240], "journal": [26, 54, 86, 97, 156, 185, 225, 240], "intellig": [26, 49, 54, 79, 97, 116, 156, 176, 185, 211, 242, 260, 261], "system": [26, 49, 54, 56, 62, 86, 97, 116, 121, 123, 141, 156, 178, 185, 188, 192, 225, 240, 253, 260, 266], "45": [26, 156], "3": [26, 29, 33, 43, 45, 48, 49, 54, 56, 58, 62, 64, 69, 71, 73, 79, 82, 88, 89, 90, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 113, 116, 117, 121, 123, 125, 127, 131, 135, 156, 158, 163, 165, 174, 176, 177, 178, 188, 189, 190, 192, 196, 198, 201, 202, 205, 210, 216, 217, 218, 223, 227, 231, 232, 233, 234, 236, 239, 240, 242, 243, 244, 245, 246, 248, 256, 260, 261, 262, 264, 265, 266, 267, 271, 272, 275, 276, 277, 278, 280, 283], "423": [26, 156], "439": [26, 156], "http": [26, 43, 45, 46, 48, 50, 52, 54, 75, 76, 84, 86, 88, 89, 90, 92, 95, 97, 98, 100, 103, 104, 106, 108, 113, 116, 117, 121, 123, 125, 127, 131, 156, 159, 162, 163, 164, 165, 166, 174, 179, 181, 183, 185, 206, 208, 220, 221, 225, 231, 232, 233, 234, 236, 239, 240, 242, 243, 244, 245, 246, 248, 251, 256, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 283], "link": [26, 82, 86, 103, 123, 156, 216, 225, 245, 267, 271], "springer": [26, 103, 104, 116, 121, 123, 127, 156, 245, 246, 260, 261, 267, 268, 269, 271, 277, 278], "com": [26, 103, 123, 156, 245, 267, 271], "articl": [26, 88, 91, 156, 229, 230], "1007": [26, 71, 73, 75, 76, 79, 92, 97, 103, 104, 116, 117, 121, 123, 125, 127, 156, 202, 205, 206, 211, 234, 239, 245, 246, 261, 262, 267, 268, 269, 271, 275, 277, 278], "s10844": [26, 156], "014": [26, 156], "0318": [26, 156], "percentag": [26, 30, 32, 39, 40, 48, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 97, 98, 100, 101, 106, 108, 116, 117, 156, 174, 176, 177, 178, 183, 185, 189, 192, 198, 200, 201, 202, 205, 207, 210, 211, 238, 239, 240, 241, 242, 243, 244, 248, 251, 260, 261, 262], "period": [26, 30, 39, 56, 58, 60, 62, 64, 69, 82, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 116, 117, 127, 129, 135, 140, 156, 187, 188, 189, 190, 191, 192, 195, 196, 197, 198, 201, 214, 215, 216, 217, 218, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 260, 261, 262, 263, 264, 276, 277, 278, 279, 281], "generatelatexcod": [27, 58], "latexgraphfil": 27, "fuz": 27, "idf": [27, 28, 33], "plot": [27, 30, 33, 39, 41], "point": [27, 33, 190, 196, 276, 280], "plt": [27, 33], "path": [27, 30, 37, 39, 40, 64, 66, 69, 75, 76, 78, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 113, 116, 117, 119, 120, 123, 125, 127, 129, 131, 133, 135, 198, 200, 201, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 240, 241, 242, 243, 244, 245, 246, 248, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "rank": [27, 49, 50, 91, 101, 123, 178, 179, 270], "gettopkpattern": 27, "storetopkpattern": 27, "get": [27, 28, 29, 30, 32, 39, 40, 49, 64, 66, 69, 75, 76, 82, 101, 113, 178, 198, 200, 201, 216, 257, 258], "defin": [27, 28, 78, 80, 82, 86, 92, 139, 143, 216, 217, 218, 225, 226, 237, 263], "patternid": 27, "predictedclass2transact": 27, "predicted_class": 27, "minthreshold": 27, "8": [27, 43, 45, 56, 62, 97, 159, 166, 188, 190, 192, 242, 264], "dens": [27, 28], "un": 27, "getbinarytransact": 27, "inputdf": 28, "param": [28, 29, 30, 32, 33, 37, 39, 40, 43, 49, 75, 76, 80, 86, 91, 97, 101, 103, 110, 113, 119, 120, 123, 159, 176, 177, 178, 206, 207, 208, 213, 225, 226, 240, 245, 252, 256, 257, 258, 270, 271], "condit": [28, 45, 49, 75, 86, 91, 97, 101, 108, 119, 165, 178, 208, 225, 242, 251], "judg": 28, "thresholdvalu": 28, "db": [28, 29, 30, 31, 32, 35, 37, 39, 40], "iddf": 28, "16": [28, 29, 35, 113, 258], "convert2transactionaldatabas": 28, "outputfilenam": [28, 29, 32, 40], "convert2temporaldatabas": 28, "convert2multipletimeseri": 28, "multipl": [28, 29, 30, 60, 84, 119, 180, 214, 220, 221, 222, 264, 265], "timeseri": [28, 60, 214], "convert2utilitydatabas": 28, "util": [28, 30, 39, 40, 52, 71, 73, 75, 76, 79, 80, 110, 183, 190, 196, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 252, 253, 276], "getfilenam": [28, 32, 37, 40], "write": [28, 119, 120], "break": 28, "convert2uncertaintransact": 28, "createtransact": [28, 80, 213], "createtempor": 28, "createutil": 28, "csv": [28, 29, 32, 40, 43, 45, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 78, 79, 80, 82, 86, 88, 90, 91, 95, 97, 98, 100, 101, 113, 116, 123, 125, 127, 129, 131, 133, 135, 159, 164, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 225, 226, 229, 230, 233, 236, 238, 239, 240, 241, 242, 243, 244, 256, 258, 260, 261, 266, 267, 271, 272, 275, 277, 278, 281, 283, 285], "denseformatdfplu": 28, "thresholdconditiondf": 28, "denseformatdf_dump": 28, "sparseformatdfplu": 28, "beta": [29, 75, 76], "calculatemi": 29, "getmisdatafram": 29, "respect": [29, 45, 62, 82, 86, 97, 101, 108, 120, 127, 165, 192, 216, 225, 242, 251, 278], "rtype": [29, 30, 32, 39, 48, 49, 64, 73, 75, 76, 80, 86, 110, 113, 116, 123, 174, 176, 177, 178, 198, 205, 206, 207, 208, 213, 225, 226, 252, 257, 260, 271], "sd": 29, "getdatafram": [29, 35], "execut": [30, 39, 58, 80, 82, 86, 89, 91, 92, 100, 101, 103, 106, 189, 216, 217, 218, 232, 244, 245, 248], "readdatabas": [30, 39], "read": [30, 39, 75, 76, 119, 120], "getdatabases": [30, 39], "getminimumtransactionlength": [30, 39], "getaveragetransactionlength": [30, 39], "averag": [30, 32, 39, 40], "sum": [30, 32, 39, 40, 52, 54, 56, 58, 60, 62, 80, 183, 185, 188, 189, 190, 192, 213, 276], "divid": [30, 39], "getmaximumtransactionlength": [30, 39], "getstandarddeviationtransactionlength": [30, 39], "standard": [30, 39, 120], "deviat": [30, 39], "getsortedlistofitemfrequ": [30, 39], "sort": [30, 39, 54, 60, 71, 73, 75, 79, 80, 88, 90, 91, 93, 95, 97, 100, 101, 106, 110, 116, 117, 123, 125, 127, 135, 185, 202, 205, 206, 211, 213, 227, 229, 230, 233, 236, 239, 240, 242, 244, 248, 252, 261, 262, 266, 267, 268, 269, 270, 271, 275, 277, 278], "getsortedlistoftransactionlength": [30, 39], "getminimumutil": [30, 39], "getaverageutil": [30, 39], "getmaximumutil": [30, 39], "getsortedutilityvaluesofitem": [30, 39], "fuzzydatabasestat": 30, "printstat": [30, 39, 75, 208], "creatingitemset": [30, 39, 43, 64, 66, 69, 84, 88, 90, 91, 92, 93, 95, 97, 100, 101, 103, 104, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 159, 198, 200, 201, 220, 221, 227, 229, 230, 233, 234, 236, 239, 240, 244, 245, 246, 248, 251, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "getfrequenciesinrang": [30, 39], "max": [30, 39, 86, 225], "min": [30, 86, 225], "getnumberofitem": [30, 39], "kei": [30, 33, 39, 66, 71, 75, 91, 101, 110, 119, 200, 202, 206, 252], "getspars": [30, 39], "sparsiti": [30, 39], "gettotalnumberofitem": [30, 39], "gettotalutil": [30, 39], "gettransanctionallengthdistribut": [30, 39], "getvariancetransactionlength": [30, 39], "varianc": [30, 39], "plotgraph": [30, 39], "multipletimeseriesdatabasestat": 30, "fuzzi": [30, 31, 52, 54, 56, 58, 60, 62, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 214], "convertdataintomatrix": [30, 39], "matrix": [30, 80, 213], "form": [30, 45, 71, 86, 88, 108, 110, 165, 202, 226, 231, 251, 252, 280], "densiti": 30, "getdens": [30, 39], "disctribut": 30, "ndarrai": [30, 39], "like": [30, 39, 113, 257, 280], "avarag": [30, 39], "minimun": [30, 39], "so": [30, 32, 39, 40, 82, 216, 217, 218], "subsequ": [30, 39, 113, 142, 254, 257], "self": [30, 39, 49, 52, 71, 73, 75, 79, 80, 88, 91, 110, 119, 178, 183, 202, 205, 206, 211, 213, 229, 231, 252], "getminimumsequencelength": [30, 39], "getaveragesubsequencepersequencelength": [30, 39], "per": [30, 32, 39, 40, 91], "getaverageitempersubsequencelength": [30, 39], "getmaximumsequencelength": [30, 39], "getstandarddeviationsubsequencelength": [30, 39], "getvariancesequencelength": [30, 39], "getsequences": [30, 39], "getminimumsubsequencelength": [30, 39], "getaverageitempersequencelength": [30, 39], "getmaximumsubsequencelength": [30, 39], "getvariancesubsequencelength": [30, 39], "getsequenciallengthdistribut": [30, 39], "getsubsequenciallengthdistribut": [30, 39], "statu": [30, 39], "sampledb": [30, 39, 43, 45, 46, 48, 49, 50, 82, 84, 86, 88, 91, 92, 97, 103, 104, 108, 113, 116, 121, 123, 125, 127, 129, 131, 133, 135, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 216, 217, 218, 220, 221, 225, 226, 229, 230, 231, 234, 238, 239, 241, 245, 246, 251, 256, 257, 258, 260, 266, 267, 268, 269, 270, 272, 275, 277, 278, 281, 283, 285], "_ap": [30, 39], "shota": [30, 39, 113, 256, 257, 258], "suzuki": [30, 39, 113, 256, 257, 258], "getstandarddeviationsequencelength": [30, 39], "getminimumperiod": [30, 39], "getaverageperiod": [30, 39], "getmaximumperiod": [30, 39], "getstandarddeviationperiod": [30, 39], "getnumberoftransactionspertimestamp": [30, 39], "stamp": [30, 32, 39, 82, 86, 216, 217, 218, 225, 226], "getaverageinterarrivalperiod": [30, 39], "inter": [30, 39], "arriv": [30, 39], "getaverageperiodofitem": [30, 39], "getmaximuminterarrivalperiod": [30, 39], "getmaximumperiodofitem": [30, 39], "getminimuminterarrivalperiod": [30, 39], "getminimumperiodofitem": [30, 39], "getperiodsinrang": [30, 39], "And": [30, 39, 113, 257, 258], "uncertaintemporaldatabasestat": 30, "fuzfil": [31, 54, 58, 185, 189], "_convert": [31, 113, 257], "startconvert": 31, "spatiotemporaldatabasegener": 32, "xmin": 32, "xmax": 32, "ymin": 32, "ymax": 32, "maxtimestamp": 32, "numberofitem": [32, 40], "itemchancelow": 32, "itemchancehigh": 32, "timestampchancelow": 32, "timestampchancehigh": 32, "spatiotempor": [32, 56, 66, 69, 73, 79, 80, 129, 188, 200, 201, 205, 210, 211, 213, 281], "give": [32, 113, 258], "x": [32, 33, 75, 79, 91, 101, 119, 120, 121, 207, 210], "chanc": [32, 190], "highest": 32, "lowest": 32, "100": [32, 33, 40, 190, 196, 280], "9": [32, 276], "createpoint": 32, "accord": 32, "saveasfil": 32, "alreadyad": 32, "coinflip": 32, "true": [32, 91, 101, 119, 120], "fals": [32, 119, 120, 123, 125, 127, 135, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278], "outfilenam": [32, 40], "numoftransact": [32, 40], "avglenoftransact": [32, 40], "numitem": [32, 40], "50": [32, 40], "typeoffil": [32, 40], "frame": [32, 78, 80, 86, 92], "cointoss": [32, 40], "correspond": [32, 40, 73, 79, 80, 119, 190, 205, 211, 213, 280], "filenam": [32, 40, 90, 93, 95, 97, 100, 101, 106, 108, 116, 117, 123, 125, 127, 135, 227, 233, 236, 239, 240, 244, 248, 251, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 278], "createtemporalfil": [32, 40], "getdatabaseasdatafram": [32, 40], "performcoinflip": [32, 40], "perform": [32, 40, 46, 48, 49, 75, 76, 86, 88, 119, 174, 176, 177, 178, 181, 226, 231], "coin": [32, 40], "flip": [32, 40], "probabl": [32, 40, 79, 80, 123, 127, 144, 145, 146, 210, 213, 270, 273, 274, 276, 278, 279], "tune": [32, 40, 84, 123, 125, 127, 129, 131, 135, 220, 221, 266, 275, 277, 278, 281, 283], "arraylength": [32, 40], "15": 32, "avgtransactionlength": [32, 40], "6": [32, 54, 60, 89, 97, 98, 100, 117, 123, 185, 190, 223, 232, 240, 242, 243, 244, 262, 268], "temporal_ot": 32, "percent": 32, "75": 32, "frameorbas": 32, "you": [32, 113, 120, 257], "want": 32, "temporaldb": [32, 40], "bool": [32, 40, 80, 88, 213, 229], "otherwis": [32, 43, 45, 46, 49, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 106, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 158, 159, 162, 163, 166, 176, 177, 178, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 207, 210, 211, 227, 229, 230, 231, 232, 233, 236, 238, 239, 240, 241, 242, 243, 244, 248, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "arrai": [32, 40, 73, 75, 76, 79, 80, 205, 211, 213], "sumr": [32, 40], "equal": [32, 37, 40, 75, 206], "target": [32, 40, 120, 139, 143, 237, 263], "numlin": [32, 40], "avgitemsperlin": [32, 40], "line": [32, 33, 40, 80, 82, 86, 97, 108, 113, 190, 213, 216, 225, 226, 240, 251, 255, 258, 276, 280], "gettransact": [32, 40, 80, 91, 101, 213], "generatearrai": 32, "num": [32, 91], "avg": 32, "maxitem": [32, 80, 213], "random": [32, 40], "n": [32, 40, 49, 52, 86, 88, 89, 113, 116, 127, 176, 183, 225, 231, 232, 249, 250, 257, 261, 277], "whose": [32, 37, 73, 205], "m": [32, 60, 69, 71, 82, 93, 97, 110, 113, 116, 127, 129, 201, 202, 216, 217, 218, 227, 242, 252, 258, 261, 277, 281], "dataframeintofigur": 33, "figur": 33, "column": [33, 223, 264], "xcolumn": 33, "axi": 33, "ycolumn": 33, "fig": 33, "plotgraphsfromdatafram": 33, "end": [33, 45, 78, 80, 82, 97, 101, 164, 165, 216, 217, 218, 242], "titl": 33, "xlabel": 33, "ylabel": 33, "plotlinegraph": 33, "draw": 33, "idict": 33, "plotlinegraphfromdatafram": 33, "plotlinegraphfromdatfram": 33, "produc": [33, 121, 280], "miner": [33, 54, 56, 58, 62, 71, 75, 79, 185, 188, 189, 192, 202, 207, 211], "take": [33, 40, 119], "viz": 33, "markers": 33, "20": [33, 71, 73, 84, 97, 110, 196, 202, 205, 221, 238, 239, 252], "zoom": 33, "width": 33, "1500": 33, "height": 33, "1000": 33, "marker": 33, "screen": 33, "createdatabas": 35, "detected_object": 35, "appli": [35, 79, 116, 123, 211, 260, 272], "detected_obj": 35, "saveastemporaldb": 35, "saveastransactionaldb": 35, "saveasuncertaintemporaldb": 35, "saveasuncertaintransactionaldb": 35, "saveasutilitytemporaldb": 35, "saveasutilitytransactionaldb": 35, "url": [36, 45, 46, 50, 97, 162, 163, 164, 165, 166, 179, 181, 238, 239], "usernam": 36, "password": 36, "toaddress": 36, "subject": 36, "bodi": 36, "createneighborhoodfileusingeuclideandist": 37, "maxeuclediandist": 37, "neighbourhood": [37, 52, 64, 66, 69, 78, 79, 80, 129, 183, 198, 200, 201, 210, 213, 214, 280, 281], "euclid": 37, "distanc": [37, 73, 79, 205, 211], "pf": 37, "maxeuclideandist": 37, "pair": [37, 71, 75, 110, 119, 120, 202, 206, 252], "euclidean": 37, "than": [37, 73, 75, 79, 80, 116, 205, 206, 211, 213, 260, 261, 264], "maxeuclediandistac": 37, "plotedgedistribut": 39, "plotnodedistribut": 39, "printgraphdatabasestatist": 39, "printindividualgraphstat": 39, "transanct": 39, "e": [40, 71, 73, 75, 79, 80, 110, 190, 202, 205, 206, 211, 213, 252, 255, 264, 265, 276, 280], "g": [40, 48, 60, 119, 120, 174, 264], "wai": 40, "text": [40, 119], "randomli": 40, "databases": 40, "avgitemspertransact": 40, "collect": [40, 75, 76, 223, 255, 264], "onli": [40, 71, 73, 75, 79, 80, 110, 113, 140, 147, 149, 202, 205, 206, 211, 213, 247, 252, 258, 282, 286], "ignor": [40, 264, 265], "metadata": 40, "creategeoreferentialtemporaldatabas": 40, "avgtransact": 40, "synthet": 40, "referenti": [40, 196], "totaltransact": 40, "No": [40, 88, 91, 229, 230], "noofitem": 40, "creategeoreferentialtransactiondatabas": 40, "creategeoreferentialtransactionaldatabas": 40, "creategeoreferentialuncertaintransactiondatabas": 40, "creategeoreferentialuncertaintransactionaldatabas": 40, "createtemporalldatabas": 40, "createtemporaldatabas": 40, "createtransactionaldatabas": 40, "createuncertaintemporaldatabas": 40, "createuncertaintransactionaldatabas": 40, "maxutilrang": 40, "createutilitydatabas": 40, "transactions": 40, "numofitem": 40, "minutilityvalu": 40, "maxutilityvalu": 40, "minnumoftimesanitem": 40, "maxnumoftimesanitem": 40, "__init__": 40, "constructor": [40, 120], "initi": [40, 73, 79, 80, 205, 211, 213], "createsyntheticutilitydatabas": 40, "createrandomnumb": 40, "targetsum": 40, "credit": [40, 103, 245], "hemanth": 40, "sree": 40, "normal": 40, "multipli": 40, "total_transact": 40, "num_of_item": 40, "avg_transaction_length": 40, "create_temporal_databas": 40, "output_fil": 40, "generate_random_numb": 40, "target_sum": 40, "utilitydatagener": 40, "averagelengthoftransact": 40, "minimuminternalutilityvalu": 40, "maximuminternalutilityvalu": 40, "minimumexternalutilityvalu": 40, "maximumexternalutilityvalu": 40, "generateandprintitempair": 40, "generateexternalutilitydata": 40, "getexternalutilitydata": 40, "getinternalutilitydata": 40, "getutilitydata": 40, "saveitemsinternalutilityvalu": 40, "saveitemsexternalutilityvalu": 40, "itemsup": [43, 116, 121, 158, 159, 260], "minlength": [43, 121, 158, 159], "faulttoler": [43, 121, 158, 159], "_faulttolerantfrequentpattern": [43, 121, 158, 159], "ft": [43, 158], "fault": [43, 121, 158, 159, 160, 214, 265], "toler": [43, 121, 158, 159, 160, 214, 265], "properti": [43, 45, 46, 49, 90, 97, 113, 121, 131, 133, 148, 158, 159, 162, 166, 176, 177, 178, 181, 233, 238, 241, 256, 257, 258, 283, 284, 285], "downward": [43, 45, 49, 113, 121, 131, 133, 148, 158, 159, 162, 166, 176, 177, 178, 256, 257, 258, 283, 284, 285], "closur": [43, 45, 49, 113, 121, 131, 133, 148, 158, 159, 162, 166, 176, 177, 178, 256, 257, 258, 283, 284, 285], "reduc": [43, 45, 49, 54, 56, 58, 62, 84, 113, 121, 131, 133, 158, 159, 162, 166, 176, 177, 178, 185, 188, 189, 192, 221, 256, 257, 258, 283, 285], "pei": [43, 45, 54, 113, 135, 158, 159, 166, 185, 258], "jian": [43, 158], "tung": [43, 158], "anthoni": [43, 158], "jiawei": [43, 158], "2001": [43, 113, 158, 256], "problem": [43, 54, 56, 58, 62, 158, 185, 188, 189, 192], "challeng": [43, 54, 56, 58, 62, 137, 146, 158, 185, 188, 189, 192, 228, 279], "falut": [43, 158, 159], "here": [43, 45, 46, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 100, 101, 103, 104, 106, 108, 110, 113, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 150, 151, 158, 159, 162, 163, 164, 165, 176, 177, 178, 179, 181, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "csvfile": [43, 45, 46, 48, 49, 50, 158, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181], "compress": [43, 45, 49, 131, 133, 159, 166, 178, 283, 285], "decreas": [43, 45, 49, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 123, 125, 127, 131, 133, 135, 159, 166, 178, 227, 229, 230, 233, 236, 239, 240, 244, 248, 261, 262, 266, 267, 268, 269, 270, 271, 275, 277, 278, 283, 285], "extract": [43, 45, 46, 49, 84, 86, 88, 90, 91, 93, 95, 97, 100, 101, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 159, 164, 166, 178, 181, 220, 221, 226, 227, 229, 230, 231, 233, 236, 239, 240, 244, 248, 251, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "yin": [43, 45, 159, 166], "et": [43, 45, 49, 62, 75, 76, 79, 80, 98, 116, 117, 159, 166, 178, 192, 206, 210, 213, 243, 261, 262], "al": [43, 45, 49, 62, 75, 76, 79, 80, 98, 116, 117, 159, 166, 178, 192, 206, 210, 213, 243, 261, 262], "without": [43, 45, 103, 113, 120, 121, 159, 166, 245, 256, 258], "candid": [43, 45, 71, 73, 75, 79, 80, 110, 113, 120, 159, 166, 202, 205, 206, 207, 208, 210, 211, 213, 252, 256, 257, 258], "knowledg": [43, 45, 75, 113, 123, 133, 159, 164, 166, 208, 257, 267, 271, 276, 285], "53": [43, 45, 79, 159, 166, 211], "87": [43, 45, 159, 166], "2004": [43, 45, 84, 113, 159, 166, 220, 258], "1023": [43, 45, 113, 159, 166, 256], "scan": [43, 45, 73, 79, 80, 84, 86, 88, 90, 91, 92, 93, 95, 97, 100, 101, 103, 104, 106, 108, 116, 117, 123, 125, 127, 129, 131, 133, 135, 159, 165, 205, 211, 213, 220, 221, 226, 227, 229, 230, 231, 233, 234, 236, 238, 239, 240, 241, 242, 244, 245, 246, 248, 251, 260, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278, 281, 283, 285], "frequentoneitem": [43, 64, 66, 69, 84, 92, 103, 104, 108, 123, 125, 129, 131, 133, 135, 159, 198, 200, 201, 220, 221, 234, 245, 246, 251, 266, 267, 268, 269, 270, 271, 272, 275, 281, 283, 285], "getpatternindatafram": [43, 45, 49, 50, 84, 86, 92, 103, 104, 113, 121, 133, 159, 162, 163, 164, 165, 166, 176, 177, 178, 179, 220, 221, 226, 234, 245, 246, 256, 257, 258, 285], "_frequentpattern": [45, 46, 48, 49, 50, 84, 108, 123, 125, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 220, 221, 251, 266, 267, 268, 269, 270, 271, 272, 275], "breadth": [45, 82, 113, 162, 217, 256, 257], "agraw": [45, 162], "imi": [45, 162], "nski": [45, 162], "swami": [45, 162], "rule": [45, 52, 66, 84, 162, 183, 190, 196, 200, 220, 223, 255, 264, 265, 276, 280], "sigmod": [45, 162], "207": [45, 162], "216": [45, 162], "1993": [45, 162], "170035": [45, 162], "170072": [45, 162], "pami1": [45, 162], "also": [45, 46, 97, 121, 123, 125, 127, 129, 131, 133, 135, 147, 148, 149, 162, 163, 164, 165, 166, 181, 238, 239, 265, 266, 267, 268, 269, 270, 272, 275, 277, 278, 281, 282, 283, 284, 285, 286], "sreepada": [45, 46, 50, 75, 97, 162, 163, 164, 165, 166, 179, 181, 238, 239], "moham": [45, 46, 113, 163, 165, 181, 256], "jave": [45, 163, 165], "zaki": [45, 46, 113, 163, 165, 181, 256], "scalabl": [45, 66, 163, 165, 200], "ieee": [45, 50, 56, 62, 69, 79, 80, 90, 97, 98, 100, 110, 113, 123, 163, 165, 179, 188, 192, 201, 210, 213, 233, 242, 243, 244, 252, 258, 270], "tran": [45, 49, 75, 113, 163, 165, 178, 206, 258], "knowl": [45, 75, 76, 113, 163, 165, 206, 258], "eng": [45, 113, 163, 165, 258], "12": [45, 163, 165], "372": [45, 163, 165], "390": [45, 163, 165], "2000": [45, 163, 165], "ieeexplor": [45, 50, 90, 98, 100, 163, 165, 179, 233, 243, 244], "document": [45, 50, 90, 98, 100, 163, 165, 179, 233, 243, 244], "846291": [45, 163, 165], "kundai": [45, 58, 163, 164], "diffset": [45, 164], "kdd": [45, 75, 164, 208], "03": [45, 164], "proceed": [45, 46, 75, 88, 91, 113, 123, 131, 164, 181, 208, 229, 230, 257, 270, 272, 283], "ninth": [45, 164], "sigkdd": [45, 75, 113, 164, 208, 257], "intern": [45, 49, 56, 62, 69, 75, 79, 80, 88, 91, 93, 98, 103, 110, 113, 116, 123, 129, 131, 133, 164, 176, 188, 192, 201, 208, 210, 213, 227, 229, 230, 243, 245, 252, 257, 260, 270, 280, 281, 283, 285], "confer": [45, 49, 56, 62, 69, 75, 79, 80, 88, 91, 93, 98, 103, 110, 113, 123, 129, 131, 133, 164, 176, 178, 188, 192, 201, 208, 210, 213, 227, 229, 230, 243, 245, 252, 257, 267, 270, 271, 281, 283, 285], "august": [45, 164], "page": [45, 86, 88, 91, 123, 164, 214, 225, 229, 230, 266, 272], "326": [45, 164], "335": [45, 164], "956750": [45, 164], "956788": [45, 164], "yudai": [45, 49, 165, 176, 177, 178], "masu": [45, 49, 165, 176, 177, 178], "implement": [45, 49, 86, 88, 97, 116, 165, 176, 226, 231, 238, 241, 260], "we": [45, 54, 56, 58, 62, 165, 185, 188, 189, 192, 249, 250, 265, 276], "check": [45, 46, 71, 73, 75, 79, 80, 90, 91, 97, 108, 110, 119, 165, 181, 202, 205, 206, 211, 213, 233, 238, 240, 241, 251, 252], "superset": [46, 73, 181, 205], "same": [46, 49, 52, 54, 56, 58, 60, 62, 113, 178, 181, 183, 185, 188, 189, 192, 196, 256, 257, 258, 264], "origin": [46, 80, 120, 123, 125, 127, 135, 181, 213, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278], "ching": [46, 181], "jui": [46, 181], "hsiao": [46, 181], "2002": [46, 113, 181, 257], "siam": [46, 131, 181, 283], "sdm": [46, 181], "457": [46, 181], "473": [46, 181], "1137": [46, 131, 181, 283], "9781611972726": [46, 181], "27": [46, 181], "tidlist": [46, 66, 82, 86, 88, 92, 97, 103, 104, 116, 181, 200, 216, 225, 226, 231, 234, 238, 241, 245, 246, 260], "hash": [46, 97, 181, 238, 241], "equival": [46, 64, 66, 86, 88, 97, 116, 123, 181, 198, 200, 226, 231, 238, 241, 260, 272], "maxfp": [48, 174], "grahn": [48, 174], "zhu": [48, 174], "enc": [48, 174], "concordia": [48, 174], "ca": [48, 174], "paper": [48, 106, 174, 248], "hpdm03": [48, 174], "pdf": [48, 52, 88, 89, 95, 106, 108, 131, 174, 183, 231, 232, 236, 248, 251, 283], "maxper": [48, 52, 54, 56, 58, 60, 62, 64, 66, 75, 79, 82, 86, 93, 95, 97, 98, 100, 101, 103, 106, 108, 116, 117, 127, 129, 131, 139, 174, 183, 185, 188, 189, 192, 198, 200, 207, 210, 211, 216, 217, 218, 225, 226, 227, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 248, 251, 260, 261, 262, 277, 278, 281, 283], "functon": [48, 174], "numwork": [49, 91, 101, 176, 177, 178], "li": [49, 54, 176, 178, 185, 276], "l": [49, 121, 176], "zeng": [49, 176], "q": [49, 113, 176, 258], "he": [49, 176], "z": [49, 75, 79, 176, 207, 210], "shi": [49, 176], "mapreduc": [49, 176], "2012": [49, 123, 176, 266], "13th": [49, 176], "aci": [49, 176], "softwar": [49, 86, 97, 176, 225, 240], "engin": [49, 116, 176, 260], "artifici": [49, 116, 176, 261], "comput": [49, 75, 97, 104, 116, 121, 123, 127, 176, 208, 242, 246, 261, 270, 277, 278], "kyoto": [49, 176], "japan": [49, 176], "236": [49, 176], "241": [49, 176], "1109": [49, 50, 56, 62, 69, 79, 80, 93, 97, 110, 123, 129, 133, 176, 179, 188, 192, 201, 210, 213, 227, 242, 252, 270, 281, 285], "snpd": [49, 176], "31": [49, 113, 176, 256], "numpartit": [49, 91, 176, 177, 178], "partit": [49, 91, 101, 176, 177, 178], "On": [49, 176, 177, 178], "worker": [49, 101, 176, 177, 178], "executor": [49, 176, 177, 178], "unit": [49, 176, 177, 178], "children": [49, 82, 86, 91, 97, 101, 178, 216, 225, 242], "null": [49, 88, 90, 91, 93, 95, 97, 100, 101, 106, 110, 116, 117, 123, 125, 127, 135, 178, 227, 229, 230, 233, 236, 239, 240, 242, 244, 248, 252, 261, 262, 266, 267, 268, 269, 270, 271, 275, 277, 278], "nodelink": [49, 82, 86, 178, 216, 225], "addtransact": [49, 82, 86, 178, 216, 225], "addnodetonodelink": [49, 178], "add": [49, 80, 82, 86, 91, 101, 113, 119, 120, 178, 213, 216, 225, 258], "generateconditionaltre": [49, 178], "haoyuan": [49, 178], "pfp": [49, 178], "queri": [49, 178], "recommend": [49, 106, 141, 178, 248, 253], "2008": [49, 178], "static": [49, 139, 178, 237], "buildtre": [49, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 123, 125, 127, 135, 178, 227, 229, 230, 233, 236, 239, 240, 242, 244, 248, 261, 262, 266, 267, 268, 269, 270, 271, 275, 277, 278], "genallfrequentpattern": [49, 178], "tree_tupl": [49, 178], "id": [49, 52, 75, 76, 101, 119, 120, 178, 183], "gencondtransact": [49, 91, 101, 178], "genfreqpattern": [49, 178], "new": [49, 71, 73, 75, 79, 80, 84, 88, 89, 95, 106, 110, 119, 123, 178, 202, 205, 206, 208, 211, 213, 220, 231, 232, 236, 248, 252, 266], "getpartitionid": [49, 91, 101, 178], "zhi": [50, 179], "hong": [50, 54, 135, 179, 185], "deng": [50, 179], "guo": [50, 179], "dong": [50, 179], "fang": [50, 179], "icmlc": [50, 179], "2007": [50, 52, 179, 183], "4370261": [50, 179], "xplore": [50, 179], "topkfrequentpattern": [50, 179], "element": [52, 54, 56, 58, 60, 62, 66, 75, 79, 80, 119, 141, 183, 185, 188, 189, 192, 200, 207, 210, 213, 253, 276], "iutil": [52, 183], "rutil": [52, 183], "keep": [52, 54, 56, 58, 60, 62, 71, 73, 75, 79, 80, 110, 183, 185, 188, 189, 192, 202, 205, 206, 207, 210, 211, 213, 252], "tact": [52, 183], "rest": [52, 183], "_corelatedfuzzyfrequentpattern": [52, 183], "lin": [52, 54, 75, 76, 116, 123, 135, 183, 185, 206, 260, 266], "chueh": [52, 183], "h": [52, 60, 113, 116, 183, 258, 261], "citeseerx": [52, 183], "ist": [52, 183], "psu": [52, 183], "edu": [52, 183], "viewdoc": [52, 183], "download": [52, 183], "416": [52, 183], "6053": [52, 183], "rep": [52, 183], "rep1": [52, 183], "starttimetim": [52, 183], "itemscnt": [52, 54, 56, 58, 60, 62, 183, 185, 188, 189, 192], "mapitemslowsum": [52, 54, 56, 62, 183, 192], "map": [52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 76, 79, 80, 110, 113, 119, 183, 185, 188, 189, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 252, 257], "track": [52, 54, 56, 58, 60, 62, 75, 79, 183, 185, 188, 189, 192, 207, 210], "low": [52, 54, 56, 62, 80, 183, 190, 192, 213], "region": [52, 54, 56, 58, 60, 62, 183, 188, 192], "mapitemsmidsum": [52, 54, 56, 60, 62, 183, 192], "middl": [52, 54, 56, 62, 183, 192], "mapitemshighsum": [52, 54, 56, 62, 183, 192], "mapitemsum": [52, 54, 56, 58, 60, 62, 183, 185, 188, 189, 192], "mapitemregion": [52, 54, 56, 58, 60, 62, 183, 188, 192], "jointcnt": [52, 54, 62, 183, 192], "ffi": [52, 54, 56, 58, 60, 62, 183, 185, 188, 189, 192], "construct": [52, 54, 56, 58, 60, 62, 75, 79, 88, 91, 97, 119, 120, 123, 125, 127, 135, 183, 185, 188, 189, 192, 207, 208, 210, 223, 229, 230, 240, 264, 265, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278], "buffers": [52, 54, 56, 58, 60, 62, 183, 185, 188, 189, 192], "buffer": [52, 54, 56, 58, 60, 62, 183, 185, 188, 189, 192], "itembuff": [52, 54, 62, 183, 192], "starttimemin": [52, 183], "getratio": [52, 183], "prefixlen": [52, 54, 56, 58, 60, 62, 75, 79, 183, 185, 188, 189, 192, 207, 210], "ration": [52, 183], "fsfimin": [52, 54, 56, 58, 62, 183, 185, 188, 189, 192], "fsfim": [52, 54, 56, 58, 60, 62, 183, 185, 188, 189, 192], "px": [52, 54, 56, 58, 60, 62, 183, 185, 188, 189, 192], "findelementwithtid": [52, 54, 56, 58, 60, 62, 183, 185, 188, 189, 192], "ulist": [52, 54, 56, 58, 60, 62, 75, 79, 183, 185, 188, 189, 192, 207, 210], "writeout": [52, 54, 56, 58, 60, 62, 183, 185, 188, 189, 192], "sumiutil": [52, 54, 56, 58, 60, 62, 183, 185, 188, 189, 192], "patten": [52, 54, 56, 58, 60, 62, 82, 183, 185, 188, 189, 192, 216, 217, 218], "correlatedfuzzyfrequentpattern": [52, 183], "_fuzzyfrequentpattenr": [54, 185], "desir": [54, 56, 58, 62, 185, 188, 189, 192], "trivial": [54, 56, 58, 62, 185, 188, 189, 192], "huge": [54, 56, 58, 62, 185, 188, 189, 192], "prune": [54, 56, 58, 62, 185, 188, 189, 192], "chun": [54, 123, 135, 185, 266], "wei": [54, 75, 101, 123, 135, 185, 208, 266], "ting": [54, 185], "fournier": [54, 66, 71, 75, 76, 82, 89, 93, 110, 116, 117, 127, 135, 185, 200, 202, 206, 216, 217, 218, 227, 232, 252, 260, 261, 262, 278], "viger": [54, 66, 71, 75, 76, 82, 93, 110, 116, 117, 127, 135, 185, 200, 202, 206, 216, 217, 218, 227, 252, 260, 261, 262, 278], "philipp": [54, 66, 89, 103, 127, 135, 185, 200, 232, 245, 278], "tzung": [54, 123, 135, 185, 266], "fast": [54, 75, 76, 123, 185, 206, 270], "29": [54, 185], "2373": [54, 185], "2379": [54, 185], "3233": [54, 185], "IFS": [54, 185], "151936": [54, 185], "researchg": [54, 185], "net": [54, 185], "286510908_a_fast_algorithm_for_mining_fuzzy_frequent_itemset": [54, 185], "fmfile": [54, 185], "joinscnt": [54, 56, 58, 60, 62, 185, 188, 189], "compareitem": [54, 60, 185], "o1": [54, 60, 185], "o2": [54, 60, 185], "ascend": [54, 60, 185], "ffiminermin": 54, "fuzzymembership": 54, "nfile": [56, 58, 64, 66, 69, 71, 73, 78, 79, 80, 125, 129, 188, 189, 198, 200, 201, 202, 205, 210, 211, 213, 275, 281], "_fuzzyspatialfrequentpattern": [56, 58, 188, 189], "veena": [56, 79, 125, 127, 188, 211, 275, 278], "chithra": [56, 188], "u": [56, 62, 71, 80, 82, 88, 89, 95, 97, 104, 106, 110, 113, 116, 131, 188, 192, 202, 213, 216, 217, 218, 231, 232, 236, 242, 246, 248, 252, 258, 260, 283], "agarw": [56, 188], "zettsu": [56, 66, 69, 79, 90, 93, 97, 100, 101, 125, 127, 129, 188, 200, 201, 211, 227, 233, 238, 244, 275, 277, 278, 281], "quantit": [56, 60, 62, 79, 80, 188, 192, 210, 213, 280], "2021": [56, 79, 80, 97, 110, 127, 188, 210, 213, 238, 252, 277], "fuzz": [56, 62, 188, 192], "fuzz45933": [56, 188], "9494594": [56, 188], "neighbor": [56, 58, 75, 79, 119, 147, 188, 189, 207, 210, 282], "intersect": [56, 58, 73, 79, 80, 188, 189, 205, 211, 213], "neighbourx": [56, 58, 188, 189], "neighbouri": [56, 58, 188, 189], "common": [56, 58, 64, 66, 69, 73, 79, 80, 188, 189, 198, 200, 201, 205, 211, 213, 264], "samplen": [56, 58, 64, 66, 69, 73, 75, 79, 80, 188, 189, 198, 200, 201, 205, 208, 210, 211, 213], "fuzzyspatialfrequentpattern": [56, 188], "block": [56, 86, 88, 92, 101, 103, 116, 225, 226, 231, 234, 245, 260], "consol": 56, "kwangwari": 58, "generategraph": 58, "_fuzzypartialperiodicpattern": 60, "irregulat": 60, "mapitemsgsum": 60, "mapitemshsum": 60, "f3pmine": 60, "palla": [60, 92, 125, 127, 234, 275, 278], "_fuzzyperiodicfrequentpattern": [62, 192], "2020": [62, 66, 82, 90, 98, 100, 101, 123, 192, 200, 216, 217, 218, 233, 243, 244, 268, 269], "glasgow": [62, 192], "uk": [62, 192], "fuzz48607": [62, 192], "9177579": [62, 192], "maxtid": [62, 192], "lasttid": [62, 192], "last": [62, 80, 82, 86, 119, 192, 213, 216, 217, 218, 225, 226], "itemstoregion": [62, 192], "il": 62, "_georeferencedperiodicfrequentpattern": [64, 198], "extens": [64, 66, 119, 198, 200, 249, 250], "\u00e9clat": [64, 198], "stand": [64, 66, 198, 200], "cluster": [64, 66, 198, 200], "bottom": [64, 66, 198, 200], "up": [64, 66, 75, 198, 200, 208], "lattic": [64, 66, 198, 200], "travers": [64, 66, 119, 198, 200], "referenc": [64, 66, 69, 71, 73, 125, 186, 187, 190, 193, 194, 195, 197, 198, 200, 201, 202, 205, 214, 255, 274, 275, 276, 280], "avail": [64, 66, 69, 113, 198, 200, 201, 257], "ifilenam": [64, 66, 69, 198, 200, 201], "getneighbouritem": [64, 66, 69, 198, 200, 201], "keyset": [64, 66, 69, 198, 200, 201], "mapneighbour": [64, 66, 69, 198, 200, 201], "neighbourfil": [64, 66, 69, 198, 200, 201], "georeferencedperidicfrequentpattern": [64, 198], "ravikumar": [64, 79, 88, 97, 104, 198, 211, 231, 238, 246], "_spatialfrequentpattern": [66, 200], "popular": [66, 200], "version": [66, 97, 200, 240], "koji": [66, 79, 90, 97, 100, 101, 125, 127, 200, 211, 233, 238, 244, 275, 278], "toyoda": [66, 69, 71, 86, 90, 100, 101, 106, 110, 127, 129, 200, 201, 202, 225, 233, 244, 248, 252, 278, 281], "masashi": [66, 86, 88, 89, 90, 100, 101, 106, 127, 200, 225, 231, 232, 233, 244, 248, 278], "kitsuregawa": [66, 69, 71, 86, 89, 90, 93, 100, 101, 106, 108, 129, 200, 201, 202, 225, 227, 232, 233, 244, 248, 251, 281], "masaru": [66, 86, 88, 89, 90, 100, 101, 106, 108, 200, 225, 231, 232, 233, 244, 248, 251], "veri": [66, 79, 80, 90, 97, 98, 100, 104, 110, 200, 210, 213, 233, 240, 243, 244, 246, 252], "dictkeystoint": [66, 200], "ilist": [66, 200], "eclatgener": [66, 92, 103, 104, 200, 234, 245, 246], "clist": [66, 200], "generatespatialfrequentpattern": [66, 200], "spatialfrequentpattern": [66, 200], "minp": [69, 88, 91, 92, 106, 108, 201, 229, 230, 231, 248, 251], "maxiat": [69, 201], "_partialperiodicspatialpattern": [69, 201], "georeferenec": [69, 201], "c": [69, 88, 93, 106, 113, 116, 119, 120, 121, 129, 201, 223, 227, 231, 248, 255, 257, 260, 264, 265, 281], "saideep": [69, 93, 101, 106, 201, 227, 248], "2019": [69, 71, 93, 116, 129, 201, 202, 227, 260, 281], "big": [69, 79, 80, 92, 98, 101, 104, 110, 116, 201, 210, 213, 234, 243, 246, 252, 261], "233": [69, 201], "238": [69, 201], "bigdata47090": [69, 201], "9005693": [69, 201], "partialperiodicspatialpattern": [69, 201], "minutil": [71, 73, 75, 76, 78, 79, 80, 110, 202, 205, 206, 207, 208, 210, 211, 213, 252], "_utilitypattern": [71, 73, 75, 76, 79, 110, 202, 205, 206, 207, 208, 210, 211, 252], "help": [71, 110, 202, 252], "hufi": [71, 202], "cutoff": [71, 202], "suffix": [71, 86, 202, 226], "pakdd": [71, 89, 97, 123, 125, 202, 232, 239, 267, 271, 275], "978": [71, 73, 92, 97, 103, 104, 116, 123, 125, 127, 202, 205, 234, 239, 245, 246, 261, 267, 271, 275, 277, 278], "030": [71, 73, 127, 202, 205, 277], "16145": [71, 202], "3_15": [71, 202], "candidatecount": [71, 73, 75, 79, 80, 110, 202, 205, 206, 208, 211, 213, 252], "maxmemori": [71, 73, 75, 76, 79, 80, 110, 202, 205, 206, 208, 211, 213, 252], "highutilityfrequentitemset": [71, 202], "utilitybinarraylu": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "hold": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "local": [71, 73, 75, 79, 80, 82, 110, 202, 205, 206, 211, 213, 214, 215, 216, 217, 218, 252, 264], "utilitybinarraysu": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "subtre": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "oldnamestonewnam": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "old": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "newnamestooldnam": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "singleitemsetssupport": [71, 202], "singleitemsetsutil": [71, 202], "patterncount": [71, 73, 75, 79, 110, 202, 205, 206, 211, 252], "rhui": [71, 110, 202, 252], "itemstokeep": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "promis": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "i": [71, 110, 113, 119, 120, 123, 190, 202, 252, 257, 264, 270, 276, 280], "extend": [71, 73, 75, 79, 80, 110, 119, 202, 205, 206, 211, 213, 252], "itemstoexplor": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "need": [71, 110, 119, 202, 252, 255], "backtrackinghufim": [71, 202], "transactionsofp": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "prefixlength": [71, 73, 75, 79, 80, 108, 110, 202, 205, 206, 211, 213, 251, 252], "useutilitybinarraystocalculateupperbound": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "transactionsp": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "sub": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "tempposit": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "rel": [71, 108, 110, 148, 202, 214, 250, 251, 252, 253, 264, 265, 280, 284], "what": [71, 73, 75, 79, 80, 110, 113, 202, 205, 206, 211, 213, 252, 257, 258], "chose": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "isequ": [71, 73, 202, 205], "transaction1": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "transaction2": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "ident": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "useutilitybinarraytocalculatesubtreeutilityfirsttim": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "sortdatabas": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "sorttransact": [71, 73, 202, 205], "trans1": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "trans2": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "useutilitybinarraytocalculatelocalutilityfirsttim": [71, 73, 75, 79, 80, 110, 202, 205, 206, 211, 213, 252], "35": [71, 73, 75, 79, 80, 110, 202, 205, 206, 207, 208, 210, 211, 213, 252], "pradeep": [71, 73, 75, 79, 80, 110, 202, 205, 206, 208, 211, 213, 252], "pallikila": [71, 73, 75, 79, 80, 110, 202, 205, 206, 208, 210, 211, 213, 252], "satisfi": [73, 79, 86, 101, 139, 148, 205, 211, 225, 237, 284], "37188": [73, 205], "3_17": [73, 205], "highutilityfrequentspatialitemset": [73, 205], "pmu": [73, 79, 80, 205, 210, 211, 213], "shufi": [73, 205], "ie": [73, 75, 79, 80, 205, 206, 211, 213], "subtreeutil": [73, 75, 79, 80, 205, 206, 211, 213], "grater": [73, 79, 80, 205, 211, 213], "calculateneighbourintersect": [73, 79, 80, 205, 211, 213], "backtrackingefim": [73, 75, 79, 80, 205, 206, 211, 213], "shui": [73, 79, 205, 211], "neighbourhoodlist": [73, 79, 80, 205, 211, 213], "av": [73, 79, 80, 205, 211, 213], "lst1": [73, 79, 80, 205, 211, 213], "lst2": [73, 79, 80, 205, 211, 213], "bin": [73, 79, 80, 205, 211, 213], "fastest": [75, 76, 123, 206, 270], "zida": [75, 76, 206], "cw": [75, 76, 206], "inf": [75, 76, 119, 120, 206], "syst": [75, 76, 84, 206, 220], "51": [75, 76, 206], "595": [75, 76, 206], "625": [75, 76, 206], "2017": [75, 76, 86, 88, 91, 133, 206, 225, 229, 230, 285], "s10115": [75, 76, 206], "016": [75, 76, 206], "0986": [75, 76, 206], "highutilityitemset": [75, 79, 206, 211], "hui": [75, 79, 206, 207, 210], "greater": [75, 116, 206, 260, 261], "is_equ": [75, 80, 110, 206, 213, 252], "sort_transact": [75, 79, 80, 110, 206, 211, 213, 252], "_pd": [75, 206], "_transact": [75, 110, 206, 252], "ifile1": [75, 207], "hmier": [75, 207], "mapfmap": [75, 79, 207, 210], "euc": [75, 79, 207, 210], "fhm": [75, 79, 207, 210], "genet": [75, 161, 207], "huicnt": [75, 79, 207, 210], "nighbou": [75, 207], "explore_searchtre": [75, 79, 207, 210], "updateclos": [75, 79, 207, 210], "cul": [75, 79, 207, 210], "st": [75, 79, 207, 210], "excul": [75, 79, 207, 210], "newt": [75, 79, 207, 210], "ex": [75, 79, 207, 210], "ey_t": [75, 207], "updat": [75, 79, 88, 90, 91, 93, 95, 97, 100, 101, 106, 113, 116, 117, 119, 123, 125, 127, 135, 207, 210, 227, 229, 230, 233, 236, 239, 240, 242, 244, 248, 256, 257, 261, 262, 266, 267, 268, 269, 270, 271, 275, 277, 278], "saveitemset": [75, 79, 108, 207, 210, 251], "updateel": [75, 79, 207, 210], "duppo": [75, 207], "vale": [75, 79, 207, 210], "duplic": [75, 79, 207, 210], "construccul": [75, 207], "exnighbor": [75, 207], "phase": [75, 208], "vincent": [75, 208], "tseng": [75, 208], "cheng": [75, 101, 208], "wu": [75, 101, 208], "bai": [75, 123, 208, 268, 269], "en": [75, 208], "shie": [75, 208], "philip": [75, 208], "yu": [75, 208], "2010": [75, 208], "16th": [75, 208], "machineri": [75, 208], "york": [75, 208], "ny": [75, 208], "usa": [75, 79, 80, 110, 123, 208, 210, 213, 252, 270], "253": [75, 208], "262": [75, 110, 208, 252], "1835804": [75, 208], "1835839": [75, 208], "numberofnod": [75, 208], "parentnumberofnod": [75, 208], "parent": [75, 82, 86, 91, 97, 101, 127, 208, 216, 225, 242, 278], "mapitemtominimumutil": [75, 208], "phui": [75, 208], "mapitemtotwu": [75, 208], "twu": [75, 79, 80, 208, 211, 213], "createlocaltre": [75, 208], "alpha": [75, 91, 208], "thread": [75, 76, 120], "renam": [75, 76], "resid": [75, 76], "byte": [75, 76], "uniqu": [75, 76, 264], "read_fil": [75, 76], "filter": [75, 76], "primari": [75, 76, 80, 213], "secondari": [75, 76, 80, 213], "binarysearch": [75, 76], "arr": [75, 76], "binari": [75, 76, 190, 223, 276, 280], "project": [75, 76, 80, 101, 213], "file_data": [75, 76], "utilitypattern": [78, 80, 213], "abc": [78, 80, 86, 92], "actual": [78, 80, 249, 250], "model": [79, 143, 210, 263], "mani": [79, 210], "real": [79, 210, 280], "world": [79, 210, 280], "spatio": [79, 210], "orlando": [79, 80, 110, 210, 213, 252], "fl": [79, 80, 110, 210, 213, 252], "4925": [79, 80, 210, 213], "4935": [79, 80, 210, 213], "bigdata52589": [79, 80, 110, 210, 213, 252], "9671912": [79, 80, 210, 213], "mapofpmu": [79, 210], "constructcul": [79, 210], "compactulist": [79, 210], "exneighbour": [79, 210], "eyt": [79, 210], "duprevpo": [79, 210], "pamalla": [79, 125, 211, 275], "penugonda": [79, 211], "raj": [79, 211], "bathala": [79, 211], "dao": [79, 116, 127, 211, 261, 277], "minh": [79, 211], "bommisetti": [79, 211], "2023": [79, 106, 125, 127, 211, 248, 275, 278], "hdshui": [79, 211], "novel": [79, 84, 211, 221], "dimension": [79, 211], "26": [79, 211], "s10489": [79, 117, 123, 211, 262, 268, 269], "022": [79, 211], "04436": [79, 211], "when": [79, 80, 82, 113, 211, 213, 216, 217, 218, 256], "_isequ": [79, 211], "datasetpath": [80, 213], "largest": [80, 213], "getmaxitem": [80, 213], "tkshui": [80, 213], "additemset": [80, 213], "prioriti": [80, 213], "queue": [80, 120, 213], "ad": [80, 82, 86, 90, 91, 93, 95, 97, 100, 101, 106, 113, 116, 117, 123, 125, 127, 135, 213, 216, 225, 226, 227, 233, 236, 239, 240, 241, 242, 244, 248, 258, 261, 262, 266, 267, 268, 269, 270, 271, 275, 277, 278], "numpi": [80, 213], "heaplist": [80, 213], "inttostr": [80, 213], "item1": [80, 213, 255, 264, 265], "item2": [80, 213, 255, 264, 265], "whether": [80, 119, 120, 213], "posit": [80, 108, 127, 213, 251, 277], "strtoint": [80, 213], "temp": [80, 213], "transactionutil": [80, 213], "utilit": [80, 213], "prefixutil": [80, 213], "offset": [80, 213], "pointer": [80, 213], "projectedtransact": [80, 213], "till": [80, 213], "getitem": [80, 213], "getutil": [80, 213], "getpmu": [80, 213], "getlastposit": [80, 213], "removeunpromisingitem": [80, 213], "remov": [80, 88, 90, 91, 93, 95, 97, 100, 101, 106, 116, 117, 119, 123, 125, 127, 135, 213, 227, 229, 230, 233, 236, 239, 240, 242, 244, 248, 261, 262, 266, 267, 268, 269, 270, 271, 272, 275, 277, 278], "insertionsort": [80, 213], "projecttransact": [80, 213], "nams": [80, 213], "maxsop": [82, 216, 217, 218], "mindur": [82, 216, 217, 218], "_localperiodicpattern": [82, 216, 217, 218], "spillov": [82, 216, 217, 218], "minim": [82, 216, 217, 218], "ensur": [82, 148, 216, 217, 218, 284], "those": [82, 216, 217, 218], "yang": [82, 116, 117, 216, 217, 218, 260, 262], "ventura": [82, 216, 217, 218], "luna": [82, 110, 216, 217, 218, 252], "discret": [82, 216, 217, 218], "scienc": [82, 104, 116, 121, 123, 127, 144, 216, 217, 218, 246, 261, 268, 269, 273, 277, 278], "elsevi": [82, 216, 217, 218], "ppt": [82, 216, 217, 218], "1016": [82, 84, 86, 97, 123, 216, 217, 218, 220, 225, 240, 266], "ins": [82, 216, 217, 218], "09": [82, 84, 123, 216, 217, 218, 220, 266], "044": [82, 216, 217, 218], "consecut": [82, 216, 217, 218], "tsmin": [82, 216, 217, 218], "date": [82, 216, 217, 218], "tsmax": [82, 216, 217, 218], "ptl": [82, 216, 217, 218], "tslist": [82, 216, 217, 218], "bit": [82, 113, 121, 216, 217, 218, 257], "vector": [82, 121, 216, 217, 218], "whole": [82, 216], "findsepar": [82, 86, 216, 225], "split": [82, 216, 223], "cretelpplist": [82, 216], "createtslist": [82, 216, 217, 218], "generatelpp": [82, 216, 217, 218], "createlpptre": [82, 216], "lpptree": [82, 216], "patterngrowth": [82, 216], "prefixpflist": [82, 216], "calculateptl": [82, 216, 217, 218], "calculateptlbit": [82, 216], "getlocalperiodicpattern": [82, 216, 217, 218], "lppmgrowth": [82, 216], "minsop": [82, 216, 217, 218], "f": [82, 216, 217, 218, 249, 250, 255, 264, 265], "nakamura": [82, 86, 216, 217, 218, 225, 226], "localperiodicpatterntre": [82, 216], "child": [82, 86, 91, 216, 225], "next": [82, 86, 113, 216, 225, 257, 258], "getchild": [82, 86, 216, 225], "itemnam": [82, 86, 97, 101, 216, 225, 242], "don": [82, 86, 216, 225], "frequentpatterngrowth": [82, 86, 216, 225], "firstnodelink": [82, 86, 216, 225], "branch": [82, 86, 97, 101, 216, 225, 242], "frequentpatterntre": [82, 86, 97, 101, 108, 216, 225, 242, 251], "fixnodelink": [82, 86, 216, 225], "newnod": [82, 86, 216, 225], "deletenod": [82, 86, 216, 225], "delet": [82, 86, 113, 216, 225, 258], "createprefixtre": [82, 86, 216, 225], "timestamplist": [82, 86, 216, 225], "fix": [82, 86, 196, 216, 225], "lppmbreathsearch": [82, 217], "extensionofp": [82, 217, 218], "lppbreadth": [82, 217], "lppmdepthsearch": [82, 218], "mi": [84, 220, 221], "ya": [84, 220], "hu": [84, 220], "yen": [84, 220], "liang": [84, 220], "chen": [84, 113, 220, 258], "2006": [84, 220], "mechan": [84, 220], "deci": [84, 220], "42": [84, 113, 196, 220, 256], "octob": [84, 220], "24": [84, 220], "dss": [84, 220], "007": [84, 220], "were": [84, 123, 125, 127, 129, 131, 135, 220, 221, 266, 275, 277, 278, 281, 283], "appropri": [84, 123, 125, 127, 129, 131, 135, 220, 221, 266, 275, 277, 278, 281, 283], "limit": [84, 123, 125, 127, 129, 131, 135, 220, 221, 266, 275, 277, 278, 281, 283], "misfil": [84, 220, 221], "note": [84, 97, 98, 100, 101, 104, 106, 108, 110, 113, 116, 121, 190, 196, 220, 221, 240, 241, 242, 243, 244, 246, 248, 251, 252, 256, 257, 258, 260, 261, 264, 276], "11": [84, 86, 113, 123, 221, 225, 258, 272], "edbt": [84, 221], "1951365": [84, 221], "1951370": [84, 221], "minpr": [86, 225, 226], "venkatesh": [86, 225], "125": [86, 225], "170": [86, 225], "182": [86, 225], "issn": [86, 225], "0164": [86, 225], "1212": [86, 225], "jss": [86, 97, 225, 240], "2016": [86, 97, 225, 240, 242], "035": [86, 97, 225, 240], "storepatternsinfil": [86, 123, 225, 268, 269, 272], "ouputfil": [86, 225, 226], "getpatternindf": [86, 88, 90, 91, 225, 229, 230, 233], "pfgrowth": [86, 225], "pflist": [86, 225], "pr": [86, 225], "createconditionaltre": [86, 225], "Its": [86, 225], "ip": [86, 225, 226], "calculateip": [86, 225], "timestampfin": [86, 225], "generatepflistver2": [86, 225], "generatepftreever2": [86, 225], "getper_sup": [86, 104, 226, 246], "calucl": [86, 226], "sup": [86, 226], "getpersup": [86, 226], "oneitem": [86, 106, 226, 248], "tidsetx": [86, 226], "tidset": [86, 226], "userd": [86, 226], "equibal": [86, 226], "getpartialperiodicpattern": [86, 226], "ouput": [86, 226], "userspecifi": 86, "term": [86, 249, 250], "getfrequentpattern": [86, 90, 108, 233, 251], "relativep": [88, 229], "_partialperiodicpattern": [88, 89, 90, 91, 93, 227, 229, 230, 231, 232, 233], "3pgrowth": [88, 229, 230], "ssdbm": [88, 91, 229, 230], "17": [88, 91, 229, 230], "29th": [88, 91, 229, 230], "scientif": [88, 91, 229, 230], "managementjun": [88, 91, 229, 230], "30": [88, 91, 196, 229, 230], "6http": [88, 91, 229, 230], "3085504": [88, 91, 229, 230], "3085535": [88, 91, 229, 230], "partialperiodiconeitem": [88, 91, 229, 230], "updatetransact": [88, 91, 123, 125, 127, 135, 229, 230, 266, 267, 268, 269, 270, 271, 275, 277], "aperiod": [88, 90, 91, 93, 95, 97, 100, 101, 116, 117, 127, 227, 229, 230, 233, 236, 239, 240, 244, 261, 262, 277, 278], "constrcut": [88, 91, 229, 230], "descripit": [88, 231], "3peclat": [88, 231], "kirana": [88, 231], "venkateshd": [88, 231], "toyodaa": [88, 231], "kitsuregawaa": [88, 231], "tkl": [88, 89, 95, 106, 231, 232, 236, 248], "ii": [88, 89, 95, 106, 231, 232, 236, 248], "tokyo": [88, 89, 95, 106, 231, 232, 236, 248], "ac": [88, 89, 95, 106, 113, 231, 232, 236, 248, 257], "jp": [88, 89, 95, 106, 231, 232, 236, 248], "upload": [88, 89, 95, 106, 231, 232, 236, 248], "publication_fil": [88, 89, 95, 106, 231, 232, 236, 248], "774": [88, 231], "jss_2017": [88, 231], "creatingoneitemset": [88, 97, 231, 238, 241], "getperiodandsupport": [88, 97, 231, 238, 241, 242], "periodicsupport": [89, 90, 91, 93, 227, 232, 233], "kiran1": [89, 232], "venkatesh2": [89, 232], "viger3": [89, 232], "toyoda1": [89, 232], "reddy2": [89, 232], "799": [89, 232], "max3p": [90, 233], "IS": [90, 233], "3p": [90, 233], "yutaka": [90, 100, 233, 244], "watanob": [90, 97, 100, 104, 233, 238, 244, 246], "bhaskar": [90, 100, 233, 244], "chaudhuri": [90, 100, 233, 244], "9260063": [90, 100, 233, 244], "maximaltre": [90, 233], "periodicfrequentoneitem": [90, 93, 95, 97, 100, 101, 116, 117, 127, 227, 233, 236, 239, 240, 244, 261, 262, 277, 278], "updatedatabas": [90, 93, 95, 97, 100, 101, 106, 116, 117, 127, 227, 233, 236, 239, 240, 244, 248, 261, 262, 278], "max3prowth": [90, 233], "threepgrowth": [90, 233], "_gettransact": 91, "addchild": [91, 97, 101, 242], "summari": [91, 101], "info": 91, "add_transact": 91, "add_transaction_summ": 91, "tid_summ": 91, "get_condition_pattern": 91, "remove_nod": 91, "node_v": 91, "get_t": 91, "ts": [91, 276], "merg": [91, 101], "generate_pattern": 91, "glist": 91, "isrespons": [91, 101], "lambda": [91, 101], "cond_tran": 91, "cond_pat": 91, "cond_tid": 91, "getpf": 91, "tid_list": 91, "getp": 91, "4pgrowth": 91, "me": 91, "npartit": [91, 101], "getfrequentitem": [91, 101], "getfrequentitemset": [91, 101], "perfreqitem": 91, "psinfo": 91, "setpartit": 91, "031": [92, 104, 116, 125, 234, 246, 261, 275], "39847": [92, 234], "6_28": [92, 234], "candidatelist": [92, 103, 104, 113, 234, 245, 246, 256, 257, 258], "generatefrequentpattern": [92, 103, 104, 234, 245, 246], "topk_pppgrowth": [92, 234], "irregular": [93, 137, 227, 228, 264], "workshop": [93, 129, 227, 281], "icdmw": [93, 129, 227, 281], "1020": [93, 227], "1028": [93, 227], "00147": [93, 227], "remain": [93, 95, 97, 101, 106, 116, 117, 123, 125, 127, 135, 223, 227, 236, 239, 248, 261, 262, 264, 266, 267, 268, 269, 270, 271, 275, 277, 278], "maxperallconf": [95, 236], "_periodiccorrelatedpattern": [95, 236], "897": [95, 236], "venkatesh2018_chapter_discoveringperiod": [95, 236], "maaxperallconf": [95, 236], "thr": [95, 236], "topkpfp": [96, 102, 237], "kpfpminer": [96, 102, 237], "_periodicfrequentpattern": [97, 98, 100, 101, 103, 104, 127, 238, 239, 240, 241, 242, 243, 244, 245, 246, 277, 278], "toward": [97, 108, 116, 238, 251, 261], "columnar": [97, 116, 238, 261], "iea": [97, 101, 116, 238, 260, 261], "aie": [97, 101, 116, 238, 260, 261], "sy": [97, 123, 239, 267, 271], "khairuzzaman": [97, 123, 239, 267, 271], "tanbeer": [97, 123, 239, 267, 271], "chowdhuri": [97, 239], "farhan": [97, 239], "byeong": [97, 239], "soo": [97, 239], "jeong": [97, 239], "young": [97, 239], "koo": [97, 239], "2009": [97, 239], "642": [97, 103, 123, 239, 245, 267, 271], "01307": [97, 239], "2_24": [97, 239], "metho": [97, 239], "greedi": [97, 240], "udaykiran": [97, 240], "masarukitsuregawa": [97, 240], "krishnareddyd": [97, 240], "februari": [97, 240], "delimit": [97, 108, 240, 251], "pfpgorwthplu": [97, 240], "append": [97, 119, 242], "detail": [97, 123, 242, 270], "ps": [97, 242], "anirudh": [97, 242], "kitsuregawai": [97, 242], "symposium": [97, 123, 242, 272], "ssci": [97, 242], "7849926": [97, 242], "getconditionalpatternsindatafram": [97, 242], "onelengthitem": [97, 242], "conditionaltransact": [97, 242], "_interv": [97, 242], "fail": [97, 121, 242], "9378215": [98, 243], "maxpf": [100, 244], "maxpfrowth": [100, 244], "tostr": 101, "pfptree": 101, "itemid": 101, "satisfyp": 101, "numtran": 101, "mincount": 101, "framework": 101, "807": 101, "819": 101, "machin": [101, 135], "nowork": 101, "func1": 101, "ps1": 101, "func2": 101, "ps2": 101, "func3": 101, "endt": 101, "freqitem": 101, "topkpfpgrowth": [103, 245], "komat": [103, 245], "amphawan": [103, 133, 245, 285], "lenca": [103, 245], "athasit": [103, 245], "surarerk": [103, 245], "advanc": [103, 116, 121, 245, 261], "technolog": [103, 133, 245, 285], "chapter": [103, 123, 245, 267, 271], "10392": [103, 245], "6_3": [103, 245], "sampl": [103, 190, 245, 264, 265, 276, 280], "2022": [104, 116, 117, 127, 246, 261, 262, 278], "bda": [104, 246], "lectur": [104, 116, 121, 246, 261], "vol": [104, 116, 121, 127, 246, 261, 277, 278], "13773": [104, 246], "cham": [104, 116, 127, 246, 261, 277], "24094": [104, 246], "2_14": [104, 246], "minrec": [106, 248], "_recurringpattern": [106, 248], "haichuan": [106, 248], "shang": [106, 248], "693": [106, 248], "could": [106, 248], "potenti": [106, 140, 247, 248], "numer": [106, 248], "minr": [108, 251], "comad": [108, 251], "comad2012": [108, 251], "saveallcombin": [108, 251], "tempbuff": [108, 251], "frequentpatterngrowthgener": [108, 251], "port": [108, 251], "particular": [108, 196, 223, 251, 255, 264], "__mapsupport": [108, 251], "__minratio": [108, 251], "23": [108, 251], "minur": [110, 252], "invari": [110, 252], "252": [110, 252], "9672064": [110, 252], "relativehighutilityitemset": [110, 252], "backtrackingrhuim": [110, 252], "_sequentialpattern": [113, 256, 257, 258], "serch": [113, 256], "abov": [113, 256, 276], "mach": [113, 256], "learn": [113, 135, 256], "januari": [113, 256], "60": [113, 256], "1007652502315": [113, 256], "dx": [113, 256], "_xlendatabas": [113, 256], "rownumb": [113, 256], "_xlendatabasesam": [113, 256], "candidatetofrequ": [113, 256, 257, 258], "frequenttocandid": [113, 256, 257, 258], "frequentlist": [113, 256, 257, 258], "make1lendatabas": [113, 256], "make2lendatabas": [113, 256], "join": [113, 256], "xlen": [113, 256], "make3lendatabas": [113, 256], "makenextrow": [113, 256], "bs": [113, 256], "latestword": [113, 256], "latestword2": [113, 256], "row": [113, 119, 256, 258, 264, 265], "latest": [113, 256, 258], "previou": [113, 256], "makenextrowsam": [113, 256], "latestword1": [113, 256], "makenextrowsame2": [113, 256], "makenextrowsame3": [113, 256], "makexlendatabas": [113, 256], "rowlen": [113, 256], "seq": [113, 256], "xlendatabas": [113, 256], "makexlendatabasesam": [113, 256], "prnt": [113, 256], "ayr": [113, 257], "gehrk": [113, 257], "yiu": [113, 257], "flannick": [113, 257], "bitmap": [113, 257], "eighth": [113, 257], "edmonton": [113, 257], "alberta": [113, 257], "canada": [113, 257], "juli": [113, 257], "_iddatabas": [113, 257], "_maxseqlen": [113, 257], "_creatingitemset": [113, 257], "make2bitdatabas": [113, 257], "dfsprune": [113, 257], "sstep": [113, 257], "istep": [113, 257], "again": [113, 257], "until": [113, 257], "ssteo": [113, 257], "ones": [113, 257], "010101": [113, 257], "001111": [113, 257], "00001001": [113, 257], "00000111": [113, 257], "pattren": [113, 257], "got": [113, 257], "befor": [113, 257, 258], "presum": [113, 257], "later": [113, 257], "ab": [113, 257], "countsup": [113, 257], "span": [113, 258], "mortazavi": [113, 258], "asl": [113, 258], "wang": [113, 116, 117, 258, 261, 262], "pinto": [113, 258], "dayal": [113, 258], "hsu": [113, 258], "1424": [113, 258], "1440": [113, 258], "getsameseq": [113, 258], "startrow": [113, 258], "makenext": [113, 258], "sepdatabas": [113, 258], "head": [113, 258], "makenextsam": [113, 258], "makeseqdatabasefirst": [113, 258], "makeseqdatabasesam": [113, 258], "makesupdatabas": [113, 258], "serchsam": [113, 258], "maxla": [116, 117, 260, 261, 262], "_stableperiodicfrequentpattern": [116, 117, 260, 262], "stabl": [116, 117, 214, 260, 261, 262, 263, 264], "dicov": [116, 260, 261], "three": [116, 260, 261], "contraint": [116, 260, 261], "labil": [116, 260, 261], "proc": [116, 260], "32nd": [116, 260], "conf": [116, 260], "industri": [116, 260], "lnai": [116, 260], "230": [116, 260], "244": [116, 260], "loss": [116, 260], "calculatela": [116, 260], "pfpeclat": [116, 260], "fujita": [116, 261], "ali": [116, 261], "ed": [116, 121, 127, 261, 277], "theori": [116, 261], "practic": [116, 261], "13343": [116, 261], "08530": [116, 261], "7_70": [116, 261], "includ": [116, 117, 119, 261, 262], "spplist": [116, 261], "appl": [117, 262], "intel": [117, 262], "52": [117, 262], "6917": [117, 262], "6938": [117, 262], "020": [117, 262], "02181": [117, 262], "ee": [119, 120], "rightmost": 119, "containedg": [119, 120], "v1": [119, 120], "v2": [119, 120], "copi": [119, 120], "getallvlabel": [119, 120], "label": [119, 120], "getat": [119, 120], "index": [119, 120, 123, 214, 270], "geteelist": [119, 120], "getrightmost": [119, 120], "getrightmostpath": [119, 120], "isempti": [119, 120], "notpreofrm": [119, 120], "rightmostpath": 119, "onrightmostpath": [119, 120], "edgelabel": [119, 120], "getedgelabel": [119, 120], "vlabel1": [119, 120], "vlabel2": [119, 120], "getv1": [119, 120], "getv2": [119, 120], "getvlabel1": [119, 120], "getvlabel2": [119, 120], "pairsmallerthan": [119, 120], "x1": [119, 120], "x2": [119, 120], "y1": [119, 120], "y2": [119, 120], "smallerthan": [119, 120], "smallerthanorigin": [119, 120], "setofgraphsid": [119, 120], "vmap": [119, 120], "emptyintegerarrai": 119, "emptyvertexlist": 119, "findallwithlabel": [119, 120], "targetlabel": [119, 120], "getallneighbor": [119, 120], "getallvertic": [119, 120], "getedg": [119, 120], "getedgecount": [119, 120], "getid": [119, 120], "getnonprecalculatedallvertic": [119, 120], "getvlabel": [119, 120], "isneighbor": [119, 120], "precalculatelabelstovertic": [119, 120], "precalcul": 119, "precalculatevertexlist": [119, 120], "vertic": [119, 120], "iter": 119, "precalculatevertexneighbor": [119, 120], "cach": 119, "removeinfrequentlabel": [119, 120], "accordingli": 119, "minsupport": 119, "outputsinglevertic": [119, 120], "maxnumberofedg": [119, 120], "outputgraphid": [119, 120], "_gspan": 119, "edge_count_prun": [119, 120], "eliminate_infrequent_edge_label": [119, 120], "eliminate_infrequent_vertex_pair": [119, 120], "eliminate_infrequent_vertic": [119, 120], "findallonlyonevertex": [119, 120], "graphdb": [119, 120], "outputfrequentvertic": [119, 120], "option": 119, "infrequ": 119, "boolean": [119, 120], "flag": 119, "determin": [119, 136, 147, 149, 224, 282, 286], "getfrequentsubgraph": 119, "getsubgraphgraphmap": 119, "subgraph": [119, 120], "belong": 119, "fid": 119, "clabel": 119, "gid": 119, "gspandf": [119, 120], "subgraphid": [119, 120], "snippet": 119, "_ab": [119, 120], "itself": 119, "doe": 119, "modifi": 119, "found": 119, "dure": 119, "iscanon": [119, 120], "canon": 119, "compar": [119, 141, 253], "readgraph": [119, 120], "pars": 119, "removeinfrequentvertexpair": [119, 120], "rightmostpathextens": [119, 120], "graphid": [119, 120], "seem": 119, "rightmostpathextensionsfromsingl": [119, 120], "design": [119, 161], "outputpath": 119, "savesubgraphsbygraphid": 119, "flat": 119, "subgraphisomorph": [119, 120], "isomorph": 119, "try": 119, "valid": 119, "getsupportforitem": [119, 120], "incrementcount": [119, 120], "removeinfrequententriesfrommatrix": [119, 120], "setsupport": [119, 120], "vlabel": [119, 120], "addedg": [119, 120], "getedgelist": [119, 120], "getlabel": [119, 120], "removeedg": [119, 120], "edgetoremov": [119, 120], "tkginstanc": 120, "subclass": 120, "invok": 120, "callabl": 120, "pass": 120, "argument": 120, "keyword": 120, "arg": 120, "kwarg": 120, "empty_integer_arrai": 120, "empty_vertex_list": 120, "_tkg": 120, "dynamic_search": 120, "threaded_dynamic_search": 120, "getksubgraph": 120, "correct": 120, "newlin": 120, "getminsupport": 120, "getqueues": 120, "getsubgraphslist": 120, "empti": 120, "gspandynamicdf": 120, "metric": 120, "registerascandid": 120, "startthread": 120, "represent": 121, "koh": 121, "jl": 121, "yo": 121, "pw": 121, "2005": [121, 131, 283], "zhou": 121, "ooi": 121, "meng": 121, "dasfaa": 121, "3453": 121, "berlin": 121, "heidelberg": 121, "11408079_51": 121, "frequentfrequ": 121, "abil": 121, "handl": 121, "inconsist": 121, "incorrect": 121, "cufp": [123, 266], "peihong": [123, 266], "expert": [123, 266], "39": [123, 266], "issu": [123, 266], "march": [123, 266], "4084": [123, 266], "4093": [123, 266], "eswa": [123, 266], "087": [123, 266], "puf": [123, 135, 267, 271, 272], "carson": [123, 267, 270, 271, 272], "kai": [123, 267, 270, 271, 272], "sang": [123, 267, 270, 271, 272], "leung": [123, 267, 270, 271, 272], "compact": [123, 267, 271], "pacif": [123, 267, 271], "asia": [123, 267, 271], "2013": [123, 267, 271], "37453": [123, 267, 271], "1_2": [123, 267, 271], "cup": [123, 268, 269], "tuong": [123, 268, 269], "le": [123, 268, 269], "vo": [123, 268, 269], "van": [123, 268, 269], "nam": [123, 268, 269], "huynh": [123, 268, 269], "ngoc": [123, 268, 269], "thanh": [123, 268, 269], "nguyen": [123, 268, 269], "sung": [123, 268, 269], "wook": [123, 268, 269], "baik": [123, 268, 269], "busi": [123, 268, 269], "media": [123, 268, 269], "llc": [123, 268, 269], "part": [123, 268, 269], "019": [123, 268, 269], "01622": [123, 268, 269], "getpatternsindatafram": [123, 268, 269, 272], "richard": [123, 270], "kyle": [123, 270], "mackinnon": [123, 270], "2014": [123, 270], "14": [123, 270], "societi": [123, 270], "893": [123, 270], "898": [123, 270], "146": [123, 270], "dict1": [123, 270], "printtre": [123, 127, 270, 278], "lije": [123, 272], "sun": [123, 272], "transform": [123, 272], "sac": [123, 272], "computingmarch": [123, 272], "983": [123, 272], "984": [123, 272], "1982185": [123, 272], "1982399": [123, 272], "gfp": [125, 275], "33380": [125, 275], "4_3": [125, 275], "neighborfil": [125, 275], "sampleneighbor": [125, 275], "ms": [127, 277], "zhang": [127, 277], "mantoro": [127, 277], "ayu": [127, 277], "wong": [127, 277], "hidayanto": [127, 277], "neural": [127, 277], "iconip": [127, 277, 278], "commun": [127, 277, 278], "1516": [127, 277], "92307": [127, 277], "5_83": [127, 277], "_lno": [127, 277], "removefalseposit": [127, 277], "plu": [127, 278], "upfp": [127, 278], "1792": [127, 278], "singapor": [127, 278], "981": [127, 278], "99": [127, 278], "1642": [127, 278], "9_16": [127, 278], "floot": [127, 129, 278, 281], "minw": [129, 281], "_weightedfrequentspatialpattern": [129, 281], "weight": [129, 131, 133, 135, 214, 280, 281, 282, 283, 284, 285, 286], "987": [129, 281], "996": [129, 281], "00143": [129, 281], "minweight": [129, 131, 281, 283], "weightfil": [129, 131, 281, 283], "weightfrequentneighbourhoodpattern": [129, 281], "wfile": [129, 131, 133, 135, 281, 283, 285], "_weightedfrequentpattern": [131, 135, 283], "wfminer": [131, 283], "yun": [131, 283], "leggett": [131, 283], "636": [131, 283], "640": [131, 283], "epub": [131, 283], "9781611972757": [131, 283], "76": [131, 283], "weightsampl": [131, 283], "weightfrequentpattern": [131, 283], "_wfile": [133, 285], "ws": [133, 285], "_weightedfrequentregularpattern": [133, 285], "wfri": [133, 285], "klangwisan": [133, 285], "9th": [133, 285], "smart": [133, 285], "kst": [133, 285], "66": [133, 285], "71": [133, 285], "7886090": [133, 285], "weightsupport": [133, 285], "expsup": 135, "expwsup": 135, "recognit": 135, "book": [135, 190, 276, 280], "jerri": 135, "wensheng": 135, "gan": 135, "cyclic": [136, 139, 224, 237], "full": [136, 224], "follow": [136, 190, 196, 224, 255, 264, 276, 280], "strict": [136, 224], "still": [136, 224], "interesting": [136, 224], "mainten": [136, 140, 224, 247], "repeat": [137, 147, 149, 228, 282, 286], "exactli": [137, 228], "intermitt": [137, 228], "convent": [137, 228], "task": [138, 143, 144, 145, 146, 235, 263, 273, 274, 279], "sale": [138, 139, 235, 237], "observ": [139, 196, 237, 249, 250], "goal": [139, 140, 237, 247], "plai": [139, 237], "crucial": [139, 237], "role": [139, 237], "togeth": [142, 161, 254], "clickstream": [142, 254], "biolog": [142, 254], "log": [142, 254], "retent": [142, 254], "sppm": [143, 263], "success": [143, 263], "known": [143, 263], "spp": [143, 263], "reliabl": [143, 263], "adher": [143, 263], "stabil": [143, 263], "enabl": [143, 263], "probabilist": [144, 145, 146, 273, 274, 276, 279], "determinist": [144, 146, 273, 279], "deal": [144, 146, 273, 279], "financ": [144, 273], "aris": [145, 274], "address": [146, 279], "pose": [146, 279], "neighborhood": [147, 196, 282], "assign": [147, 148, 149, 282, 284, 286], "proxim": [147, 282], "group": [147, 282], "cumul": [147, 148, 149, 282, 284, 286], "focu": [148, 284], "constitu": [149, 286], "contigu": [150, 214], "def": 150, "definit": 151, "pami": [152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 166, 174, 176, 177, 178, 179, 181, 183, 185, 188, 189, 190, 192, 198, 200, 201, 202, 205, 206, 207, 208, 210, 211, 213, 216, 217, 218, 220, 221, 225, 226, 227, 229, 230, 231, 232, 233, 234, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 252, 256, 257, 258, 260, 261, 262, 265, 266, 267, 268, 269, 270, 271, 272, 275, 276, 277, 278, 280, 281, 283, 285], "typic": 161, "done": 161, "dna": 161, "protein": 161, "lead": 161, "logic": 190, "pleas": [190, 264], "lie": 190, "zero": [190, 276], "impli": 190, "bread": [190, 276, 280], "jam": [190, 276, 280], "butter": [190, 276, 280], "pen": [190, 276, 280], "bat": [190, 276, 280], "shown": [190, 223, 264, 265, 276, 280], "below": [190, 223, 264, 265, 276, 280], "tabl": [190, 264, 276, 280], "ball": [190, 276, 280], "fuzzyitema": 190, "fuzzyitemb": 190, "fuzzyitemn": 190, "fuzzyvalu": 190, "fuzzyvaluea": 190, "fuzzyvalueb": 190, "fuzzyvaluen": 190, "choic": [190, 276, 280], "sinc": [190, 264, 265, 276, 280], "polygon": [190, 276, 280], "comma": [190, 223, 264, 265, 276, 280], "facilit": [190, 276, 280], "symbol": [190, 276, 280], "110": [190, 280], "gather": [196, 223], "sensor": 196, "phenomenon": 196, "topic": 196, "spatialitem1": 196, "spatialitem2": 196, "spatialitemn": 196, "price": [196, 276, 280], "40": 196, "utilitya": [196, 280], "utilityb": [196, 280], "utilityn": [196, 280], "162": 196, "140": 196, "70": 196, "With": [214, 265], "modul": [214, 219], "packag": 219, "subpackag": 219, "content": 219, "broadli": 223, "classifi": 223, "window": 223, "windowid": 223, "brace": 223, "left": 223, "hand": 223, "side": 223, "letter": 223, "pend": 228, "quantiti": [249, 250], "mathemat": [249, 250], "wherea": [249, 250], "suppos": [249, 250], "intrus": [249, 250], "sid": 255, "itema": [255, 276, 280], "itemb": [255, 276, 280], "itemc": 255, "gap": 264, "implicitli": 264, "thereaft": 264, "rather": 264, "absolut": 264, "especi": 264, "variant": 264, "work": 264, "properli": 264, "share": 264, "itemn": [264, 265, 276, 280], "directli": 265, "storag": 265, "perfect": 276, "hidden": 276, "now": 276, "probabilitya": 276, "probabilityb": 276, "probabilityn": 276, "introduct": 276, "becaus": 280, "contrast": 280, "fact": 280, "henceforth": 280, "most": 280, "extern": 280, "supermarket": 280, "do": 280, "purchas": 280, "custom": 280, "seo": 280}, "objects": {"": [[20, 0, 0, "-", "PAMI"]], "PAMI": [[21, 0, 0, "-", "AssociationRules"], [23, 0, 0, "-", "correlatedPattern"], [25, 0, 0, "-", "coveragePattern"], [27, 0, 0, "-", "extras"], [42, 0, 0, "-", "faultTolerantFrequentPattern"], [44, 0, 0, "-", "frequentPattern"], [51, 0, 0, "-", "fuzzyCorrelatedPattern"], [53, 0, 0, "-", "fuzzyFrequentPattern"], [55, 0, 0, "-", "fuzzyGeoreferencedFrequentPattern"], [57, 0, 0, "-", "fuzzyGeoreferencedPeriodicFrequentPattern"], [59, 0, 0, "-", "fuzzyPartialPeriodicPatterns"], [61, 0, 0, "-", "fuzzyPeriodicFrequentPattern"], [63, 0, 0, "-", "geoReferencedPeriodicFrequentPattern"], [65, 0, 0, "-", "georeferencedFrequentPattern"], [67, 0, 0, "-", "georeferencedFrequentSequencePattern"], [68, 0, 0, "-", "georeferencedPartialPeriodicPattern"], [70, 0, 0, "-", "highUtilityFrequentPattern"], [72, 0, 0, "-", "highUtilityGeoreferencedFrequentPattern"], [74, 0, 0, "-", "highUtilityPattern"], [77, 0, 0, "-", "highUtilityPatternsInStreams"], [78, 0, 0, "-", "highUtilitySpatialPattern"], [81, 0, 0, "-", "localPeriodicPattern"], [83, 0, 0, "-", "multipleMinimumSupportBasedFrequentPattern"], [85, 0, 0, "-", "partialPeriodicFrequentPattern"], [87, 0, 0, "-", "partialPeriodicPattern"], [93, 0, 0, "-", "partialPeriodicPatternInMultipleTimeSeries"], [94, 0, 0, "-", "periodicCorrelatedPattern"], [96, 0, 0, "-", "periodicFrequentPattern"], [105, 0, 0, "-", "recurringPattern"], [107, 0, 0, "-", "relativeFrequentPattern"], [109, 0, 0, "-", "relativeHighUtilityPattern"], [111, 0, 0, "-", "sequence"], [112, 0, 0, "-", "sequentialPatternMining"], [115, 0, 0, "-", "stablePeriodicFrequentPattern"], [118, 0, 0, "-", "subgraphMining"], [121, 0, 0, "-", "uncertainFaultTolerantFrequentPattern"], [122, 0, 0, "-", "uncertainFrequentPattern"], [124, 0, 0, "-", "uncertainGeoreferencedFrequentPattern"], [126, 0, 0, "-", "uncertainPeriodicFrequentPattern"], [128, 0, 0, "-", "weightedFrequentNeighbourhoodPattern"], [130, 0, 0, "-", "weightedFrequentPattern"], [132, 0, 0, "-", "weightedFrequentRegularPattern"], [134, 0, 0, "-", "weightedUncertainFrequentPattern"]], "PAMI.AssociationRules": [[22, 0, 0, "-", "basic"]], "PAMI.AssociationRules.basic": [[22, 0, 0, "-", "abstract"]], "PAMI.correlatedPattern": [[24, 0, 0, "-", "basic"]], "PAMI.correlatedPattern.basic": [[152, 0, 0, "-", "CoMine"], [153, 0, 0, "-", "CoMinePlus"], [24, 0, 0, "-", "abstract"]], "PAMI.correlatedPattern.basic.CoMine": [[152, 1, 1, "", "CoMine"]], "PAMI.correlatedPattern.basic.CoMine.CoMine": [[152, 2, 1, "", "getMemoryRSS"], [152, 2, 1, "", "getMemoryUSS"], [152, 2, 1, "", "getPatterns"], [152, 2, 1, "", "getPatternsAsDataFrame"], [152, 2, 1, "", "getRuntime"], [152, 2, 1, "", "mine"], [152, 2, 1, "", "printResults"], [152, 2, 1, "", "recursive"], [152, 2, 1, "", "save"], [152, 2, 1, "", "startMine"]], "PAMI.correlatedPattern.basic.CoMinePlus": [[153, 1, 1, "", "CoMine"]], "PAMI.correlatedPattern.basic.CoMinePlus.CoMine": [[153, 2, 1, "", "getMemoryRSS"], [153, 2, 1, "", "getMemoryUSS"], [153, 2, 1, "", "getPatterns"], [153, 2, 1, "", "getPatternsAsDataFrame"], [153, 2, 1, "", "getRuntime"], [153, 2, 1, "", "mine"], [153, 2, 1, "", "printResults"], [153, 2, 1, "", "recursive"], [153, 2, 1, "", "save"], [153, 2, 1, "", "startMine"]], "PAMI.coveragePattern": [[26, 0, 0, "-", "basic"]], "PAMI.coveragePattern.basic": [[155, 0, 0, "-", "CMine"], [156, 0, 0, "-", "CPPG"], [26, 0, 0, "-", "abstract"]], "PAMI.coveragePattern.basic.CMine": [[155, 1, 1, "", "CMine"]], "PAMI.coveragePattern.basic.CMine.CMine": [[155, 2, 1, "", "creatingCoverageItems"], [155, 2, 1, "", "genPatterns"], [155, 2, 1, "", "generateAllPatterns"], [155, 2, 1, "", "getMemoryRSS"], [155, 2, 1, "", "getMemoryUSS"], [155, 2, 1, "", "getPatterns"], [155, 2, 1, "", "getPatternsAsDataFrame"], [155, 2, 1, "", "getRuntime"], [155, 2, 1, "", "mine"], [155, 2, 1, "", "printResults"], [155, 2, 1, "", "save"], [155, 2, 1, "", "startMine"], [155, 2, 1, "", "tidToBitset"]], "PAMI.coveragePattern.basic.CPPG": [[156, 1, 1, "", "CPPG"]], "PAMI.coveragePattern.basic.CPPG.CPPG": [[156, 2, 1, "", "getMemoryRSS"], [156, 2, 1, "", "getMemoryUSS"], [156, 2, 1, "", "getPatterns"], [156, 2, 1, "", "getPatternsAsDataFrame"], [156, 2, 1, "", "getRuntime"], [156, 2, 1, "", "mine"], [156, 2, 1, "", "printResults"], [156, 2, 1, "", "save"], [156, 2, 1, "", "startMine"]], "PAMI.extras": [[28, 0, 0, "-", "DF2DB"], [29, 0, 0, "-", "calculateMISValues"], [30, 0, 0, "-", "dbStats"], [31, 0, 0, "-", "fuzzyTransformation"], [32, 0, 0, "-", "generateDatabase"], [27, 0, 0, "-", "generateLatexGraphFile"], [33, 0, 0, "-", "graph"], [34, 0, 0, "-", "image2Database"], [35, 0, 0, "-", "imageProcessing"], [36, 0, 0, "-", "messaging"], [37, 0, 0, "-", "neighbours"], [38, 0, 0, "-", "sampleDatasets"], [27, 0, 0, "-", "scatterPlotSpatialPoints"], [39, 0, 0, "-", "stats"], [40, 0, 0, "-", "syntheticDataGenerator"], [27, 0, 0, "-", "topKPatterns"], [27, 0, 0, "-", "uncertaindb_convert"], [41, 0, 0, "-", "visualize"]], "PAMI.extras.DF2DB": [[28, 0, 0, "-", "DenseFormatDF"], [28, 0, 0, "-", "SparseFormatDF"], [28, 0, 0, "-", "createTDB"], [28, 0, 0, "-", "denseDF2DBPlus"], [28, 0, 0, "-", "denseDF2DB_dump"], [28, 0, 0, "-", "sparseDF2DBPlus"]], "PAMI.extras.DF2DB.DenseFormatDF": [[28, 1, 1, "", "DenseFormatDF"]], "PAMI.extras.DF2DB.DenseFormatDF.DenseFormatDF": [[28, 2, 1, "", "convert2MultipleTimeSeries"], [28, 2, 1, "", "convert2TemporalDatabase"], [28, 2, 1, "", "convert2TransactionalDatabase"], [28, 2, 1, "", "convert2UncertainTransactional"], [28, 2, 1, "", "convert2UtilityDatabase"], [28, 2, 1, "", "getFileName"]], "PAMI.extras.DF2DB.SparseFormatDF": [[28, 1, 1, "", "SparseFormatDF"]], "PAMI.extras.DF2DB.SparseFormatDF.SparseFormatDF": [[28, 2, 1, "", "createTemporal"], [28, 2, 1, "", "createTransactional"], [28, 2, 1, "", "createUtility"], [28, 2, 1, "", "getFileName"]], "PAMI.extras.DF2DB.createTDB": [[28, 1, 1, "", "createTDB"]], "PAMI.extras.DF2DB.createTDB.createTDB": [[28, 2, 1, "", "createTDB"], [28, 2, 1, "", "save"]], "PAMI.extras.DF2DB.denseDF2DBPlus": [[28, 1, 1, "", "DenseFormatDFPlus"]], "PAMI.extras.DF2DB.denseDF2DBPlus.DenseFormatDFPlus": [[28, 2, 1, "", "createTemporal"], [28, 2, 1, "", "createTransactional"], [28, 2, 1, "", "createUtility"], [28, 2, 1, "", "getFileName"]], "PAMI.extras.DF2DB.denseDF2DB_dump": [[28, 1, 1, "", "DenseFormatDF"]], "PAMI.extras.DF2DB.denseDF2DB_dump.DenseFormatDF": [[28, 2, 1, "", "createTemporal"], [28, 2, 1, "", "createTransactional"], [28, 2, 1, "", "createUtility"], [28, 2, 1, "", "getFileName"]], "PAMI.extras.DF2DB.sparseDF2DBPlus": [[28, 1, 1, "", "SparseFormatDFPlus"]], "PAMI.extras.DF2DB.sparseDF2DBPlus.SparseFormatDFPlus": [[28, 2, 1, "", "createTemporal"], [28, 2, 1, "", "createTransactional"], [28, 2, 1, "", "createUtility"], [28, 2, 1, "", "getFileName"]], "PAMI.extras.calculateMISValues": [[29, 0, 0, "-", "usingBeta"], [29, 0, 0, "-", "usingSD"]], "PAMI.extras.calculateMISValues.usingBeta": [[29, 1, 1, "", "usingBeta"]], "PAMI.extras.calculateMISValues.usingBeta.usingBeta": [[29, 2, 1, "", "calculateMIS"], [29, 2, 1, "", "getMISDataFrame"], [29, 2, 1, "", "save"]], "PAMI.extras.calculateMISValues.usingSD": [[29, 1, 1, "", "usingSD"]], "PAMI.extras.calculateMISValues.usingSD.usingSD": [[29, 2, 1, "", "calculateMIS"], [29, 2, 1, "", "getDataFrame"], [29, 2, 1, "", "save"]], "PAMI.extras.dbStats": [[30, 0, 0, "-", "FuzzyDatabase"], [30, 0, 0, "-", "MultipleTimeSeriesFuzzyDatabaseStats"], [30, 0, 0, "-", "SequentialDatabase"], [30, 0, 0, "-", "TemporalDatabase"], [30, 0, 0, "-", "TransactionalDatabase"], [30, 0, 0, "-", "UncertainTemporalDatabase"], [30, 0, 0, "-", "UncertainTransactionalDatabase"], [30, 0, 0, "-", "UtilityDatabase"]], "PAMI.extras.dbStats.FuzzyDatabase": [[30, 1, 1, "", "FuzzyDatabase"]], "PAMI.extras.dbStats.FuzzyDatabase.FuzzyDatabase": [[30, 2, 1, "", "creatingItemSets"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getAverageUtility"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMaximumUtility"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getMinimumUtility"], [30, 2, 1, "", "getNumberOfItems"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSortedUtilityValuesOfItem"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTotalUtility"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.MultipleTimeSeriesFuzzyDatabaseStats": [[30, 1, 1, "", "MultipleTimeSeriesFuzzyDatabaseStats"]], "PAMI.extras.dbStats.MultipleTimeSeriesFuzzyDatabaseStats.MultipleTimeSeriesFuzzyDatabaseStats": [[30, 2, 1, "", "convertDataIntoMatrix"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getDensity"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getNumberOfItems"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.SequentialDatabase": [[30, 1, 1, "", "SequentialDatabase"]], "PAMI.extras.dbStats.SequentialDatabase.SequentialDatabase": [[30, 2, 1, "", "getAverageItemPerSequenceLength"], [30, 2, 1, "", "getAverageItemPerSubsequenceLength"], [30, 2, 1, "", "getAverageSubsequencePerSequenceLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumSequenceLength"], [30, 2, 1, "", "getMaximumSubsequenceLength"], [30, 2, 1, "", "getMinimumSequenceLength"], [30, 2, 1, "", "getMinimumSubsequenceLength"], [30, 2, 1, "", "getSequenceSize"], [30, 2, 1, "", "getSequencialLengthDistribution"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getStandardDeviationSequenceLength"], [30, 2, 1, "", "getStandardDeviationSubsequenceLength"], [30, 2, 1, "", "getSubsequencialLengthDistribution"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getVarianceSequenceLength"], [30, 2, 1, "", "getVarianceSubsequenceLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"]], "PAMI.extras.dbStats.TemporalDatabase": [[30, 1, 1, "", "TemporalDatabase"]], "PAMI.extras.dbStats.TemporalDatabase.TemporalDatabase": [[30, 2, 1, "", "convertDataIntoMatrix"], [30, 2, 1, "", "getAverageInterArrivalPeriod"], [30, 2, 1, "", "getAveragePeriodOfItem"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getDensity"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumInterArrivalPeriod"], [30, 2, 1, "", "getMaximumPeriodOfItem"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMinimumInterArrivalPeriod"], [30, 2, 1, "", "getMinimumPeriodOfItem"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getNumberOfTransactionsPerTimestamp"], [30, 2, 1, "", "getPeriodsInRange"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationPeriod"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.TransactionalDatabase": [[30, 1, 1, "", "TransactionalDatabase"]], "PAMI.extras.dbStats.TransactionalDatabase.TransactionalDatabase": [[30, 2, 1, "", "convertDataIntoMatrix"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getDensity"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getNumberOfItems"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.UncertainTemporalDatabase": [[30, 1, 1, "", "UncertainTemporalDatabase"]], "PAMI.extras.dbStats.UncertainTemporalDatabase.UncertainTemporalDatabase": [[30, 2, 1, "", "convertDataIntoMatrix"], [30, 2, 1, "", "getAveragePeriod"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getDensity"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumPeriod"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMinimumPeriod"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getNumberOfTransactionsPerTimestamp"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationPeriod"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.UncertainTransactionalDatabase": [[30, 1, 1, "", "UncertainTransactionalDatabase"]], "PAMI.extras.dbStats.UncertainTransactionalDatabase.UncertainTransactionalDatabase": [[30, 2, 1, "", "convertDataIntoMatrix"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getDensity"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getNumberOfItems"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.dbStats.UtilityDatabase": [[30, 1, 1, "", "UtilityDatabase"]], "PAMI.extras.dbStats.UtilityDatabase.UtilityDatabase": [[30, 2, 1, "", "creatingItemSets"], [30, 2, 1, "", "getAverageTransactionLength"], [30, 2, 1, "", "getAverageUtility"], [30, 2, 1, "", "getDatabaseSize"], [30, 2, 1, "", "getFrequenciesInRange"], [30, 2, 1, "", "getMaximumTransactionLength"], [30, 2, 1, "", "getMaximumUtility"], [30, 2, 1, "", "getMinimumTransactionLength"], [30, 2, 1, "", "getMinimumUtility"], [30, 2, 1, "", "getNumberOfItems"], [30, 2, 1, "", "getSortedListOfItemFrequencies"], [30, 2, 1, "", "getSortedUtilityValuesOfItem"], [30, 2, 1, "", "getSparsity"], [30, 2, 1, "", "getStandardDeviationTransactionLength"], [30, 2, 1, "", "getTotalNumberOfItems"], [30, 2, 1, "", "getTotalUtility"], [30, 2, 1, "", "getTransanctionalLengthDistribution"], [30, 2, 1, "", "getVarianceTransactionLength"], [30, 2, 1, "", "plotGraphs"], [30, 2, 1, "", "printStats"], [30, 2, 1, "", "readDatabase"], [30, 2, 1, "", "run"], [30, 2, 1, "", "save"]], "PAMI.extras.fuzzyTransformation": [[31, 0, 0, "-", "abstract"], [31, 0, 0, "-", "temporalToFuzzy"], [31, 0, 0, "-", "transactionalToFuzzy"]], "PAMI.extras.fuzzyTransformation.temporalToFuzzy": [[31, 1, 1, "", "temporalToFuzzy"]], "PAMI.extras.fuzzyTransformation.temporalToFuzzy.temporalToFuzzy": [[31, 2, 1, "", "startConvert"]], "PAMI.extras.fuzzyTransformation.transactionalToFuzzy": [[31, 1, 1, "", "transactionalToFuzzy"]], "PAMI.extras.fuzzyTransformation.transactionalToFuzzy.transactionalToFuzzy": [[31, 2, 1, "", "startConvert"]], "PAMI.extras.generateDatabase": [[32, 0, 0, "-", "generateSpatioTemporalDatabase"], [32, 0, 0, "-", "generateTemporalDatabase"], [32, 0, 0, "-", "generateTransactionalDatabase"]], "PAMI.extras.generateDatabase.generateSpatioTemporalDatabase": [[32, 1, 1, "", "spatioTemporalDatabaseGenerator"]], "PAMI.extras.generateDatabase.generateSpatioTemporalDatabase.spatioTemporalDatabaseGenerator": [[32, 3, 1, "", "alreadyAdded"], [32, 3, 1, "", "coinFlip"], [32, 2, 1, "", "createPoint"], [32, 3, 1, "", "items"], [32, 3, 1, "", "outFileName"], [32, 2, 1, "", "saveAsFile"], [32, 3, 1, "", "timestamp"]], "PAMI.extras.generateDatabase.generateTemporalDatabase": [[32, 1, 1, "", "generateTemporalDatabase"]], "PAMI.extras.generateDatabase.generateTemporalDatabase.generateTemporalDatabase": [[32, 2, 1, "", "createTemporalFile"], [32, 2, 1, "", "getDatabaseAsDataFrame"], [32, 2, 1, "", "getFileName"], [32, 2, 1, "", "performCoinFlip"], [32, 2, 1, "", "tuning"]], "PAMI.extras.generateDatabase.generateTransactionalDatabase": [[32, 1, 1, "", "generateTransactionalDatabase"]], "PAMI.extras.generateDatabase.generateTransactionalDatabase.generateTransactionalDatabase": [[32, 2, 1, "", "create"], [32, 2, 1, "", "generateArray"], [32, 2, 1, "", "getTransactions"], [32, 2, 1, "", "save"], [32, 2, 1, "", "tuning"]], "PAMI.extras.generateLatexGraphFile": [[27, 4, 1, "", "generateLatexCode"], [27, 1, 1, "", "generateLatexGraphFile"]], "PAMI.extras.graph": [[33, 0, 0, "-", "DF2Fig"], [33, 0, 0, "-", "plotLineGraphFromDictionary"], [33, 0, 0, "-", "plotLineGraphsFromDataFrame"], [33, 0, 0, "-", "visualizeFuzzyPatterns"], [33, 0, 0, "-", "visualizePatterns"]], "PAMI.extras.graph.DF2Fig": [[33, 1, 1, "", "DF2Fig"]], "PAMI.extras.graph.DF2Fig.DF2Fig": [[33, 2, 1, "", "plot"]], "PAMI.extras.graph.plotLineGraphFromDictionary": [[33, 1, 1, "", "plotLineGraphFromDictionary"]], "PAMI.extras.graph.plotLineGraphsFromDataFrame": [[33, 1, 1, "", "plotGraphsFromDataFrame"]], "PAMI.extras.graph.plotLineGraphsFromDataFrame.plotGraphsFromDataFrame": [[33, 2, 1, "", "plotGraphsFromDataFrame"]], "PAMI.extras.graph.visualizeFuzzyPatterns": [[33, 1, 1, "", "visualizeFuzzyPatterns"]], "PAMI.extras.graph.visualizeFuzzyPatterns.visualizeFuzzyPatterns": [[33, 2, 1, "", "visualize"]], "PAMI.extras.graph.visualizePatterns": [[33, 1, 1, "", "visualizePatterns"]], "PAMI.extras.graph.visualizePatterns.visualizePatterns": [[33, 2, 1, "", "visualize"]], "PAMI.extras.imageProcessing": [[35, 0, 0, "-", "imagery2Databases"]], "PAMI.extras.imageProcessing.imagery2Databases": [[35, 1, 1, "", "createDatabase"]], "PAMI.extras.imageProcessing.imagery2Databases.createDatabase": [[35, 2, 1, "", "getDataFrame"], [35, 2, 1, "", "saveAsTemporalDB"], [35, 2, 1, "", "saveAsTransactionalDB"], [35, 2, 1, "", "saveAsUncertainTemporalDB"], [35, 2, 1, "", "saveAsUncertainTransactionalDB"], [35, 2, 1, "", "saveAsUtilityTemporalDB"], [35, 2, 1, "", "saveAsUtilityTransactionalDB"]], "PAMI.extras.messaging": [[36, 0, 0, "-", "discord"], [36, 0, 0, "-", "gmail"]], "PAMI.extras.messaging.discord": [[36, 1, 1, "", "discord"]], "PAMI.extras.messaging.discord.discord": [[36, 2, 1, "", "send"]], "PAMI.extras.messaging.gmail": [[36, 1, 1, "", "gmail"]], "PAMI.extras.messaging.gmail.gmail": [[36, 2, 1, "", "send"]], "PAMI.extras.neighbours": [[37, 0, 0, "-", "findNeighborsUsingEuclideanDistanceforPointInfo"], [37, 0, 0, "-", "findNeighboursUsingEuclidean"]], "PAMI.extras.neighbours.findNeighborsUsingEuclideanDistanceforPointInfo": [[37, 1, 1, "", "createNeighborhoodFileUsingEuclideanDistance"]], "PAMI.extras.neighbours.findNeighborsUsingEuclideanDistanceforPointInfo.createNeighborhoodFileUsingEuclideanDistance": [[37, 2, 1, "", "getFileName"]], "PAMI.extras.neighbours.findNeighboursUsingEuclidean": [[37, 1, 1, "", "createNeighborhoodFileUsingEuclideanDistance"]], "PAMI.extras.neighbours.findNeighboursUsingEuclidean.createNeighborhoodFileUsingEuclideanDistance": [[37, 2, 1, "", "getFileName"]], "PAMI.extras.scatterPlotSpatialPoints": [[27, 1, 1, "", "scatterPlotSpatialPoints"]], "PAMI.extras.scatterPlotSpatialPoints.scatterPlotSpatialPoints": [[27, 2, 1, "", "scatterPlotSpatialPoints"]], "PAMI.extras.stats": [[39, 0, 0, "-", "TransactionalDatabase"], [39, 0, 0, "-", "graphDatabase"], [39, 0, 0, "-", "sequentialDatabase"], [39, 0, 0, "-", "temporalDatabase"], [39, 0, 0, "-", "utilityDatabase"]], "PAMI.extras.stats.TransactionalDatabase": [[39, 1, 1, "", "TransactionalDatabase"]], "PAMI.extras.stats.TransactionalDatabase.TransactionalDatabase": [[39, 2, 1, "", "convertDataIntoMatrix"], [39, 2, 1, "", "getAverageTransactionLength"], [39, 2, 1, "", "getDatabaseSize"], [39, 2, 1, "", "getDensity"], [39, 2, 1, "", "getFrequenciesInRange"], [39, 2, 1, "", "getMaximumTransactionLength"], [39, 2, 1, "", "getMinimumTransactionLength"], [39, 2, 1, "", "getNumberOfItems"], [39, 2, 1, "", "getSortedListOfItemFrequencies"], [39, 2, 1, "", "getSparsity"], [39, 2, 1, "", "getStandardDeviationTransactionLength"], [39, 2, 1, "", "getTotalNumberOfItems"], [39, 2, 1, "", "getTransanctionalLengthDistribution"], [39, 2, 1, "", "getVarianceTransactionLength"], [39, 2, 1, "", "plotGraphs"], [39, 2, 1, "", "printStats"], [39, 2, 1, "", "run"], [39, 2, 1, "", "save"]], "PAMI.extras.stats.graphDatabase": [[39, 1, 1, "", "graphDatabase"]], "PAMI.extras.stats.graphDatabase.graphDatabase": [[39, 2, 1, "", "plotEdgeDistribution"], [39, 2, 1, "", "plotNodeDistribution"], [39, 2, 1, "", "printGraphDatabaseStatistics"], [39, 2, 1, "", "printIndividualGraphStats"]], "PAMI.extras.stats.sequentialDatabase": [[39, 1, 1, "", "sequentialDatabase"]], "PAMI.extras.stats.sequentialDatabase.sequentialDatabase": [[39, 2, 1, "", "getAverageItemPerSequenceLength"], [39, 2, 1, "", "getAverageItemPerSubsequenceLength"], [39, 2, 1, "", "getAverageSubsequencePerSequenceLength"], [39, 2, 1, "", "getDatabaseSize"], [39, 2, 1, "", "getFrequenciesInRange"], [39, 2, 1, "", "getMaximumSequenceLength"], [39, 2, 1, "", "getMaximumSubsequenceLength"], [39, 2, 1, "", "getMinimumSequenceLength"], [39, 2, 1, "", "getMinimumSubsequenceLength"], [39, 2, 1, "", "getSequenceSize"], [39, 2, 1, "", "getSequencialLengthDistribution"], [39, 2, 1, "", "getSortedListOfItemFrequencies"], [39, 2, 1, "", "getStandardDeviationSequenceLength"], [39, 2, 1, "", "getStandardDeviationSubsequenceLength"], [39, 2, 1, "", "getSubsequencialLengthDistribution"], [39, 2, 1, "", "getTotalNumberOfItems"], [39, 2, 1, "", "getVarianceSequenceLength"], [39, 2, 1, "", "getVarianceSubsequenceLength"], [39, 2, 1, "", "plotGraphs"], [39, 2, 1, "", "printStats"], [39, 2, 1, "", "readDatabase"], [39, 2, 1, "", "run"]], "PAMI.extras.stats.temporalDatabase": [[39, 1, 1, "", "temporalDatabase"]], "PAMI.extras.stats.temporalDatabase.temporalDatabase": [[39, 2, 1, "", "convertDataIntoMatrix"], [39, 2, 1, "", "getAverageInterArrivalPeriod"], [39, 2, 1, "", "getAveragePeriodOfItem"], [39, 2, 1, "", "getAverageTransactionLength"], [39, 2, 1, "", "getDatabaseSize"], [39, 2, 1, "", "getDensity"], [39, 2, 1, "", "getFrequenciesInRange"], [39, 2, 1, "", "getMaximumInterArrivalPeriod"], [39, 2, 1, "", "getMaximumPeriodOfItem"], [39, 2, 1, "", "getMaximumTransactionLength"], [39, 2, 1, "", "getMinimumInterArrivalPeriod"], [39, 2, 1, "", "getMinimumPeriodOfItem"], [39, 2, 1, "", "getMinimumTransactionLength"], [39, 2, 1, "", "getNumberOfTransactionsPerTimestamp"], [39, 2, 1, "", "getPeriodsInRange"], [39, 2, 1, "", "getSortedListOfItemFrequencies"], [39, 2, 1, "", "getSparsity"], [39, 2, 1, "", "getStandardDeviationPeriod"], [39, 2, 1, "", "getStandardDeviationTransactionLength"], [39, 2, 1, "", "getTotalNumberOfItems"], [39, 2, 1, "", "getTransanctionalLengthDistribution"], [39, 2, 1, "", "getVarianceTransactionLength"], [39, 2, 1, "", "plotGraphs"], [39, 2, 1, "", "printStats"], [39, 2, 1, "", "readDatabase"], [39, 2, 1, "", "run"], [39, 2, 1, "", "save"]], "PAMI.extras.stats.utilityDatabase": [[39, 1, 1, "", "utilityDatabase"]], "PAMI.extras.stats.utilityDatabase.utilityDatabase": [[39, 2, 1, "", "creatingItemSets"], [39, 2, 1, "", "getAverageTransactionLength"], [39, 2, 1, "", "getAverageUtility"], [39, 2, 1, "", "getDatabaseSize"], [39, 2, 1, "", "getFrequenciesInRange"], [39, 2, 1, "", "getMaximumTransactionLength"], [39, 2, 1, "", "getMaximumUtility"], [39, 2, 1, "", "getMinimumTransactionLength"], [39, 2, 1, "", "getMinimumUtility"], [39, 2, 1, "", "getNumberOfItems"], [39, 2, 1, "", "getSortedListOfItemFrequencies"], [39, 2, 1, "", "getSortedUtilityValuesOfItem"], [39, 2, 1, "", "getSparsity"], [39, 2, 1, "", "getStandardDeviationTransactionLength"], [39, 2, 1, "", "getTotalNumberOfItems"], [39, 2, 1, "", "getTotalUtility"], [39, 2, 1, "", "getTransanctionalLengthDistribution"], [39, 2, 1, "", "getVarianceTransactionLength"], [39, 2, 1, "", "plotGraphs"], [39, 2, 1, "", "printStats"], [39, 2, 1, "", "readDatabase"], [39, 2, 1, "", "run"], [39, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator": [[40, 0, 0, "-", "TemporalDatabase"], [40, 0, 0, "-", "TransactionalDatabase"], [40, 0, 0, "-", "createSyntheticGeoreferentialTemporal"], [40, 0, 0, "-", "createSyntheticGeoreferentialTransactions"], [40, 0, 0, "-", "createSyntheticGeoreferentialUncertainTransaction"], [40, 0, 0, "-", "createSyntheticTemporal"], [40, 0, 0, "-", "createSyntheticTransactions"], [40, 0, 0, "-", "createSyntheticUncertainTemporal"], [40, 0, 0, "-", "createSyntheticUncertainTransactions"], [40, 0, 0, "-", "createSyntheticUtility"], [40, 0, 0, "-", "fuzzyDatabase"], [40, 0, 0, "-", "generateTemporal"], [40, 0, 0, "-", "generateTransactional"], [40, 0, 0, "-", "generateUncertainTemporal"], [40, 0, 0, "-", "generateUncertainTransactional"], [40, 0, 0, "-", "generateUtilityTemporal"], [40, 0, 0, "-", "generateUtilityTransactional"], [40, 0, 0, "-", "georeferencedTemporalDatabase"], [40, 0, 0, "-", "georeferencedTransactionalDatabase"], [40, 0, 0, "-", "syntheticUtilityDatabase"], [40, 0, 0, "-", "temporalDatabaseGen"], [40, 0, 0, "-", "utilityDatabase"]], "PAMI.extras.syntheticDataGenerator.TemporalDatabase": [[40, 1, 1, "", "TemporalDatabase"]], "PAMI.extras.syntheticDataGenerator.TemporalDatabase.TemporalDatabase": [[40, 2, 1, "", "create"], [40, 2, 1, "", "getDatabaseAsDataFrame"], [40, 2, 1, "", "getFileName"], [40, 2, 1, "", "performCoinFlip"], [40, 2, 1, "", "tuning"]], "PAMI.extras.syntheticDataGenerator.TransactionalDatabase": [[40, 1, 1, "", "TransactionalDatabase"]], "PAMI.extras.syntheticDataGenerator.TransactionalDatabase.TransactionalDatabase": [[40, 2, 1, "", "create"], [40, 2, 1, "", "getTransactions"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialTemporal": [[40, 1, 1, "", "createGeoreferentialTemporalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialTemporal.createGeoreferentialTemporalDatabase": [[40, 2, 1, "", "createGeoreferentialTemporalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialTransactions": [[40, 1, 1, "", "createSyntheticGeoreferentialTransaction"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialTransactions.createSyntheticGeoreferentialTransaction": [[40, 2, 1, "", "createGeoreferentialTransactionalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialUncertainTransaction": [[40, 1, 1, "", "createSyntheticGeoreferentialUncertainTransaction"]], "PAMI.extras.syntheticDataGenerator.createSyntheticGeoreferentialUncertainTransaction.createSyntheticGeoreferentialUncertainTransaction": [[40, 2, 1, "", "createGeoreferentialUncertainTransactionalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticTemporal": [[40, 1, 1, "", "createSyntheticTemporal"]], "PAMI.extras.syntheticDataGenerator.createSyntheticTemporal.createSyntheticTemporal": [[40, 2, 1, "", "createTemporalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticTransactions": [[40, 1, 1, "", "createSyntheticTransaction"]], "PAMI.extras.syntheticDataGenerator.createSyntheticTransactions.createSyntheticTransaction": [[40, 2, 1, "", "createTransactionalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUncertainTemporal": [[40, 1, 1, "", "createSyntheticUncertainTemporal"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUncertainTemporal.createSyntheticUncertainTemporal": [[40, 2, 1, "", "createUncertainTemporalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUncertainTransactions": [[40, 1, 1, "", "createSyntheticUncertainTransaction"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUncertainTransactions.createSyntheticUncertainTransaction": [[40, 2, 1, "", "createUncertainTransactionalDatabase"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUtility": [[40, 1, 1, "", "createSyntheticUtility"]], "PAMI.extras.syntheticDataGenerator.createSyntheticUtility.createSyntheticUtility": [[40, 2, 1, "", "createUtilityDatabase"]], "PAMI.extras.syntheticDataGenerator.generateTemporal": [[40, 1, 1, "", "generateTemporal"]], "PAMI.extras.syntheticDataGenerator.generateTemporal.generateTemporal": [[40, 2, 1, "", "generate"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.generateTransactional": [[40, 1, 1, "", "generateTransactional"]], "PAMI.extras.syntheticDataGenerator.generateTransactional.generateTransactional": [[40, 2, 1, "", "generate"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.generateUncertainTemporal": [[40, 1, 1, "", "generateUncertainTemporal"]], "PAMI.extras.syntheticDataGenerator.generateUncertainTemporal.generateUncertainTemporal": [[40, 2, 1, "", "generate"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.generateUncertainTransactional": [[40, 1, 1, "", "generateUncertainTransactional"]], "PAMI.extras.syntheticDataGenerator.generateUncertainTransactional.generateUncertainTransactional": [[40, 2, 1, "", "generate"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.generateUtilityTemporal": [[40, 1, 1, "", "generateUtilityTemporal"]], "PAMI.extras.syntheticDataGenerator.generateUtilityTemporal.generateUtilityTemporal": [[40, 2, 1, "", "generate"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.generateUtilityTransactional": [[40, 1, 1, "", "generateUtilityTransactional"]], "PAMI.extras.syntheticDataGenerator.generateUtilityTransactional.generateUtilityTransactional": [[40, 2, 1, "", "generate"], [40, 2, 1, "", "save"]], "PAMI.extras.syntheticDataGenerator.syntheticUtilityDatabase": [[40, 1, 1, "", "syntheticUtilityDatabase"]], "PAMI.extras.syntheticDataGenerator.syntheticUtilityDatabase.syntheticUtilityDatabase": [[40, 2, 1, "", "__init__"], [40, 3, 1, "", "avgTransactionLength"], [40, 2, 1, "id0", "createRandomNumbers"], [40, 2, 1, "id1", "createSyntheticUtilityDatabase"], [40, 3, 1, "", "maxUtilRange"], [40, 3, 1, "", "numOfItems"], [40, 2, 1, "id2", "save"], [40, 3, 1, "", "totalTransactions"]], "PAMI.extras.syntheticDataGenerator.temporalDatabaseGen": [[40, 1, 1, "", "CreateSyntheticTemporal"]], "PAMI.extras.syntheticDataGenerator.temporalDatabaseGen.CreateSyntheticTemporal": [[40, 3, 1, "", "avg_transaction_length"], [40, 2, 1, "id3", "create_temporal_database"], [40, 2, 1, "", "generate_random_numbers"], [40, 3, 1, "", "num_of_items"], [40, 3, 1, "", "total_transactions"]], "PAMI.extras.syntheticDataGenerator.utilityDatabase": [[40, 1, 1, "", "UtilityDataGenerator"]], "PAMI.extras.syntheticDataGenerator.utilityDatabase.UtilityDataGenerator": [[40, 2, 1, "", "Generate"], [40, 2, 1, "", "GenerateAndPrintItemPairs"], [40, 2, 1, "", "GenerateExternalUtilityData"], [40, 2, 1, "", "GetExternalUtilityData"], [40, 2, 1, "", "GetInternalUtilityData"], [40, 2, 1, "", "GetUtilityData"], [40, 2, 1, "", "Save"], [40, 2, 1, "", "SaveItemsInternalUtilityValues"], [40, 2, 1, "", "Saveitemsexternalutilityvalues"]], "PAMI.extras.topKPatterns": [[27, 1, 1, "", "topKPatterns"]], "PAMI.extras.topKPatterns.topKPatterns": [[27, 2, 1, "", "getTopKPatterns"], [27, 2, 1, "", "save"]], "PAMI.extras.uncertaindb_convert": [[27, 1, 1, "", "predictedClass2Transaction"]], "PAMI.extras.uncertaindb_convert.predictedClass2Transaction": [[27, 2, 1, "", "getBinaryTransaction"]], "PAMI.extras.visualize": [[41, 0, 0, "-", "graphs"]], "PAMI.extras.visualize.graphs": [[41, 1, 1, "", "graphDatabase"]], "PAMI.extras.visualize.graphs.graphDatabase": [[41, 2, 1, "", "plot"]], "PAMI.faultTolerantFrequentPattern": [[43, 0, 0, "-", "basic"]], "PAMI.faultTolerantFrequentPattern.basic": [[158, 0, 0, "-", "FTApriori"], [159, 0, 0, "-", "FTFPGrowth"], [43, 0, 0, "-", "abstract"]], "PAMI.faultTolerantFrequentPattern.basic.FTApriori": [[158, 1, 1, "", "FTApriori"]], "PAMI.faultTolerantFrequentPattern.basic.FTApriori.FTApriori": [[158, 2, 1, "", "getMemoryRSS"], [158, 2, 1, "", "getMemoryUSS"], [158, 2, 1, "", "getPatterns"], [158, 2, 1, "", "getPatternsAsDataFrame"], [158, 2, 1, "", "getRuntime"], [158, 2, 1, "", "mine"], [158, 2, 1, "", "printResults"], [158, 2, 1, "", "save"], [158, 2, 1, "", "startMine"]], "PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth": [[159, 1, 1, "", "FTFPGrowth"]], "PAMI.faultTolerantFrequentPattern.basic.FTFPGrowth.FTFPGrowth": [[159, 2, 1, "", "getMemoryRSS"], [159, 2, 1, "", "getMemoryUSS"], [159, 2, 1, "", "getPatterns"], [159, 2, 1, "", "getPatternsAsDataFrame"], [159, 2, 1, "", "getRuntime"], [159, 2, 1, "", "mine"], [159, 2, 1, "", "printResults"], [159, 2, 1, "", "save"], [159, 2, 1, "", "startMine"]], "PAMI.frequentPattern": [[45, 0, 0, "-", "basic"], [46, 0, 0, "-", "closed"], [47, 0, 0, "-", "cuda"], [48, 0, 0, "-", "maximal"], [49, 0, 0, "-", "pyspark"], [50, 0, 0, "-", "topk"]], "PAMI.frequentPattern.basic": [[162, 0, 0, "-", "Apriori"], [163, 0, 0, "-", "ECLAT"], [164, 0, 0, "-", "ECLATDiffset"], [165, 0, 0, "-", "ECLATbitset"], [166, 0, 0, "-", "FPGrowth"], [45, 0, 0, "-", "abstract"]], "PAMI.frequentPattern.basic.Apriori": [[162, 1, 1, "", "Apriori"]], "PAMI.frequentPattern.basic.Apriori.Apriori": [[162, 2, 1, "", "getMemoryRSS"], [162, 2, 1, "", "getMemoryUSS"], [162, 2, 1, "", "getPatterns"], [162, 2, 1, "", "getPatternsAsDataFrame"], [162, 2, 1, "", "getRuntime"], [162, 2, 1, "", "mine"], [162, 2, 1, "", "printResults"], [162, 2, 1, "", "save"], [162, 2, 1, "", "startMine"]], "PAMI.frequentPattern.basic.ECLAT": [[163, 1, 1, "", "ECLAT"]], "PAMI.frequentPattern.basic.ECLAT.ECLAT": [[163, 2, 1, "", "getMemoryRSS"], [163, 2, 1, "", "getMemoryUSS"], [163, 2, 1, "", "getPatterns"], [163, 2, 1, "", "getPatternsAsDataFrame"], [163, 2, 1, "", "getRuntime"], [163, 2, 1, "", "mine"], [163, 2, 1, "", "printResults"], [163, 2, 1, "", "save"], [163, 2, 1, "", "startMine"]], "PAMI.frequentPattern.basic.ECLATDiffset": [[164, 1, 1, "", "ECLATDiffset"]], "PAMI.frequentPattern.basic.ECLATDiffset.ECLATDiffset": [[164, 2, 1, "", "getMemoryRSS"], [164, 2, 1, "", "getMemoryUSS"], [164, 2, 1, "", "getPatterns"], [164, 2, 1, "", "getPatternsAsDataFrame"], [164, 2, 1, "", "getRuntime"], [164, 2, 1, "", "mine"], [164, 2, 1, "", "printResults"], [164, 2, 1, "", "save"], [164, 2, 1, "", "startMine"]], "PAMI.frequentPattern.basic.ECLATbitset": [[165, 1, 1, "", "ECLATbitset"]], "PAMI.frequentPattern.basic.ECLATbitset.ECLATbitset": [[165, 2, 1, "", "getMemoryRSS"], [165, 2, 1, "", "getMemoryUSS"], [165, 2, 1, "", "getPatterns"], [165, 2, 1, "", "getPatternsAsDataFrame"], [165, 2, 1, "", "getRuntime"], [165, 2, 1, "", "mine"], [165, 2, 1, "", "printResults"], [165, 2, 1, "", "save"], [165, 2, 1, "", "startMine"]], "PAMI.frequentPattern.basic.FPGrowth": [[166, 1, 1, "", "FPGrowth"]], "PAMI.frequentPattern.basic.FPGrowth.FPGrowth": [[166, 2, 1, "", "getMemoryRSS"], [166, 2, 1, "", "getMemoryUSS"], [166, 2, 1, "", "getPatterns"], [166, 2, 1, "", "getPatternsAsDataFrame"], [166, 2, 1, "", "getRuntime"], [166, 2, 1, "", "mine"], [166, 2, 1, "", "printResults"], [166, 2, 1, "", "save"], [166, 2, 1, "", "startMine"]], "PAMI.frequentPattern.closed": [[181, 0, 0, "-", "CHARM"], [46, 0, 0, "-", "abstract"]], "PAMI.frequentPattern.closed.CHARM": [[181, 1, 1, "", "CHARM"]], "PAMI.frequentPattern.closed.CHARM.CHARM": [[181, 2, 1, "", "getMemoryRSS"], [181, 2, 1, "", "getMemoryUSS"], [181, 2, 1, "", "getPatterns"], [181, 2, 1, "", "getPatternsAsDataFrame"], [181, 2, 1, "", "getRuntime"], [181, 2, 1, "", "mine"], [181, 2, 1, "", "printResults"], [181, 2, 1, "", "save"], [181, 2, 1, "", "startMine"]], "PAMI.frequentPattern.maximal": [[174, 0, 0, "-", "MaxFPGrowth"], [48, 0, 0, "-", "abstract"]], "PAMI.frequentPattern.maximal.MaxFPGrowth": [[174, 1, 1, "", "MaxFPGrowth"]], "PAMI.frequentPattern.maximal.MaxFPGrowth.MaxFPGrowth": [[174, 2, 1, "", "getMemoryRSS"], [174, 2, 1, "", "getMemoryUSS"], [174, 2, 1, "", "getPatterns"], [174, 2, 1, "", "getPatternsAsDataFrame"], [174, 2, 1, "", "getRuntime"], [174, 2, 1, "", "mine"], [174, 2, 1, "", "printResults"], [174, 2, 1, "", "save"], [174, 2, 1, "", "startMine"]], "PAMI.frequentPattern.pyspark": [[49, 0, 0, "-", "abstract"], [176, 0, 0, "-", "parallelApriori"], [177, 0, 0, "-", "parallelECLAT"], [178, 0, 0, "-", "parallelFPGrowth"]], "PAMI.frequentPattern.pyspark.parallelApriori": [[176, 1, 1, "", "parallelApriori"]], "PAMI.frequentPattern.pyspark.parallelApriori.parallelApriori": [[176, 2, 1, "", "getMemoryRSS"], [176, 2, 1, "", "getMemoryUSS"], [176, 2, 1, "", "getPatterns"], [176, 2, 1, "", "getPatternsAsDataFrame"], [176, 2, 1, "", "getRuntime"], [176, 2, 1, "", "mine"], [176, 2, 1, "", "printResults"], [176, 2, 1, "", "save"], [176, 2, 1, "", "startMine"]], "PAMI.frequentPattern.pyspark.parallelECLAT": [[177, 1, 1, "", "parallelECLAT"]], "PAMI.frequentPattern.pyspark.parallelECLAT.parallelECLAT": [[177, 2, 1, "", "getMemoryRSS"], [177, 2, 1, "", "getMemoryUSS"], [177, 2, 1, "", "getPatterns"], [177, 2, 1, "", "getPatternsAsDataFrame"], [177, 2, 1, "", "getRuntime"], [177, 2, 1, "", "mine"], [177, 2, 1, "", "printResults"], [177, 2, 1, "", "save"], [177, 2, 1, "", "startMine"]], "PAMI.frequentPattern.pyspark.parallelFPGrowth": [[178, 1, 1, "", "Node"], [178, 1, 1, "", "Tree"], [178, 1, 1, "", "parallelFPGrowth"]], "PAMI.frequentPattern.pyspark.parallelFPGrowth.Tree": [[178, 2, 1, "", "addNodeToNodeLink"], [178, 2, 1, "", "addTransaction"], [178, 2, 1, "", "generateConditionalTree"]], "PAMI.frequentPattern.pyspark.parallelFPGrowth.parallelFPGrowth": [[178, 2, 1, "", "buildTree"], [178, 2, 1, "", "genAllFrequentPatterns"], [178, 2, 1, "", "genCondTransaction"], [178, 2, 1, "", "genFreqPatterns"], [178, 2, 1, "", "getMemoryRSS"], [178, 2, 1, "", "getMemoryUSS"], [178, 2, 1, "", "getPartitionId"], [178, 2, 1, "", "getPatterns"], [178, 2, 1, "", "getPatternsAsDataFrame"], [178, 2, 1, "", "getRuntime"], [178, 2, 1, "", "mine"], [178, 2, 1, "", "printResults"], [178, 2, 1, "", "save"], [178, 2, 1, "", "startMine"]], "PAMI.frequentPattern.topk": [[179, 0, 0, "-", "FAE"], [50, 0, 0, "-", "abstract"]], "PAMI.frequentPattern.topk.FAE": [[179, 1, 1, "", "FAE"]], "PAMI.frequentPattern.topk.FAE.FAE": [[179, 2, 1, "", "getMemoryRSS"], [179, 2, 1, "", "getMemoryUSS"], [179, 2, 1, "", "getPatterns"], [179, 2, 1, "", "getPatternsAsDataFrame"], [179, 2, 1, "", "getRuntime"], [179, 2, 1, "", "mine"], [179, 2, 1, "", "printResults"], [179, 2, 1, "", "save"], [179, 2, 1, "", "startMine"]], "PAMI.fuzzyCorrelatedPattern": [[52, 0, 0, "-", "basic"]], "PAMI.fuzzyCorrelatedPattern.basic": [[183, 0, 0, "-", "FCPGrowth"], [52, 0, 0, "-", "abstract"]], "PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth": [[183, 1, 1, "", "Element"], [183, 1, 1, "", "FCPGrowth"], [183, 4, 1, "", "main"]], "PAMI.fuzzyCorrelatedPattern.basic.FCPGrowth.FCPGrowth": [[183, 2, 1, "", "getMemoryRSS"], [183, 2, 1, "", "getMemoryUSS"], [183, 2, 1, "", "getPatterns"], [183, 2, 1, "", "getPatternsAsDataFrame"], [183, 2, 1, "", "getRuntime"], [183, 2, 1, "", "mine"], [183, 2, 1, "", "printResults"], [183, 2, 1, "", "save"], [183, 2, 1, "", "startMine"]], "PAMI.fuzzyFrequentPattern": [[54, 0, 0, "-", "basic"]], "PAMI.fuzzyFrequentPattern.basic": [[185, 0, 0, "-", "FFIMiner"], [54, 0, 0, "-", "FFIMiner_old"], [54, 0, 0, "-", "abstract"]], "PAMI.fuzzyFrequentPattern.basic.FFIMiner": [[185, 1, 1, "", "FFIMiner"]], "PAMI.fuzzyFrequentPattern.basic.FFIMiner.FFIMiner": [[185, 2, 1, "", "getMemoryRSS"], [185, 2, 1, "", "getMemoryUSS"], [185, 2, 1, "", "getPatterns"], [185, 2, 1, "", "getPatternsAsDataFrame"], [185, 2, 1, "", "getRuntime"], [185, 2, 1, "", "mine"], [185, 2, 1, "", "printResults"], [185, 2, 1, "", "save"], [185, 2, 1, "", "startMine"]], "PAMI.fuzzyFrequentPattern.basic.FFIMiner_old": [[54, 1, 1, "", "FFIMiner"]], "PAMI.fuzzyFrequentPattern.basic.FFIMiner_old.FFIMiner": [[54, 2, 1, "", "getMemoryRSS"], [54, 2, 1, "", "getMemoryUSS"], [54, 2, 1, "", "getPatterns"], [54, 2, 1, "", "getPatternsAsDataFrame"], [54, 2, 1, "", "getRuntime"], [54, 2, 1, "", "mine"], [54, 2, 1, "", "printResults"], [54, 2, 1, "", "save"], [54, 2, 1, "", "startMine"]], "PAMI.fuzzyGeoreferencedFrequentPattern": [[56, 0, 0, "-", "basic"]], "PAMI.fuzzyGeoreferencedFrequentPattern.basic": [[188, 0, 0, "-", "FFSPMiner"], [56, 0, 0, "-", "FFSPMiner_old"], [56, 0, 0, "-", "abstract"]], "PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner": [[188, 1, 1, "", "FFSPMiner"]], "PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner.FFSPMiner": [[188, 2, 1, "", "getMemoryRSS"], [188, 2, 1, "", "getMemoryUSS"], [188, 2, 1, "", "getPatterns"], [188, 2, 1, "", "getPatternsAsDataFrame"], [188, 2, 1, "", "getRuntime"], [188, 2, 1, "", "mine"], [188, 2, 1, "", "printResults"], [188, 2, 1, "", "save"], [188, 2, 1, "", "startMine"]], "PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner_old": [[56, 1, 1, "", "FFSPMiner"]], "PAMI.fuzzyGeoreferencedFrequentPattern.basic.FFSPMiner_old.FFSPMiner": [[56, 2, 1, "", "getMemoryRSS"], [56, 2, 1, "", "getMemoryUSS"], [56, 2, 1, "", "getPatterns"], [56, 2, 1, "", "getPatternsAsDataFrame"], [56, 2, 1, "", "getRuntime"], [56, 2, 1, "", "mine"], [56, 2, 1, "", "printResults"], [56, 2, 1, "", "save"], [56, 2, 1, "", "startMine"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern": [[58, 0, 0, "-", "basic"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic": [[189, 0, 0, "-", "FGPFPMiner"], [58, 0, 0, "-", "FGPFPMiner_old"], [58, 0, 0, "-", "abstract"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner": [[189, 1, 1, "", "FGPFPMiner"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner.FGPFPMiner": [[189, 2, 1, "", "getMemoryRSS"], [189, 2, 1, "", "getMemoryUSS"], [189, 2, 1, "", "getPatterns"], [189, 2, 1, "", "getPatternsAsDataFrame"], [189, 2, 1, "", "getRuntime"], [189, 2, 1, "", "mine"], [189, 2, 1, "", "printResults"], [189, 2, 1, "", "save"], [189, 2, 1, "", "startMine"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner_old": [[58, 1, 1, "", "FGPFPMiner"]], "PAMI.fuzzyGeoreferencedPeriodicFrequentPattern.basic.FGPFPMiner_old.FGPFPMiner": [[58, 2, 1, "", "generateGraphs"], [58, 2, 1, "", "generateLatexCode"], [58, 2, 1, "", "getMemoryRSS"], [58, 2, 1, "", "getMemoryUSS"], [58, 2, 1, "", "getPatterns"], [58, 2, 1, "", "getPatternsAsDataFrame"], [58, 2, 1, "", "getPatternsAsDataframe"], [58, 2, 1, "", "getRuntime"], [58, 2, 1, "", "mine"], [58, 2, 1, "", "printResults"], [58, 2, 1, "", "save"], [58, 2, 1, "", "startMine"]], "PAMI.fuzzyPartialPeriodicPatterns": [[60, 0, 0, "-", "basic"]], "PAMI.fuzzyPartialPeriodicPatterns.basic": [[60, 0, 0, "-", "F3PMiner"], [60, 0, 0, "-", "abstract"]], "PAMI.fuzzyPartialPeriodicPatterns.basic.F3PMiner": [[60, 1, 1, "", "F3PMiner"]], "PAMI.fuzzyPartialPeriodicPatterns.basic.F3PMiner.F3PMiner": [[60, 2, 1, "", "getMemoryRSS"], [60, 2, 1, "", "getMemoryUSS"], [60, 2, 1, "", "getPatterns"], [60, 2, 1, "", "getPatternsAsDataFrame"], [60, 2, 1, "", "getRuntime"], [60, 2, 1, "", "mine"], [60, 2, 1, "", "printResults"], [60, 2, 1, "", "save"], [60, 2, 1, "", "startMine"]], "PAMI.fuzzyPeriodicFrequentPattern": [[62, 0, 0, "-", "basic"]], "PAMI.fuzzyPeriodicFrequentPattern.basic": [[192, 0, 0, "-", "FPFPMiner"], [62, 0, 0, "-", "FPFPMiner_old"], [62, 0, 0, "-", "abstract"]], "PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner": [[192, 1, 1, "", "FPFPMiner"]], "PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner.FPFPMiner": [[192, 2, 1, "", "getMemoryRSS"], [192, 2, 1, "", "getMemoryUSS"], [192, 2, 1, "", "getPatterns"], [192, 2, 1, "", "getPatternsAsDataFrame"], [192, 2, 1, "", "getRuntime"], [192, 2, 1, "", "mine"], [192, 2, 1, "", "printResults"], [192, 2, 1, "", "save"], [192, 2, 1, "", "startMine"]], "PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner_old": [[62, 1, 1, "", "FPFPMiner"]], "PAMI.fuzzyPeriodicFrequentPattern.basic.FPFPMiner_old.FPFPMiner": [[62, 2, 1, "", "getMemoryRSS"], [62, 2, 1, "", "getMemoryUSS"], [62, 2, 1, "", "getPatterns"], [62, 2, 1, "", "getPatternsAsDataFrame"], [62, 2, 1, "", "getRuntime"], [62, 2, 1, "", "mine"], [62, 2, 1, "", "printResults"], [62, 2, 1, "", "save"], [62, 2, 1, "", "startMine"]], "PAMI.geoReferencedPeriodicFrequentPattern": [[64, 0, 0, "-", "basic"]], "PAMI.geoReferencedPeriodicFrequentPattern.basic": [[198, 0, 0, "-", "GPFPMiner"], [64, 0, 0, "-", "abstract"]], "PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner": [[198, 1, 1, "", "GPFPMiner"]], "PAMI.geoReferencedPeriodicFrequentPattern.basic.GPFPMiner.GPFPMiner": [[198, 2, 1, "", "getMemoryRSS"], [198, 2, 1, "", "getMemoryUSS"], [198, 2, 1, "", "getPatterns"], [198, 2, 1, "", "getPatternsAsDataFrame"], [198, 2, 1, "", "getRuntime"], [198, 2, 1, "", "mapNeighbours"], [198, 2, 1, "", "mine"], [198, 2, 1, "", "printResults"], [198, 2, 1, "", "save"], [198, 2, 1, "", "startMine"]], "PAMI.georeferencedFrequentPattern": [[66, 0, 0, "-", "basic"]], "PAMI.georeferencedFrequentPattern.basic": [[200, 0, 0, "-", "SpatialECLAT"], [66, 0, 0, "-", "abstract"]], "PAMI.georeferencedFrequentPattern.basic.SpatialECLAT": [[200, 1, 1, "", "SpatialECLAT"]], "PAMI.georeferencedFrequentPattern.basic.SpatialECLAT.SpatialECLAT": [[200, 2, 1, "", "getMemoryRSS"], [200, 2, 1, "", "getMemoryUSS"], [200, 2, 1, "", "getPatterns"], [200, 2, 1, "", "getPatternsAsDataFrame"], [200, 2, 1, "", "getRuntime"], [200, 2, 1, "", "mine"], [200, 2, 1, "", "printResults"], [200, 2, 1, "", "save"], [200, 2, 1, "", "startMine"]], "PAMI.georeferencedFrequentSequencePattern": [[67, 0, 0, "-", "abstract"]], "PAMI.georeferencedPartialPeriodicPattern": [[69, 0, 0, "-", "basic"]], "PAMI.georeferencedPartialPeriodicPattern.basic": [[201, 0, 0, "-", "STEclat"], [69, 0, 0, "-", "abstract"]], "PAMI.georeferencedPartialPeriodicPattern.basic.STEclat": [[201, 1, 1, "", "STEclat"]], "PAMI.georeferencedPartialPeriodicPattern.basic.STEclat.STEclat": [[201, 2, 1, "", "getMemoryRSS"], [201, 2, 1, "", "getMemoryUSS"], [201, 2, 1, "", "getPatterns"], [201, 2, 1, "", "getPatternsAsDataFrame"], [201, 2, 1, "", "getRuntime"], [201, 2, 1, "", "mapNeighbours"], [201, 2, 1, "", "mine"], [201, 2, 1, "", "printResults"], [201, 2, 1, "", "save"], [201, 2, 1, "", "startMine"]], "PAMI.highUtilityFrequentPattern": [[71, 0, 0, "-", "basic"]], "PAMI.highUtilityFrequentPattern.basic": [[202, 0, 0, "-", "HUFIM"], [71, 0, 0, "-", "abstract"]], "PAMI.highUtilityFrequentPattern.basic.HUFIM": [[202, 1, 1, "", "HUFIM"]], "PAMI.highUtilityFrequentPattern.basic.HUFIM.HUFIM": [[202, 2, 1, "", "getMemoryRSS"], [202, 2, 1, "", "getMemoryUSS"], [202, 2, 1, "", "getPatterns"], [202, 2, 1, "", "getPatternsAsDataFrame"], [202, 2, 1, "", "getRuntime"], [202, 2, 1, "", "mine"], [202, 2, 1, "", "printResults"], [202, 2, 1, "", "save"], [202, 2, 1, "", "startMine"]], "PAMI.highUtilityGeoreferencedFrequentPattern": [[73, 0, 0, "-", "basic"]], "PAMI.highUtilityGeoreferencedFrequentPattern.basic": [[205, 0, 0, "-", "SHUFIM"], [73, 0, 0, "-", "abstract"]], "PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM": [[205, 1, 1, "", "SHUFIM"], [205, 4, 1, "", "main"]], "PAMI.highUtilityGeoreferencedFrequentPattern.basic.SHUFIM.SHUFIM": [[205, 2, 1, "", "getMemoryRSS"], [205, 2, 1, "", "getMemoryUSS"], [205, 2, 1, "", "getPatterns"], [205, 2, 1, "", "getPatternsAsDataFrame"], [205, 2, 1, "", "getRuntime"], [205, 2, 1, "", "mine"], [205, 2, 1, "", "printResults"], [205, 2, 1, "", "save"], [205, 2, 1, "", "startMine"]], "PAMI.highUtilityPattern": [[75, 0, 0, "-", "basic"], [76, 0, 0, "-", "parallel"]], "PAMI.highUtilityPattern.basic": [[206, 0, 0, "-", "EFIM"], [207, 0, 0, "-", "HMiner"], [208, 0, 0, "-", "UPGrowth"], [75, 0, 0, "-", "abstract"], [75, 0, 0, "-", "efimParallel"]], "PAMI.highUtilityPattern.basic.EFIM": [[206, 1, 1, "", "EFIM"]], "PAMI.highUtilityPattern.basic.EFIM.EFIM": [[206, 2, 1, "", "getMemoryRSS"], [206, 2, 1, "", "getMemoryUSS"], [206, 2, 1, "", "getPatterns"], [206, 2, 1, "", "getPatternsAsDataFrame"], [206, 2, 1, "", "getRuntime"], [206, 2, 1, "", "mine"], [206, 2, 1, "", "printResults"], [206, 2, 1, "", "save"], [206, 2, 1, "", "sort_transaction"], [206, 2, 1, "", "startMine"]], "PAMI.highUtilityPattern.basic.HMiner": [[207, 1, 1, "", "HMiner"]], "PAMI.highUtilityPattern.basic.HMiner.HMiner": [[207, 2, 1, "", "getMemoryRSS"], [207, 2, 1, "", "getMemoryUSS"], [207, 2, 1, "", "getPatterns"], [207, 2, 1, "", "getPatternsAsDataFrame"], [207, 2, 1, "", "getRuntime"], [207, 2, 1, "", "mine"], [207, 2, 1, "", "printResults"], [207, 2, 1, "", "save"], [207, 2, 1, "", "startMine"]], "PAMI.highUtilityPattern.basic.UPGrowth": [[208, 1, 1, "", "UPGrowth"]], "PAMI.highUtilityPattern.basic.UPGrowth.UPGrowth": [[208, 2, 1, "", "PrintStats"], [208, 2, 1, "", "getMemoryRSS"], [208, 2, 1, "", "getMemoryUSS"], [208, 2, 1, "", "getPatterns"], [208, 2, 1, "", "getPatternsAsDataFrame"], [208, 2, 1, "", "getRuntime"], [208, 2, 1, "", "mine"], [208, 2, 1, "", "printResults"], [208, 2, 1, "", "save"], [208, 2, 1, "", "startMine"]], "PAMI.highUtilityPattern.basic.efimParallel": [[75, 1, 1, "", "efimParallel"]], "PAMI.highUtilityPattern.basic.efimParallel.efimParallel": [[75, 2, 1, "", "getMemoryRSS"], [75, 2, 1, "", "getMemoryUSS"], [75, 2, 1, "", "getPatterns"], [75, 2, 1, "", "getPatternsAsDataFrame"], [75, 2, 1, "", "getRuntime"], [75, 2, 1, "", "mine"], [75, 2, 1, "", "printResults"], [75, 2, 1, "", "save"], [75, 2, 1, "", "startMine"]], "PAMI.highUtilityPattern.parallel": [[76, 0, 0, "-", "abstract"], [76, 0, 0, "-", "efimparallel"]], "PAMI.highUtilityPattern.parallel.efimparallel": [[76, 1, 1, "", "efimParallel"]], "PAMI.highUtilityPattern.parallel.efimparallel.efimParallel": [[76, 2, 1, "", "getMemoryRSS"], [76, 2, 1, "", "getMemoryUSS"], [76, 2, 1, "", "getPatterns"], [76, 2, 1, "", "getPatternsAsDataFrame"], [76, 2, 1, "", "getRuntime"], [76, 2, 1, "", "mine"], [76, 2, 1, "", "printResults"], [76, 2, 1, "", "save"], [76, 2, 1, "", "startMine"]], "PAMI.highUtilityPatternsInStreams": [[77, 0, 0, "-", "abstract"]], "PAMI.highUtilitySpatialPattern": [[78, 0, 0, "-", "abstract"], [79, 0, 0, "-", "basic"], [80, 0, 0, "-", "topk"]], "PAMI.highUtilitySpatialPattern.abstract": [[78, 1, 1, "", "utilityPatterns"]], "PAMI.highUtilitySpatialPattern.abstract.utilityPatterns": [[78, 2, 1, "", "endTime"], [78, 2, 1, "", "finalPatterns"], [78, 2, 1, "", "getMemoryRSS"], [78, 2, 1, "", "getMemoryUSS"], [78, 2, 1, "", "getPatterns"], [78, 2, 1, "", "getPatternsAsDataFrame"], [78, 2, 1, "", "getRuntime"], [78, 2, 1, "", "iFile"], [78, 2, 1, "", "memoryRSS"], [78, 2, 1, "", "memoryUSS"], [78, 2, 1, "", "minUtil"], [78, 2, 1, "", "nFile"], [78, 2, 1, "", "oFile"], [78, 2, 1, "", "save"], [78, 2, 1, "", "startMine"], [78, 2, 1, "", "startTime"]], "PAMI.highUtilitySpatialPattern.basic": [[210, 0, 0, "-", "HDSHUIM"], [211, 0, 0, "-", "SHUIM"], [79, 0, 0, "-", "abstract"]], "PAMI.highUtilitySpatialPattern.basic.HDSHUIM": [[210, 1, 1, "", "HDSHUIM"]], "PAMI.highUtilitySpatialPattern.basic.HDSHUIM.HDSHUIM": [[210, 2, 1, "", "getMemoryRSS"], [210, 2, 1, "", "getMemoryUSS"], [210, 2, 1, "", "getPatterns"], [210, 2, 1, "", "getPatternsAsDataFrame"], [210, 2, 1, "", "getRuntime"], [210, 2, 1, "", "mine"], [210, 2, 1, "", "printResults"], [210, 2, 1, "", "save"], [210, 2, 1, "", "startMine"]], "PAMI.highUtilitySpatialPattern.basic.SHUIM": [[211, 1, 1, "", "SHUIM"]], "PAMI.highUtilitySpatialPattern.basic.SHUIM.SHUIM": [[211, 2, 1, "", "getMemoryRSS"], [211, 2, 1, "", "getMemoryUSS"], [211, 2, 1, "", "getPatterns"], [211, 2, 1, "", "getPatternsAsDataFrame"], [211, 2, 1, "", "getRuntime"], [211, 2, 1, "", "mine"], [211, 2, 1, "", "printResults"], [211, 2, 1, "", "save"], [211, 2, 1, "", "startMine"]], "PAMI.highUtilitySpatialPattern.topk": [[213, 0, 0, "-", "TKSHUIM"], [80, 0, 0, "-", "abstract"]], "PAMI.highUtilitySpatialPattern.topk.TKSHUIM": [[213, 1, 1, "", "Dataset"], [213, 1, 1, "", "TKSHUIM"], [213, 1, 1, "", "Transaction"], [213, 4, 1, "", "main"]], "PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Dataset": [[213, 2, 1, "", "createTransaction"], [213, 2, 1, "", "getMaxItem"], [213, 2, 1, "", "getTransactions"], [213, 3, 1, "", "maxItem"], [213, 3, 1, "", "transactions"]], "PAMI.highUtilitySpatialPattern.topk.TKSHUIM.TKSHUIM": [[213, 3, 1, "", "Neighbours"], [213, 2, 1, "", "additemset"], [213, 2, 1, "", "backtrackingEFIM"], [213, 2, 1, "", "calculateNeighbourIntersection"], [213, 3, 1, "", "candidateCount"], [213, 3, 1, "", "endTime"], [213, 3, 1, "", "finalPatterns"], [213, 2, 1, "", "getMemoryRSS"], [213, 2, 1, "", "getMemoryUSS"], [213, 2, 1, "", "getPatterns"], [213, 2, 1, "", "getPatternsAsDataFrame"], [213, 2, 1, "", "getRuntime"], [213, 3, 1, "", "heapList"], [213, 3, 1, "", "iFile"], [213, 3, 1, "", "intTostr"], [213, 2, 1, "", "intersection"], [213, 2, 1, "", "is_equal"], [213, 3, 1, "", "maxMemory"], [213, 3, 1, "", "memoryRSS"], [213, 3, 1, "", "memoryUSS"], [213, 3, 1, "", "minUtil"], [213, 2, 1, "", "mine"], [213, 3, 1, "", "nFile"], [213, 3, 1, "", "newNamesToOldNames"], [213, 3, 1, "", "oFile"], [213, 3, 1, "", "oldNamesToNewNames"], [213, 2, 1, "", "output"], [213, 2, 1, "", "printResults"], [213, 2, 1, "", "save"], [213, 3, 1, "", "sep"], [213, 2, 1, "", "sortDatabase"], [213, 2, 1, "", "sort_transaction"], [213, 2, 1, "", "startMine"], [213, 3, 1, "", "startTime"], [213, 3, 1, "", "strToint"], [213, 3, 1, "", "temp"], [213, 2, 1, "", "useUtilityBinArrayToCalculateLocalUtilityFirstTime"], [213, 2, 1, "", "useUtilityBinArrayToCalculateSubtreeUtilityFirstTime"], [213, 2, 1, "", "useUtilityBinArraysToCalculateUpperBounds"], [213, 3, 1, "", "utilityBinArrayLU"], [213, 3, 1, "", "utilityBinArraySU"]], "PAMI.highUtilitySpatialPattern.topk.TKSHUIM.Transaction": [[213, 2, 1, "", "getItems"], [213, 2, 1, "", "getLastPosition"], [213, 2, 1, "", "getPmus"], [213, 2, 1, "", "getUtilities"], [213, 2, 1, "", "insertionSort"], [213, 3, 1, "", "offset"], [213, 3, 1, "", "prefixUtility"], [213, 2, 1, "", "projectTransaction"], [213, 2, 1, "", "removeUnpromisingItems"]], "PAMI.highUtilitySpatialPattern.topk.abstract": [[80, 1, 1, "", "utilityPatterns"]], "PAMI.highUtilitySpatialPattern.topk.abstract.utilityPatterns": [[80, 2, 1, "", "endTime"], [80, 2, 1, "", "finalPatterns"], [80, 2, 1, "", "getMemoryRSS"], [80, 2, 1, "", "getMemoryUSS"], [80, 2, 1, "", "getPatterns"], [80, 2, 1, "", "getPatternsAsDataFrame"], [80, 2, 1, "", "getRuntime"], [80, 2, 1, "", "iFile"], [80, 2, 1, "", "memoryRSS"], [80, 2, 1, "", "memoryUSS"], [80, 2, 1, "", "nFile"], [80, 2, 1, "", "oFile"], [80, 2, 1, "", "printResults"], [80, 2, 1, "", "save"], [80, 2, 1, "", "startMine"], [80, 2, 1, "", "startTime"]], "PAMI.localPeriodicPattern": [[82, 0, 0, "-", "basic"]], "PAMI.localPeriodicPattern.basic": [[216, 0, 0, "-", "LPPGrowth"], [217, 0, 0, "-", "LPPMBreadth"], [218, 0, 0, "-", "LPPMDepth"], [82, 0, 0, "-", "abstract"]], "PAMI.localPeriodicPattern.basic.LPPGrowth": [[216, 1, 1, "", "LPPGrowth"], [216, 1, 1, "", "Node"], [216, 1, 1, "", "Tree"]], "PAMI.localPeriodicPattern.basic.LPPGrowth.LPPGrowth": [[216, 2, 1, "", "getMemoryRSS"], [216, 2, 1, "", "getMemoryUSS"], [216, 2, 1, "", "getPatterns"], [216, 2, 1, "", "getPatternsAsDataFrame"], [216, 2, 1, "", "getRuntime"], [216, 2, 1, "", "mine"], [216, 2, 1, "", "printResults"], [216, 2, 1, "", "save"], [216, 2, 1, "", "startMine"]], "PAMI.localPeriodicPattern.basic.LPPGrowth.Node": [[216, 2, 1, "", "getChild"]], "PAMI.localPeriodicPattern.basic.LPPGrowth.Tree": [[216, 2, 1, "", "addTransaction"], [216, 2, 1, "", "createPrefixTree"], [216, 2, 1, "", "deleteNode"], [216, 2, 1, "", "fixNodeLinks"]], "PAMI.localPeriodicPattern.basic.LPPMBreadth": [[217, 1, 1, "", "LPPMBreadth"]], "PAMI.localPeriodicPattern.basic.LPPMBreadth.LPPMBreadth": [[217, 2, 1, "", "getMemoryRSS"], [217, 2, 1, "", "getMemoryUSS"], [217, 2, 1, "", "getPatterns"], [217, 2, 1, "", "getPatternsAsDataFrame"], [217, 2, 1, "", "getRuntime"], [217, 2, 1, "", "mine"], [217, 2, 1, "", "printResults"], [217, 2, 1, "", "save"], [217, 2, 1, "", "startMine"]], "PAMI.localPeriodicPattern.basic.LPPMDepth": [[218, 1, 1, "", "LPPMDepth"]], "PAMI.localPeriodicPattern.basic.LPPMDepth.LPPMDepth": [[218, 2, 1, "", "getMemoryRSS"], [218, 2, 1, "", "getMemoryUSS"], [218, 2, 1, "", "getPatterns"], [218, 2, 1, "", "getPatternsAsDataFrame"], [218, 2, 1, "", "getRuntime"], [218, 2, 1, "", "mine"], [218, 2, 1, "", "printResults"], [218, 2, 1, "", "save"], [218, 2, 1, "", "startMine"]], "PAMI.multipleMinimumSupportBasedFrequentPattern": [[84, 0, 0, "-", "basic"]], "PAMI.multipleMinimumSupportBasedFrequentPattern.basic": [[220, 0, 0, "-", "CFPGrowth"], [221, 0, 0, "-", "CFPGrowthPlus"], [84, 0, 0, "-", "abstract"]], "PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth": [[220, 1, 1, "", "CFPGrowth"]], "PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowth.CFPGrowth": [[220, 2, 1, "", "Mine"], [220, 2, 1, "", "getMemoryRSS"], [220, 2, 1, "", "getMemoryUSS"], [220, 2, 1, "", "getPatterns"], [220, 2, 1, "", "getPatternsAsDataFrame"], [220, 2, 1, "", "getRuntime"], [220, 2, 1, "", "printResults"], [220, 2, 1, "", "save"], [220, 2, 1, "", "startMine"]], "PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus": [[221, 1, 1, "", "CFPGrowthPlus"]], "PAMI.multipleMinimumSupportBasedFrequentPattern.basic.CFPGrowthPlus.CFPGrowthPlus": [[221, 2, 1, "", "Mine"], [221, 2, 1, "", "getMemoryRSS"], [221, 2, 1, "", "getMemoryUSS"], [221, 2, 1, "", "getPatterns"], [221, 2, 1, "", "getPatternsAsDataFrame"], [221, 2, 1, "", "getRuntime"], [221, 2, 1, "", "printResults"], [221, 2, 1, "", "save"], [221, 2, 1, "", "startMine"]], "PAMI.partialPeriodicFrequentPattern": [[86, 0, 0, "-", "basic"]], "PAMI.partialPeriodicFrequentPattern.basic": [[225, 0, 0, "-", "GPFgrowth"], [226, 0, 0, "-", "PPF_DFS"], [86, 0, 0, "-", "abstract"]], "PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth": [[225, 1, 1, "", "GPFgrowth"], [225, 1, 1, "", "Node"], [225, 1, 1, "", "PFgrowth"], [225, 1, 1, "", "Tree"], [225, 1, 1, "", "calculateIP"], [225, 1, 1, "", "generatePFListver2"], [225, 1, 1, "", "generatePFTreever2"]], "PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.GPFgrowth": [[225, 2, 1, "", "getMemoryRSS"], [225, 2, 1, "", "getMemoryUSS"], [225, 2, 1, "", "getPatterns"], [225, 2, 1, "", "getPatternsAsDataFrame"], [225, 2, 1, "", "getRuntime"], [225, 2, 1, "", "mine"], [225, 2, 1, "", "printResults"], [225, 3, 1, "", "runTime"], [225, 2, 1, "", "save"]], "PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.Node": [[225, 2, 1, "", "getChild"]], "PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.PFgrowth": [[225, 2, 1, "", "run"]], "PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.Tree": [[225, 2, 1, "", "addTransaction"], [225, 2, 1, "", "createConditionalTree"], [225, 2, 1, "", "createPrefixTree"], [225, 2, 1, "", "deleteNode"], [225, 2, 1, "", "fixNodeLinks"]], "PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.calculateIP": [[225, 2, 1, "", "run"]], "PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.generatePFListver2": [[225, 2, 1, "", "findSeparator"], [225, 2, 1, "", "run"]], "PAMI.partialPeriodicFrequentPattern.basic.GPFgrowth.generatePFTreever2": [[225, 2, 1, "", "findSeparator"], [225, 2, 1, "", "run"]], "PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS": [[226, 1, 1, "", "PPF_DFS"]], "PAMI.partialPeriodicFrequentPattern.basic.PPF_DFS.PPF_DFS": [[226, 2, 1, "", "getMemoryRSS"], [226, 2, 1, "", "getMemoryUSS"], [226, 2, 1, "", "getPatterns"], [226, 2, 1, "", "getPatternsAsDataFrame"], [226, 2, 1, "", "getRuntime"], [226, 2, 1, "", "mine"], [226, 2, 1, "", "printResults"], [226, 2, 1, "", "save"]], "PAMI.partialPeriodicFrequentPattern.basic.abstract": [[86, 1, 1, "", "partialPeriodicPatterns"]], "PAMI.partialPeriodicFrequentPattern.basic.abstract.partialPeriodicPatterns": [[86, 2, 1, "", "getMemoryRSS"], [86, 2, 1, "", "getMemoryUSS"], [86, 2, 1, "", "getPatterns"], [86, 2, 1, "", "getPatternsAsDataFrame"], [86, 2, 1, "", "getRuntime"], [86, 2, 1, "", "printResults"], [86, 2, 1, "", "save"], [86, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern": [[88, 0, 0, "-", "basic"], [89, 0, 0, "-", "closed"], [90, 0, 0, "-", "maximal"], [91, 0, 0, "-", "pyspark"], [92, 0, 0, "-", "topk"]], "PAMI.partialPeriodicPattern.basic": [[229, 0, 0, "-", "GThreePGrowth"], [88, 0, 0, "-", "Gabstract"], [230, 0, 0, "-", "PPPGrowth"], [231, 0, 0, "-", "PPP_ECLAT"], [88, 0, 0, "-", "abstract"]], "PAMI.partialPeriodicPattern.basic.GThreePGrowth": [[229, 1, 1, "", "GThreePGrowth"]], "PAMI.partialPeriodicPattern.basic.GThreePGrowth.GThreePGrowth": [[229, 2, 1, "", "getMemoryRSS"], [229, 2, 1, "", "getMemoryUSS"], [229, 2, 1, "", "getPatterns"], [229, 2, 1, "", "getPatternsAsDataFrame"], [229, 2, 1, "", "getRuntime"], [229, 2, 1, "", "mine"], [229, 2, 1, "", "printResults"], [229, 2, 1, "", "save"]], "PAMI.partialPeriodicPattern.basic.PPPGrowth": [[230, 1, 1, "", "PPPGrowth"]], "PAMI.partialPeriodicPattern.basic.PPPGrowth.PPPGrowth": [[230, 2, 1, "", "getMemoryRSS"], [230, 2, 1, "", "getMemoryUSS"], [230, 2, 1, "", "getPatterns"], [230, 2, 1, "", "getPatternsAsDataFrame"], [230, 2, 1, "", "getRuntime"], [230, 2, 1, "", "mine"], [230, 2, 1, "", "printResults"], [230, 2, 1, "", "save"], [230, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern.basic.PPP_ECLAT": [[231, 1, 1, "", "PPP_ECLAT"]], "PAMI.partialPeriodicPattern.basic.PPP_ECLAT.PPP_ECLAT": [[231, 2, 1, "", "Mine"], [231, 2, 1, "", "getMemoryRSS"], [231, 2, 1, "", "getMemoryUSS"], [231, 2, 1, "", "getPatterns"], [231, 2, 1, "", "getPatternsAsDataFrame"], [231, 2, 1, "", "getRuntime"], [231, 2, 1, "", "printResults"], [231, 2, 1, "", "save"], [231, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern.closed": [[232, 0, 0, "-", "PPPClose"], [89, 0, 0, "-", "abstract"]], "PAMI.partialPeriodicPattern.closed.PPPClose": [[232, 1, 1, "", "PPPClose"]], "PAMI.partialPeriodicPattern.closed.PPPClose.PPPClose": [[232, 2, 1, "", "getMemoryRSS"], [232, 2, 1, "", "getMemoryUSS"], [232, 2, 1, "", "getPatterns"], [232, 2, 1, "", "getPatternsAsDataFrame"], [232, 2, 1, "", "getRuntime"], [232, 2, 1, "", "mine"], [232, 2, 1, "", "printResults"], [232, 2, 1, "", "save"], [232, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern.maximal": [[233, 0, 0, "-", "Max3PGrowth"], [90, 0, 0, "-", "abstract"]], "PAMI.partialPeriodicPattern.maximal.Max3PGrowth": [[233, 1, 1, "", "Max3PGrowth"]], "PAMI.partialPeriodicPattern.maximal.Max3PGrowth.Max3PGrowth": [[233, 2, 1, "", "getMemoryRSS"], [233, 2, 1, "", "getMemoryUSS"], [233, 2, 1, "", "getPatterns"], [233, 2, 1, "", "getPatternsAsDataFrame"], [233, 2, 1, "", "getRuntime"], [233, 2, 1, "", "mine"], [233, 2, 1, "", "printResults"], [233, 2, 1, "", "save"]], "PAMI.partialPeriodicPattern.pyspark": [[91, 0, 0, "-", "abstract"], [91, 0, 0, "-", "parallel3PGrowth"]], "PAMI.partialPeriodicPattern.pyspark.parallel3PGrowth": [[91, 1, 1, "", "Node"], [91, 1, 1, "", "Tree"], [91, 4, 1, "", "cond_trans"], [91, 4, 1, "", "getPF"], [91, 4, 1, "", "getps"], [91, 1, 1, "", "parallel3PGrowth"]], "PAMI.partialPeriodicPattern.pyspark.parallel3PGrowth.Node": [[91, 2, 1, "", "addChild"]], "PAMI.partialPeriodicPattern.pyspark.parallel3PGrowth.Tree": [[91, 2, 1, "", "add_transaction"], [91, 2, 1, "", "add_transaction_summ"], [91, 2, 1, "", "generate_patterns"], [91, 2, 1, "", "getTransactions"], [91, 2, 1, "", "get_condition_pattern"], [91, 2, 1, "", "get_ts"], [91, 2, 1, "", "merge"], [91, 2, 1, "", "remove_node"]], "PAMI.partialPeriodicPattern.pyspark.parallel3PGrowth.parallel3PGrowth": [[91, 2, 1, "", "cond_trans"], [91, 2, 1, "", "genCondTransactions"], [91, 2, 1, "", "getFrequentItems"], [91, 2, 1, "", "getFrequentItemsets"], [91, 2, 1, "", "getMemoryRSS"], [91, 2, 1, "", "getMemoryUSS"], [91, 2, 1, "", "getPF"], [91, 2, 1, "", "getPartitionId"], [91, 2, 1, "", "getPatterns"], [91, 2, 1, "", "getPatternsAsDataFrame"], [91, 2, 1, "", "getRuntime"], [91, 2, 1, "", "getps"], [91, 2, 1, "", "mine"], [91, 3, 1, "", "numPartitions"], [91, 2, 1, "", "printResults"], [91, 2, 1, "", "save"], [91, 2, 1, "", "setPartitions"], [91, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern.topk": [[92, 0, 0, "-", "abstract"], [234, 0, 0, "-", "k3PMiner"]], "PAMI.partialPeriodicPattern.topk.abstract": [[92, 1, 1, "", "partialPeriodicPatterns"]], "PAMI.partialPeriodicPattern.topk.abstract.partialPeriodicPatterns": [[92, 2, 1, "", "getMemoryRSS"], [92, 2, 1, "", "getMemoryUSS"], [92, 2, 1, "", "getPatterns"], [92, 2, 1, "", "getPatternsAsDataFrame"], [92, 2, 1, "", "getRuntime"], [92, 2, 1, "", "printResults"], [92, 2, 1, "", "save"], [92, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPattern.topk.k3PMiner": [[234, 1, 1, "", "k3PMiner"]], "PAMI.partialPeriodicPattern.topk.k3PMiner.k3PMiner": [[234, 2, 1, "", "getMemoryRSS"], [234, 2, 1, "", "getMemoryUSS"], [234, 2, 1, "", "getPatterns"], [234, 2, 1, "", "getPatternsAsDataFrame"], [234, 2, 1, "", "getRuntime"], [234, 2, 1, "", "mine"], [234, 2, 1, "", "printResults"], [234, 2, 1, "", "save"], [234, 2, 1, "", "startMine"]], "PAMI.partialPeriodicPatternInMultipleTimeSeries": [[227, 0, 0, "-", "PPGrowth"], [93, 0, 0, "-", "abstract"]], "PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth": [[227, 1, 1, "", "PPGrowth"]], "PAMI.partialPeriodicPatternInMultipleTimeSeries.PPGrowth.PPGrowth": [[227, 2, 1, "", "Mine"], [227, 2, 1, "", "getMemoryRSS"], [227, 2, 1, "", "getMemoryUSS"], [227, 2, 1, "", "getPatterns"], [227, 2, 1, "", "getPatternsAsDataFrame"], [227, 2, 1, "", "getRuntime"], [227, 2, 1, "", "printResults"], [227, 2, 1, "", "save"], [227, 2, 1, "", "startMine"]], "PAMI.periodicCorrelatedPattern": [[95, 0, 0, "-", "basic"]], "PAMI.periodicCorrelatedPattern.basic": [[236, 0, 0, "-", "EPCPGrowth"], [95, 0, 0, "-", "abstract"]], "PAMI.periodicCorrelatedPattern.basic.EPCPGrowth": [[236, 1, 1, "", "EPCPGrowth"]], "PAMI.periodicCorrelatedPattern.basic.EPCPGrowth.EPCPGrowth": [[236, 2, 1, "", "getMemoryRSS"], [236, 2, 1, "", "getMemoryUSS"], [236, 2, 1, "", "getPatterns"], [236, 2, 1, "", "getPatternsAsDataFrame"], [236, 2, 1, "", "getRuntime"], [236, 2, 1, "", "printResults"], [236, 2, 1, "", "save"], [236, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern": [[97, 0, 0, "-", "basic"], [98, 0, 0, "-", "closed"], [99, 0, 0, "-", "cuda"], [100, 0, 0, "-", "maximal"], [101, 0, 0, "-", "pyspark"], [102, 0, 0, "-", "topk"]], "PAMI.periodicFrequentPattern.basic": [[238, 0, 0, "-", "PFECLAT"], [239, 0, 0, "-", "PFPGrowth"], [240, 0, 0, "-", "PFPGrowthPlus"], [241, 0, 0, "-", "PFPMC"], [242, 0, 0, "-", "PSGrowth"], [97, 0, 0, "-", "abstract"]], "PAMI.periodicFrequentPattern.basic.PFECLAT": [[238, 1, 1, "", "PFECLAT"]], "PAMI.periodicFrequentPattern.basic.PFECLAT.PFECLAT": [[238, 2, 1, "", "getMemoryRSS"], [238, 2, 1, "", "getMemoryUSS"], [238, 2, 1, "", "getPatterns"], [238, 2, 1, "", "getPatternsAsDataFrame"], [238, 2, 1, "", "getRuntime"], [238, 2, 1, "", "mine"], [238, 2, 1, "", "printResults"], [238, 2, 1, "", "save"], [238, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.basic.PFPGrowth": [[239, 1, 1, "", "PFPGrowth"]], "PAMI.periodicFrequentPattern.basic.PFPGrowth.PFPGrowth": [[239, 2, 1, "", "getMemoryRSS"], [239, 2, 1, "", "getMemoryUSS"], [239, 2, 1, "", "getPatterns"], [239, 2, 1, "", "getPatternsAsDataFrame"], [239, 2, 1, "", "getRuntime"], [239, 2, 1, "", "mine"], [239, 2, 1, "", "printResults"], [239, 2, 1, "", "save"], [239, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.basic.PFPGrowthPlus": [[240, 1, 1, "", "PFPGrowthPlus"]], "PAMI.periodicFrequentPattern.basic.PFPGrowthPlus.PFPGrowthPlus": [[240, 2, 1, "", "getMemoryRSS"], [240, 2, 1, "", "getMemoryUSS"], [240, 2, 1, "", "getPatterns"], [240, 2, 1, "", "getPatternsAsDataFrame"], [240, 2, 1, "", "getRuntime"], [240, 2, 1, "", "printResults"], [240, 2, 1, "", "save"], [240, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.basic.PFPMC": [[241, 1, 1, "", "PFPMC"]], "PAMI.periodicFrequentPattern.basic.PFPMC.PFPMC": [[241, 2, 1, "", "getMemoryRSS"], [241, 2, 1, "", "getMemoryUSS"], [241, 2, 1, "", "getPatterns"], [241, 2, 1, "", "getPatternsAsDataFrame"], [241, 2, 1, "", "getRuntime"], [241, 2, 1, "", "printResults"], [241, 2, 1, "", "save"], [241, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.basic.PSGrowth": [[242, 1, 1, "", "Node"], [242, 1, 1, "", "PSGrowth"], [242, 4, 1, "", "conditionalTransactions"], [242, 4, 1, "", "getPeriodAndSupport"]], "PAMI.periodicFrequentPattern.basic.PSGrowth.Node": [[242, 2, 1, "", "addChild"]], "PAMI.periodicFrequentPattern.basic.PSGrowth.PSGrowth": [[242, 2, 1, "", "Mine"], [242, 2, 1, "", "getMemoryRSS"], [242, 2, 1, "", "getMemoryUSS"], [242, 2, 1, "", "getPatterns"], [242, 2, 1, "", "getPatternsAsDataFrame"], [242, 2, 1, "", "getRuntime"], [242, 2, 1, "", "printResults"], [242, 2, 1, "", "save"], [242, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.closed": [[243, 0, 0, "-", "CPFPMiner"], [98, 0, 0, "-", "abstract"]], "PAMI.periodicFrequentPattern.closed.CPFPMiner": [[243, 1, 1, "", "CPFPMiner"]], "PAMI.periodicFrequentPattern.closed.CPFPMiner.CPFPMiner": [[243, 2, 1, "", "Mine"], [243, 2, 1, "", "getMemoryRSS"], [243, 2, 1, "", "getMemoryUSS"], [243, 2, 1, "", "getPatterns"], [243, 2, 1, "", "getPatternsAsDataFrame"], [243, 2, 1, "", "getRuntime"], [243, 2, 1, "", "printResults"], [243, 2, 1, "", "save"], [243, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.maximal": [[244, 0, 0, "-", "MaxPFGrowth"], [100, 0, 0, "-", "abstract"]], "PAMI.periodicFrequentPattern.maximal.MaxPFGrowth": [[244, 1, 1, "", "MaxPFGrowth"]], "PAMI.periodicFrequentPattern.maximal.MaxPFGrowth.MaxPFGrowth": [[244, 2, 1, "", "Mine"], [244, 2, 1, "", "getMemoryRSS"], [244, 2, 1, "", "getMemoryUSS"], [244, 2, 1, "", "getPatterns"], [244, 2, 1, "", "getPatternsAsDataFrame"], [244, 2, 1, "", "getRuntime"], [244, 2, 1, "", "printResults"], [244, 2, 1, "", "save"], [244, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.pyspark": [[101, 0, 0, "-", "abstract"], [101, 0, 0, "-", "parallelPFPGrowth"]], "PAMI.periodicFrequentPattern.pyspark.parallelPFPGrowth": [[101, 1, 1, "", "Node"], [101, 1, 1, "", "PFPTree"], [101, 1, 1, "", "Summary"], [101, 1, 1, "", "parallelPFPGrowth"]], "PAMI.periodicFrequentPattern.pyspark.parallelPFPGrowth.Node": [[101, 2, 1, "", "addChild"], [101, 2, 1, "", "toString"]], "PAMI.periodicFrequentPattern.pyspark.parallelPFPGrowth.PFPTree": [[101, 2, 1, "", "add"], [101, 2, 1, "", "extract"], [101, 2, 1, "", "getTransactions"], [101, 2, 1, "", "merge"], [101, 2, 1, "", "project"], [101, 2, 1, "", "satisfyPer"]], "PAMI.periodicFrequentPattern.pyspark.parallelPFPGrowth.parallelPFPGrowth": [[101, 2, 1, "", "Mine"], [101, 2, 1, "", "func1"], [101, 2, 1, "", "func2"], [101, 2, 1, "", "func3"], [101, 2, 1, "", "genCondTransactions"], [101, 2, 1, "", "getFrequentItems"], [101, 2, 1, "", "getFrequentItemsets"], [101, 2, 1, "", "getMemoryRSS"], [101, 2, 1, "", "getMemoryUSS"], [101, 2, 1, "", "getPartitionId"], [101, 2, 1, "", "getPatterns"], [101, 2, 1, "", "getPatternsAsDataFrame"], [101, 2, 1, "", "getRuntime"], [101, 2, 1, "", "printResults"], [101, 2, 1, "", "save"], [101, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.topk": [[103, 0, 0, "-", "TopkPFP"], [104, 0, 0, "-", "kPFPMiner"]], "PAMI.periodicFrequentPattern.topk.TopkPFP": [[245, 0, 0, "-", "TopkPFP"], [103, 0, 0, "-", "abstract"]], "PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP": [[245, 1, 1, "", "TopkPFPGrowth"]], "PAMI.periodicFrequentPattern.topk.TopkPFP.TopkPFP.TopkPFPGrowth": [[245, 2, 1, "", "Mine"], [245, 2, 1, "", "getMemoryRSS"], [245, 2, 1, "", "getMemoryUSS"], [245, 2, 1, "", "getPatterns"], [245, 2, 1, "", "getPatternsAsDataFrame"], [245, 2, 1, "", "getRuntime"], [245, 2, 1, "", "printResults"], [245, 2, 1, "", "save"], [245, 2, 1, "", "startMine"]], "PAMI.periodicFrequentPattern.topk.kPFPMiner": [[104, 0, 0, "-", "abstract"], [246, 0, 0, "-", "kPFPMiner"]], "PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner": [[246, 1, 1, "", "kPFPMiner"]], "PAMI.periodicFrequentPattern.topk.kPFPMiner.kPFPMiner.kPFPMiner": [[246, 2, 1, "", "getMemoryRSS"], [246, 2, 1, "", "getMemoryUSS"], [246, 2, 1, "", "getPatterns"], [246, 2, 1, "", "getPatternsAsDataFrame"], [246, 2, 1, "", "getPer_Sup"], [246, 2, 1, "", "getRuntime"], [246, 3, 1, "", "lno"], [246, 2, 1, "", "printResults"], [246, 2, 1, "", "save"], [246, 2, 1, "", "startMine"]], "PAMI.recurringPattern": [[106, 0, 0, "-", "basic"]], "PAMI.recurringPattern.basic": [[248, 0, 0, "-", "RPGrowth"], [106, 0, 0, "-", "abstract"]], "PAMI.recurringPattern.basic.RPGrowth": [[248, 1, 1, "", "RPGrowth"]], "PAMI.recurringPattern.basic.RPGrowth.RPGrowth": [[248, 2, 1, "", "Mine"], [248, 2, 1, "", "getMemoryRSS"], [248, 2, 1, "", "getMemoryUSS"], [248, 2, 1, "", "getPatterns"], [248, 2, 1, "", "getPatternsAsDataFrame"], [248, 2, 1, "", "getRuntime"], [248, 2, 1, "", "printResults"], [248, 2, 1, "", "save"], [248, 2, 1, "", "startMine"]], "PAMI.relativeFrequentPattern": [[108, 0, 0, "-", "basic"]], "PAMI.relativeFrequentPattern.basic": [[251, 0, 0, "-", "RSFPGrowth"], [108, 0, 0, "-", "abstract"]], "PAMI.relativeFrequentPattern.basic.RSFPGrowth": [[251, 1, 1, "", "RSFPGrowth"]], "PAMI.relativeFrequentPattern.basic.RSFPGrowth.RSFPGrowth": [[251, 2, 1, "", "Mine"], [251, 2, 1, "", "getMemoryRSS"], [251, 2, 1, "", "getMemoryUSS"], [251, 2, 1, "", "getPatterns"], [251, 2, 1, "", "getPatternsAsDataFrame"], [251, 2, 1, "", "getRuntime"], [251, 2, 1, "", "printResults"], [251, 2, 1, "", "save"], [251, 2, 1, "", "startMine"]], "PAMI.relativeHighUtilityPattern": [[110, 0, 0, "-", "basic"]], "PAMI.relativeHighUtilityPattern.basic": [[252, 0, 0, "-", "RHUIM"], [110, 0, 0, "-", "abstract"]], "PAMI.relativeHighUtilityPattern.basic.RHUIM": [[252, 1, 1, "", "RHUIM"]], "PAMI.relativeHighUtilityPattern.basic.RHUIM.RHUIM": [[252, 2, 1, "", "getMemoryRSS"], [252, 2, 1, "", "getMemoryUSS"], [252, 2, 1, "", "getPatterns"], [252, 2, 1, "", "getPatternsAsDataFrame"], [252, 2, 1, "", "getRuntime"], [252, 2, 1, "", "printResults"], [252, 2, 1, "", "save"], [252, 2, 1, "", "sortDatabase"], [252, 2, 1, "", "sort_transaction"], [252, 2, 1, "", "startMine"]], "PAMI.sequentialPatternMining": [[113, 0, 0, "-", "basic"], [114, 0, 0, "-", "closed"]], "PAMI.sequentialPatternMining.basic": [[256, 0, 0, "-", "SPADE"], [257, 0, 0, "-", "SPAM"], [113, 0, 0, "-", "abstract"], [258, 0, 0, "-", "prefixSpan"]], "PAMI.sequentialPatternMining.basic.SPADE": [[256, 1, 1, "", "SPADE"]], "PAMI.sequentialPatternMining.basic.SPADE.SPADE": [[256, 2, 1, "", "Mine"], [256, 2, 1, "", "getMemoryRSS"], [256, 2, 1, "", "getMemoryUSS"], [256, 2, 1, "", "getPatterns"], [256, 2, 1, "", "getPatternsAsDataFrame"], [256, 2, 1, "", "getRuntime"], [256, 2, 1, "", "make1LenDatabase"], [256, 2, 1, "", "make2LenDatabase"], [256, 2, 1, "", "make3LenDatabase"], [256, 2, 1, "", "makeNextRow"], [256, 2, 1, "", "makeNextRowSame"], [256, 2, 1, "", "makeNextRowSame2"], [256, 2, 1, "", "makeNextRowSame3"], [256, 2, 1, "", "makexLenDatabase"], [256, 2, 1, "", "makexLenDatabaseSame"], [256, 2, 1, "", "printResults"], [256, 2, 1, "", "save"], [256, 2, 1, "", "startMine"]], "PAMI.sequentialPatternMining.basic.SPAM": [[257, 1, 1, "", "SPAM"]], "PAMI.sequentialPatternMining.basic.SPAM.SPAM": [[257, 2, 1, "", "DfsPruning"], [257, 2, 1, "", "Sstep"], [257, 2, 1, "", "countSup"], [257, 2, 1, "", "getMemoryRSS"], [257, 2, 1, "", "getMemoryUSS"], [257, 2, 1, "", "getPatterns"], [257, 2, 1, "", "getPatternsAsDataFrame"], [257, 2, 1, "", "getRuntime"], [257, 2, 1, "", "make2BitDatabase"], [257, 2, 1, "", "printResults"], [257, 2, 1, "", "save"], [257, 2, 1, "", "startMine"]], "PAMI.sequentialPatternMining.basic.prefixSpan": [[258, 1, 1, "", "prefixSpan"]], "PAMI.sequentialPatternMining.basic.prefixSpan.prefixSpan": [[258, 2, 1, "", "Mine"], [258, 2, 1, "", "getMemoryRSS"], [258, 2, 1, "", "getMemoryUSS"], [258, 2, 1, "", "getPatterns"], [258, 2, 1, "", "getPatternsAsDataFrame"], [258, 2, 1, "", "getRuntime"], [258, 2, 1, "", "getSameSeq"], [258, 2, 1, "", "makeNext"], [258, 2, 1, "", "makeNextSame"], [258, 2, 1, "", "makeSeqDatabaseFirst"], [258, 2, 1, "", "makeSeqDatabaseSame"], [258, 2, 1, "", "makeSupDatabase"], [258, 2, 1, "", "printResults"], [258, 2, 1, "", "save"], [258, 2, 1, "", "serchSame"], [258, 2, 1, "", "startMine"]], "PAMI.sequentialPatternMining.closed": [[114, 0, 0, "-", "abstract"], [259, 0, 0, "-", "bide"]], "PAMI.stablePeriodicFrequentPattern": [[116, 0, 0, "-", "basic"], [117, 0, 0, "-", "topK"]], "PAMI.stablePeriodicFrequentPattern.basic": [[260, 0, 0, "-", "SPPEclat"], [261, 0, 0, "-", "SPPGrowth"], [116, 0, 0, "-", "abstract"]], "PAMI.stablePeriodicFrequentPattern.basic.SPPEclat": [[260, 1, 1, "", "SPPEclat"]], "PAMI.stablePeriodicFrequentPattern.basic.SPPEclat.SPPEclat": [[260, 2, 1, "", "getMemoryRSS"], [260, 2, 1, "", "getMemoryUSS"], [260, 2, 1, "", "getPatterns"], [260, 2, 1, "", "getPatternsAsDataFrame"], [260, 2, 1, "", "getRuntime"], [260, 2, 1, "", "mine"], [260, 2, 1, "", "printResults"], [260, 2, 1, "", "save"], [260, 2, 1, "", "startMine"]], "PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth": [[261, 1, 1, "", "SPPGrowth"]], "PAMI.stablePeriodicFrequentPattern.basic.SPPGrowth.SPPGrowth": [[261, 3, 1, "", "SPPList"], [261, 2, 1, "", "getMemoryRSS"], [261, 2, 1, "", "getMemoryUSS"], [261, 2, 1, "", "getPatterns"], [261, 2, 1, "", "getPatternsAsDataFrame"], [261, 2, 1, "", "getRuntime"], [261, 2, 1, "", "mine"], [261, 2, 1, "", "printResults"], [261, 2, 1, "", "save"], [261, 2, 1, "", "startMine"]], "PAMI.stablePeriodicFrequentPattern.topK": [[262, 0, 0, "-", "TSPIN"], [117, 0, 0, "-", "abstract"]], "PAMI.stablePeriodicFrequentPattern.topK.TSPIN": [[262, 1, 1, "", "TSPIN"]], "PAMI.stablePeriodicFrequentPattern.topK.TSPIN.TSPIN": [[262, 2, 1, "", "getMemoryRSS"], [262, 2, 1, "", "getMemoryUSS"], [262, 2, 1, "", "getPatterns"], [262, 2, 1, "", "getPatternsAsDataFrame"], [262, 2, 1, "", "getRuntime"], [262, 2, 1, "", "printResults"], [262, 2, 1, "", "save"], [262, 2, 1, "", "startMine"]], "PAMI.subgraphMining": [[119, 0, 0, "-", "basic"], [120, 0, 0, "-", "topK"]], "PAMI.subgraphMining.basic": [[119, 0, 0, "-", "abstract"], [119, 0, 0, "-", "dfsCode"], [119, 0, 0, "-", "edge"], [119, 0, 0, "-", "extendedEdge"], [119, 0, 0, "-", "frequentSubgraph"], [119, 0, 0, "-", "graph"], [119, 0, 0, "-", "gspan"], [119, 0, 0, "-", "sparseTriangularMatrix"], [119, 0, 0, "-", "vertex"]], "PAMI.subgraphMining.basic.dfsCode": [[119, 1, 1, "", "DFSCode"]], "PAMI.subgraphMining.basic.dfsCode.DFSCode": [[119, 2, 1, "", "add"], [119, 2, 1, "", "containEdge"], [119, 2, 1, "", "copy"], [119, 2, 1, "", "getAllVLabels"], [119, 2, 1, "", "getAt"], [119, 2, 1, "", "getEeList"], [119, 2, 1, "", "getRightMost"], [119, 2, 1, "", "getRightMostPath"], [119, 2, 1, "", "isEmpty"], [119, 2, 1, "", "notPreOfRm"], [119, 2, 1, "", "onRightMostPath"]], "PAMI.subgraphMining.basic.edge": [[119, 1, 1, "", "Edge"]], "PAMI.subgraphMining.basic.edge.Edge": [[119, 2, 1, "", "another"], [119, 2, 1, "", "getEdgeLabel"]], "PAMI.subgraphMining.basic.extendedEdge": [[119, 1, 1, "", "ExtendedEdge"]], "PAMI.subgraphMining.basic.extendedEdge.ExtendedEdge": [[119, 2, 1, "", "getEdgeLabel"], [119, 2, 1, "", "getV1"], [119, 2, 1, "", "getV2"], [119, 2, 1, "", "getVLabel1"], [119, 2, 1, "", "getVLabel2"], [119, 2, 1, "", "pairSmallerThan"], [119, 2, 1, "", "smallerThan"], [119, 2, 1, "", "smallerThanOriginal"]], "PAMI.subgraphMining.basic.frequentSubgraph": [[119, 1, 1, "", "FrequentSubgraph"]], "PAMI.subgraphMining.basic.graph": [[119, 1, 1, "", "Graph"]], "PAMI.subgraphMining.basic.graph.Graph": [[119, 3, 1, "", "emptyIntegerArray"], [119, 3, 1, "", "emptyVertexList"], [119, 2, 1, "", "findAllWithLabel"], [119, 2, 1, "", "getAllNeighbors"], [119, 2, 1, "", "getAllVertices"], [119, 2, 1, "", "getEdge"], [119, 2, 1, "", "getEdgeCount"], [119, 2, 1, "", "getEdgeLabel"], [119, 2, 1, "", "getId"], [119, 2, 1, "", "getNonPrecalculatedAllVertices"], [119, 2, 1, "", "getVLabel"], [119, 2, 1, "", "isNeighboring"], [119, 2, 1, "", "precalculateLabelsToVertices"], [119, 2, 1, "", "precalculateVertexList"], [119, 2, 1, "", "precalculateVertexNeighbors"], [119, 2, 1, "", "removeInfrequentLabel"]], "PAMI.subgraphMining.basic.gspan": [[119, 1, 1, "", "GSpan"]], "PAMI.subgraphMining.basic.gspan.GSpan": [[119, 1, 1, "", "Pair"], [119, 3, 1, "", "edge_count_pruning"], [119, 3, 1, "", "eliminate_infrequent_edge_labels"], [119, 3, 1, "", "eliminate_infrequent_vertex_pairs"], [119, 3, 1, "", "eliminate_infrequent_vertices"], [119, 2, 1, "", "findAllOnlyOneVertex"], [119, 2, 1, "", "gSpan"], [119, 2, 1, "", "getFrequentSubgraphs"], [119, 2, 1, "", "getMemoryRSS"], [119, 2, 1, "", "getMemoryUSS"], [119, 2, 1, "", "getRuntime"], [119, 2, 1, "", "getSubgraphGraphMapping"], [119, 2, 1, "", "gspanDFS"], [119, 2, 1, "", "isCanonical"], [119, 2, 1, "", "mine"], [119, 2, 1, "", "readGraphs"], [119, 2, 1, "", "removeInfrequentVertexPairs"], [119, 2, 1, "", "rightMostPathExtensions"], [119, 2, 1, "", "rightMostPathExtensionsFromSingle"], [119, 2, 1, "", "save"], [119, 2, 1, "", "saveSubgraphsByGraphId"], [119, 2, 1, "", "subgraphIsomorphisms"]], "PAMI.subgraphMining.basic.sparseTriangularMatrix": [[119, 1, 1, "", "SparseTriangularMatrix"]], "PAMI.subgraphMining.basic.sparseTriangularMatrix.SparseTriangularMatrix": [[119, 2, 1, "", "getSupportForItems"], [119, 2, 1, "", "incrementCount"], [119, 2, 1, "", "removeInfrequentEntriesFromMatrix"], [119, 2, 1, "", "setSupport"]], "PAMI.subgraphMining.basic.vertex": [[119, 1, 1, "", "Vertex"]], "PAMI.subgraphMining.basic.vertex.Vertex": [[119, 2, 1, "", "addEdge"], [119, 2, 1, "", "getEdgeList"], [119, 2, 1, "", "getId"], [119, 2, 1, "", "getLabel"], [119, 2, 1, "", "removeEdge"]], "PAMI.subgraphMining.topK": [[120, 0, 0, "-", "DFSCode"], [120, 0, 0, "-", "DFSThread"], [120, 0, 0, "-", "abstract"], [120, 0, 0, "-", "edge"], [120, 0, 0, "-", "extendedEdge"], [120, 0, 0, "-", "frequentSubgraph"], [120, 0, 0, "-", "graph"], [120, 0, 0, "-", "sparseTriangularMatrix"], [120, 0, 0, "-", "tkg"], [120, 0, 0, "-", "vertex"]], "PAMI.subgraphMining.topK.DFSCode": [[120, 1, 1, "", "DfsCode"]], "PAMI.subgraphMining.topK.DFSCode.DfsCode": [[120, 2, 1, "", "add"], [120, 2, 1, "", "containEdge"], [120, 2, 1, "", "copy"], [120, 2, 1, "", "getAllVLabels"], [120, 2, 1, "", "getAt"], [120, 2, 1, "", "getEeList"], [120, 2, 1, "", "getRightMost"], [120, 2, 1, "", "getRightMostPath"], [120, 2, 1, "", "isEmpty"], [120, 2, 1, "", "notPreOfRm"], [120, 2, 1, "", "onRightMostPath"]], "PAMI.subgraphMining.topK.DFSThread": [[120, 1, 1, "", "DfsThread"]], "PAMI.subgraphMining.topK.DFSThread.DfsThread": [[120, 2, 1, "", "run"]], "PAMI.subgraphMining.topK.edge": [[120, 1, 1, "", "Edge"]], "PAMI.subgraphMining.topK.edge.Edge": [[120, 2, 1, "", "another"], [120, 2, 1, "", "getEdgeLabel"]], "PAMI.subgraphMining.topK.extendedEdge": [[120, 1, 1, "", "ExtendedEdge"]], "PAMI.subgraphMining.topK.extendedEdge.ExtendedEdge": [[120, 2, 1, "", "getEdgeLabel"], [120, 2, 1, "", "getV1"], [120, 2, 1, "", "getV2"], [120, 2, 1, "", "getVLabel1"], [120, 2, 1, "", "getVLabel2"], [120, 2, 1, "", "pairSmallerThan"], [120, 2, 1, "", "smallerThan"], [120, 2, 1, "", "smallerThanOriginal"]], "PAMI.subgraphMining.topK.frequentSubgraph": [[120, 1, 1, "", "FrequentSubgraph"]], "PAMI.subgraphMining.topK.graph": [[120, 1, 1, "", "Graph"]], "PAMI.subgraphMining.topK.graph.Graph": [[120, 3, 1, "", "EMPTY_INTEGER_ARRAY"], [120, 3, 1, "", "EMPTY_VERTEX_LIST"], [120, 2, 1, "", "findAllWithLabel"], [120, 2, 1, "", "getAllNeighbors"], [120, 2, 1, "", "getAllVertices"], [120, 2, 1, "", "getEdge"], [120, 2, 1, "", "getEdgeCount"], [120, 2, 1, "", "getEdgeLabel"], [120, 2, 1, "", "getId"], [120, 2, 1, "", "getNonPrecalculatedAllVertices"], [120, 2, 1, "", "getVLabel"], [120, 2, 1, "", "isNeighboring"], [120, 2, 1, "", "precalculateLabelsToVertices"], [120, 2, 1, "", "precalculateVertexList"], [120, 2, 1, "", "precalculateVertexNeighbors"], [120, 2, 1, "", "removeInfrequentLabel"]], "PAMI.subgraphMining.topK.sparseTriangularMatrix": [[120, 1, 1, "", "SparseTriangularMatrix"]], "PAMI.subgraphMining.topK.sparseTriangularMatrix.SparseTriangularMatrix": [[120, 2, 1, "", "getSupportForItems"], [120, 2, 1, "", "incrementCount"], [120, 2, 1, "", "removeInfrequentEntriesFromMatrix"], [120, 2, 1, "", "setSupport"]], "PAMI.subgraphMining.topK.tkg": [[120, 1, 1, "", "TKG"]], "PAMI.subgraphMining.topK.tkg.TKG": [[120, 3, 1, "", "DYNAMIC_SEARCH"], [120, 3, 1, "", "EDGE_COUNT_PRUNING"], [120, 3, 1, "", "ELIMINATE_INFREQUENT_EDGE_LABELS"], [120, 3, 1, "", "ELIMINATE_INFREQUENT_VERTEX_PAIRS"], [120, 3, 1, "", "ELIMINATE_INFREQUENT_VERTICES"], [120, 1, 1, "", "Pair"], [120, 3, 1, "", "THREADED_DYNAMIC_SEARCH"], [120, 2, 1, "", "findAllOnlyOneVertex"], [120, 2, 1, "", "gSpan"], [120, 2, 1, "", "getKSubgraphs"], [120, 2, 1, "", "getMemoryRSS"], [120, 2, 1, "", "getMemoryUSS"], [120, 2, 1, "", "getMinSupport"], [120, 2, 1, "", "getQueueSize"], [120, 2, 1, "", "getRuntime"], [120, 2, 1, "", "getSubgraphsList"], [120, 2, 1, "", "gspanDfs"], [120, 2, 1, "", "gspanDynamicDFS"], [120, 2, 1, "", "isCanonical"], [120, 2, 1, "", "mine"], [120, 2, 1, "", "readGraphs"], [120, 2, 1, "", "registerAsCandidate"], [120, 2, 1, "", "removeInfrequentVertexPairs"], [120, 2, 1, "", "rightMostPathExtensions"], [120, 2, 1, "", "rightMostPathExtensionsFromSingle"], [120, 2, 1, "", "save"], [120, 2, 1, "", "savePattern"], [120, 2, 1, "", "startThreads"], [120, 2, 1, "", "subgraphIsomorphisms"]], "PAMI.subgraphMining.topK.vertex": [[120, 1, 1, "", "Vertex"]], "PAMI.subgraphMining.topK.vertex.Vertex": [[120, 2, 1, "", "addEdge"], [120, 2, 1, "", "getEdgeList"], [120, 2, 1, "", "getId"], [120, 2, 1, "", "getLabel"], [120, 2, 1, "", "removeEdge"]], "PAMI.uncertainFaultTolerantFrequentPattern": [[121, 0, 0, "-", "VBFTMine"], [121, 0, 0, "-", "abstract"]], "PAMI.uncertainFaultTolerantFrequentPattern.VBFTMine": [[121, 1, 1, "", "VBFTMine"]], "PAMI.uncertainFaultTolerantFrequentPattern.VBFTMine.VBFTMine": [[121, 2, 1, "", "getMemoryRSS"], [121, 2, 1, "", "getMemoryUSS"], [121, 2, 1, "", "getPatterns"], [121, 2, 1, "", "getPatternsAsDataFrame"], [121, 2, 1, "", "getRuntime"], [121, 2, 1, "", "mine"], [121, 2, 1, "", "printResults"], [121, 2, 1, "", "save"], [121, 2, 1, "", "startMine"]], "PAMI.uncertainFrequentPattern": [[123, 0, 0, "-", "basic"]], "PAMI.uncertainFrequentPattern.basic": [[266, 0, 0, "-", "CUFPTree"], [267, 0, 0, "-", "PUFGrowth"], [268, 0, 0, "-", "TUFP"], [269, 0, 0, "-", "TubeP"], [270, 0, 0, "-", "TubeS"], [271, 0, 0, "-", "UFGrowth"], [272, 0, 0, "-", "UVECLAT"], [123, 0, 0, "-", "abstract"]], "PAMI.uncertainFrequentPattern.basic.CUFPTree": [[266, 1, 1, "", "CUFPTree"]], "PAMI.uncertainFrequentPattern.basic.CUFPTree.CUFPTree": [[266, 2, 1, "", "getMemoryRSS"], [266, 2, 1, "", "getMemoryUSS"], [266, 2, 1, "", "getPatterns"], [266, 2, 1, "", "getPatternsAsDataFrame"], [266, 2, 1, "", "getRuntime"], [266, 2, 1, "", "mine"], [266, 2, 1, "", "printResults"], [266, 2, 1, "", "save"], [266, 2, 1, "", "startMine"]], "PAMI.uncertainFrequentPattern.basic.PUFGrowth": [[267, 1, 1, "", "PUFGrowth"]], "PAMI.uncertainFrequentPattern.basic.PUFGrowth.PUFGrowth": [[267, 2, 1, "", "getMemoryRSS"], [267, 2, 1, "", "getMemoryUSS"], [267, 2, 1, "", "getPatterns"], [267, 2, 1, "", "getPatternsAsDataFrame"], [267, 2, 1, "", "getRuntime"], [267, 2, 1, "", "mine"], [267, 2, 1, "", "printResults"], [267, 2, 1, "", "save"], [267, 2, 1, "", "startMine"]], "PAMI.uncertainFrequentPattern.basic.TUFP": [[268, 1, 1, "", "TUFP"]], "PAMI.uncertainFrequentPattern.basic.TUFP.TUFP": [[268, 2, 1, "", "getMemoryRSS"], [268, 2, 1, "", "getMemoryUSS"], [268, 2, 1, "", "getPatterns"], [268, 2, 1, "", "getPatternsAsDataFrame"], [268, 2, 1, "", "getRuntime"], [268, 2, 1, "", "mine"], [268, 2, 1, "", "printResults"], [268, 2, 1, "", "save"], [268, 2, 1, "", "startMine"]], "PAMI.uncertainFrequentPattern.basic.TubeP": [[269, 1, 1, "", "TUFP"]], "PAMI.uncertainFrequentPattern.basic.TubeP.TUFP": [[269, 2, 1, "", "getMemoryRSS"], [269, 2, 1, "", "getMemoryUSS"], [269, 2, 1, "", "getPatterns"], [269, 2, 1, "", "getPatternsAsDataFrame"], [269, 2, 1, "", "getRuntime"], [269, 2, 1, "", "mine"], [269, 2, 1, "", "printResults"], [269, 2, 1, "", "save"], [269, 2, 1, "", "startMine"]], "PAMI.uncertainFrequentPattern.basic.TubeS": [[270, 4, 1, "", "Second"], [270, 1, 1, "", "TubeS"], [270, 4, 1, "", "printTree"]], "PAMI.uncertainFrequentPattern.basic.TubeS.TubeS": [[270, 2, 1, "", "getMemoryRSS"], [270, 2, 1, "", "getMemoryUSS"], [270, 2, 1, "", "getPatterns"], [270, 2, 1, "", "getPatternsAsDataFrame"], [270, 2, 1, "", "getRuntime"], [270, 2, 1, "", "mine"], [270, 2, 1, "", "printResults"], [270, 2, 1, "", "save"], [270, 2, 1, "", "updateTransactions"]], "PAMI.uncertainFrequentPattern.basic.UFGrowth": [[271, 1, 1, "", "UFGrowth"]], "PAMI.uncertainFrequentPattern.basic.UFGrowth.UFGrowth": [[271, 2, 1, "", "getMemoryRSS"], [271, 2, 1, "", "getMemoryUSS"], [271, 2, 1, "", "getPatterns"], [271, 2, 1, "", "getPatternsAsDataFrame"], [271, 2, 1, "", "getRuntime"], [271, 2, 1, "", "mine"], [271, 2, 1, "", "printResults"], [271, 2, 1, "", "save"]], "PAMI.uncertainFrequentPattern.basic.UVECLAT": [[272, 1, 1, "", "UVEclat"]], "PAMI.uncertainFrequentPattern.basic.UVECLAT.UVEclat": [[272, 2, 1, "", "getMemoryRSS"], [272, 2, 1, "", "getMemoryUSS"], [272, 2, 1, "", "getPatterns"], [272, 2, 1, "", "getPatternsAsDataFrame"], [272, 2, 1, "", "getRuntime"], [272, 2, 1, "", "mine"], [272, 2, 1, "", "printResults"], [272, 2, 1, "", "save"]], "PAMI.uncertainGeoreferencedFrequentPattern": [[125, 0, 0, "-", "basic"]], "PAMI.uncertainGeoreferencedFrequentPattern.basic": [[275, 0, 0, "-", "GFPGrowth"], [125, 0, 0, "-", "abstract"]], "PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth": [[275, 1, 1, "", "GFPGrowth"]], "PAMI.uncertainGeoreferencedFrequentPattern.basic.GFPGrowth.GFPGrowth": [[275, 2, 1, "", "getMemoryRSS"], [275, 2, 1, "", "getMemoryUSS"], [275, 2, 1, "", "getPatterns"], [275, 2, 1, "", "getPatternsAsDataFrame"], [275, 2, 1, "", "getRuntime"], [275, 2, 1, "", "mine"], [275, 2, 1, "", "printResults"], [275, 2, 1, "", "save"], [275, 2, 1, "", "startMine"]], "PAMI.uncertainPeriodicFrequentPattern": [[127, 0, 0, "-", "basic"]], "PAMI.uncertainPeriodicFrequentPattern.basic": [[277, 0, 0, "-", "UPFPGrowth"], [278, 0, 0, "-", "UPFPGrowthPlus"], [127, 0, 0, "-", "abstract"]], "PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth": [[277, 1, 1, "", "UPFPGrowth"]], "PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowth.UPFPGrowth": [[277, 2, 1, "", "getMemoryRSS"], [277, 2, 1, "", "getMemoryUSS"], [277, 2, 1, "", "getPatterns"], [277, 2, 1, "", "getPatternsAsDataFrame"], [277, 2, 1, "", "getRuntime"], [277, 2, 1, "", "mine"], [277, 2, 1, "", "printResults"], [277, 2, 1, "", "save"], [277, 2, 1, "", "startMine"]], "PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus": [[278, 1, 1, "", "UPFPGrowthPlus"], [278, 4, 1, "", "printTree"]], "PAMI.uncertainPeriodicFrequentPattern.basic.UPFPGrowthPlus.UPFPGrowthPlus": [[278, 2, 1, "", "getMemoryRSS"], [278, 2, 1, "", "getMemoryUSS"], [278, 2, 1, "", "getPatterns"], [278, 2, 1, "", "getPatternsAsDataFrame"], [278, 2, 1, "", "getRuntime"], [278, 2, 1, "", "mine"], [278, 2, 1, "", "printResults"], [278, 2, 1, "", "save"], [278, 2, 1, "", "startMine"]], "PAMI.weightedFrequentNeighbourhoodPattern": [[129, 0, 0, "-", "basic"]], "PAMI.weightedFrequentNeighbourhoodPattern.basic": [[281, 0, 0, "-", "SWFPGrowth"], [129, 0, 0, "-", "abstract"]], "PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth": [[281, 1, 1, "", "SWFPGrowth"]], "PAMI.weightedFrequentNeighbourhoodPattern.basic.SWFPGrowth.SWFPGrowth": [[281, 2, 1, "", "getMemoryRSS"], [281, 2, 1, "", "getMemoryUSS"], [281, 2, 1, "", "getPatterns"], [281, 2, 1, "", "getPatternsAsDataFrame"], [281, 2, 1, "", "getRuntime"], [281, 2, 1, "", "mine"], [281, 2, 1, "", "printResults"], [281, 2, 1, "", "save"], [281, 2, 1, "", "startMine"]], "PAMI.weightedFrequentPattern": [[131, 0, 0, "-", "basic"]], "PAMI.weightedFrequentPattern.basic": [[283, 0, 0, "-", "WFIM"], [131, 0, 0, "-", "abstract"]], "PAMI.weightedFrequentPattern.basic.WFIM": [[283, 1, 1, "", "WFIM"]], "PAMI.weightedFrequentPattern.basic.WFIM.WFIM": [[283, 2, 1, "", "getMemoryRSS"], [283, 2, 1, "", "getMemoryUSS"], [283, 2, 1, "", "getPatterns"], [283, 2, 1, "", "getPatternsAsDataFrame"], [283, 2, 1, "", "getRuntime"], [283, 2, 1, "", "mine"], [283, 2, 1, "", "printResults"], [283, 2, 1, "", "save"], [283, 2, 1, "", "startMine"]], "PAMI.weightedFrequentRegularPattern": [[133, 0, 0, "-", "basic"]], "PAMI.weightedFrequentRegularPattern.basic": [[285, 0, 0, "-", "WFRIMiner"], [133, 0, 0, "-", "abstract"]], "PAMI.weightedFrequentRegularPattern.basic.WFRIMiner": [[285, 1, 1, "", "WFRIMiner"]], "PAMI.weightedFrequentRegularPattern.basic.WFRIMiner.WFRIMiner": [[285, 2, 1, "", "getMemoryRSS"], [285, 2, 1, "", "getMemoryUSS"], [285, 2, 1, "", "getPatterns"], [285, 2, 1, "", "getPatternsAsDataFrame"], [285, 2, 1, "", "getRuntime"], [285, 2, 1, "", "mine"], [285, 2, 1, "", "printResults"], [285, 2, 1, "", "save"], [285, 2, 1, "", "startMine"]], "PAMI.weightedUncertainFrequentPattern": [[135, 0, 0, "-", "basic"]], "PAMI.weightedUncertainFrequentPattern.basic": [[135, 0, 0, "-", "WUFIM"], [135, 0, 0, "-", "abstract"]], "PAMI.weightedUncertainFrequentPattern.basic.WUFIM": [[135, 1, 1, "", "WUFIM"]], "PAMI.weightedUncertainFrequentPattern.basic.WUFIM.WUFIM": [[135, 2, 1, "", "getMemoryRSS"], [135, 2, 1, "", "getMemoryUSS"], [135, 2, 1, "", "getPatterns"], [135, 2, 1, "", "getPatternsAsDataFrame"], [135, 2, 1, "", "getRuntime"], [135, 2, 1, "", "mine"], [135, 2, 1, "", "printResults"], [135, 2, 1, "", "save"], [135, 2, 1, "", "startMine"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:attribute", "4": "py:function"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"]}, "titleterms": {"contigu": [0, 151], "frequent": [0, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 136, 139, 142, 144, 145, 146, 147, 148, 149, 161, 249], "pattern": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 151, 161, 190, 196, 249, 280], "correl": [1, 5, 138], "mine": [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 161, 190, 196, 280], "coverag": 2, "fault": 3, "toler": 3, "With": 4, "multipl": [4, 19, 223], "minimum": 4, "support": 4, "fuzzi": [5, 6, 7, 8, 9, 190], "geo": [7, 8, 10, 11, 12, 13, 15, 145, 196], "referenc": [7, 8, 10, 11, 12, 13, 15, 145, 196], "period": [8, 9, 12, 13, 18, 19, 136, 137, 138, 139, 143, 146], "sequenc": [11, 111], "partial": [12, 19, 136, 137], "high": [14, 15, 16, 17, 141], "util": [14, 15, 16, 17, 141, 280], "spatial": 17, "local": 18, "pami": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 214, 219], "packag": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135], "subpackag": [20, 21, 23, 25, 27, 42, 44, 51, 53, 55, 57, 59, 61, 63, 65, 68, 70, 72, 74, 78, 81, 83, 85, 87, 94, 96, 102, 105, 107, 109, 112, 115, 118, 122, 124, 126, 128, 130, 132, 134], "modul": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135], "content": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135], "associationrul": [21, 22], "basic": [22, 24, 26, 43, 45, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 79, 82, 84, 86, 88, 95, 97, 106, 108, 110, 113, 116, 119, 123, 125, 127, 129, 131, 133, 135, 154, 157, 160, 175, 180, 182, 184, 186, 187, 191, 193, 195, 197, 203, 204, 209, 212, 215, 222, 224, 228, 235, 237, 247, 250, 253, 254, 263, 273, 274, 279, 282, 284, 286], "submodul": [22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 45, 46, 47, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 67, 69, 71, 73, 75, 76, 77, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110, 113, 114, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135], "arwithconfid": 22, "arwithleverag": 22, "arwithlift": 22, "rulemin": 22, "abstract": [22, 24, 26, 31, 43, 45, 46, 47, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 66, 67, 69, 71, 73, 75, 76, 77, 78, 79, 80, 82, 84, 86, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110, 113, 114, 116, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135], "correlatedpattern": [23, 24], "comin": [24, 152], "comineplu": [24, 153], "coveragepattern": [25, 26], "cmine": [26, 155], "cppg": [26, 156], "extra": [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41], "convertmultitsintofuzzi": 27, "generatelatexgraphfil": 27, "plotpointonmap": 27, "plotpointonmap_dump": 27, "scatterplotspatialpoint": 27, "topkpattern": 27, "uncertaindb_convert": 27, "df2db": 28, "df2dbplu": 28, "denseformatdf": 28, "sparseformatdf": 28, "createtdb": 28, "densedf2dbplu": 28, "densedf2db_dump": 28, "sparsedf2dbplu": 28, "calculatemisvalu": 29, "usingbeta": 29, "usingsd": 29, "dbstat": 30, "fuzzydatabas": [30, 40], "multipletimeseriesfuzzydatabasestat": 30, "sequentialdatabas": [30, 39], "temporaldatabas": [30, 39, 40], "transactionaldatabas": [30, 39, 40], "uncertaintemporaldatabas": 30, "uncertaintransactionaldatabas": 30, "utilitydatabas": [30, 39, 40], "fuzzytransform": 31, "temporaltofuzzi": 31, "transactionaltofuzzi": 31, "utilitytofuzzi": 31, "generatedatabas": 32, "generatespatiotemporaldatabas": 32, "generatetemporaldatabas": 32, "generatetransactionaldatabas": 32, "graph": [33, 41, 119, 120], "df2fig": 33, "df2tex": 33, "plotlinegraphfromdictionari": 33, "plotlinegraphsfromdatafram": 33, "visualizefuzzypattern": 33, "visualizepattern": 33, "image2databas": 34, "imageprocess": 35, "imagery2databas": 35, "messag": 36, "discord": 36, "gmail": 36, "neighbour": 37, "findneighborsusingeuclideandistanceforpointinfo": 37, "findneighboursusingeuclidean": 37, "findneighboursusinggeodes": 37, "sampledataset": 38, "stat": 39, "graphdatabas": 39, "syntheticdatagener": 40, "createsyntheticgeoreferentialtempor": 40, "createsyntheticgeoreferentialtransact": 40, "createsyntheticgeoreferentialuncertaintransact": 40, "createsynthetictempor": 40, "createsynthetictransact": 40, "createsyntheticuncertaintempor": 40, "createsyntheticuncertaintransact": 40, "createsyntheticutil": 40, "generatetempor": 40, "generatetransact": 40, "generateuncertaintempor": 40, "generateuncertaintransact": 40, "generateutilitytempor": 40, "generateutilitytransact": 40, "georeferencedtemporaldatabas": 40, "georeferencedtransactionaldatabas": 40, "syntheticutilitydatabas": 40, "temporaldatabasegen": 40, "visual": 41, "faulttolerantfrequentpattern": [42, 43], "ftapriori": [43, 158], "ftfpgrowth": [43, 159], "frequentpattern": [44, 45, 46, 47, 48, 49, 50], "apriori": [45, 162], "eclat": [45, 163], "eclatdiffset": [45, 164], "eclatbitset": [45, 165], "fpgrowth": [45, 166], "close": [46, 89, 98, 114, 175, 228, 237, 254], "charm": [46, 181], "cuda": [47, 99, 175, 228], "cuapriori": [47, 167], "cuaprioribit": [47, 168], "cueclat": [47, 171], "cueclatbit": [47, 172], "cudaapriorigct": [47, 169], "cudaaprioritid": [47, 170], "cudaeclatgct": [47, 173], "maxim": [48, 90, 100, 175, 228, 237], "maxfpgrowth": [48, 174], "pyspark": [49, 91, 101, 175], "parallelapriori": [49, 176], "paralleleclat": [49, 177], "parallelfpgrowth": [49, 178], "topk": [50, 80, 92, 102, 103, 104, 117, 120, 228, 263], "fae": [50, 179], "fuzzycorrelatedpattern": [51, 52], "fcpgrowth": [52, 183], "fuzzyfrequentpattern": [53, 54], "ffimin": [54, 185], "ffiminer_old": 54, "fuzzygeoreferencedfrequentpattern": [55, 56], "ffspminer": [56, 188], "ffspminer_old": 56, "fuzzygeoreferencedperiodicfrequentpattern": [57, 58], "fgpfpminer": [58, 189], "fgpfpminer_old": 58, "fuzzypartialperiodicpattern": [59, 60], "f3pminer": 60, "fuzzyperiodicfrequentpattern": [61, 62], "fpfpminer": [62, 192], "fpfpminer_old": 62, "georeferencedperiodicfrequentpattern": [63, 64], "gpfpminer": [64, 198], "georeferencedfrequentpattern": [65, 66], "fspgrowth": [66, 199], "spatialeclat": [66, 200], "georeferencedfrequentsequencepattern": 67, "georeferencedpartialperiodicpattern": [68, 69], "steclat": [69, 201], "highutilityfrequentpattern": [70, 71], "hufim": [71, 202], "highutilitygeoreferencedfrequentpattern": [72, 73], "shufim": [73, 205], "highutilitypattern": [74, 75, 76], "efim": [75, 206], "hminer": [75, 207], "upgrowth": [75, 208], "efimparallel": [75, 76], "parallel": 76, "highutilitypatternsinstream": 77, "hupm": 77, "shugrowth": 77, "highutilityspatialpattern": [78, 79, 80], "hdshuim": [79, 210], "shuim": [79, 211], "tkshuim": [80, 213], "localperiodicpattern": [81, 82], "lppgrowth": [82, 216], "lppmbreadth": [82, 217], "lppmdepth": [82, 218], "multipleminimumsupportbasedfrequentpattern": [83, 84], "cfpgrowth": [84, 220], "cfpgrowthplu": [84, 221], "partialperiodicfrequentpattern": [85, 86], "gpfgrowth": [86, 225], "ppf_df": [86, 226], "partialperiodicpattern": [87, 88, 89, 90, 91, 92], "gthreepgrowth": [88, 229], "gabstract": 88, "pppgrowth": [88, 230], "ppp_eclat": [88, 231], "pppclose": [89, 232], "max3pgrowth": [90, 233], "parallel3pgrowth": 91, "k3pminer": [92, 234], "partialperiodicpatterninmultipletimeseri": 93, "ppgrowth": [93, 227], "periodiccorrelatedpattern": [94, 95], "epcpgrowth": [95, 236], "periodicfrequentpattern": [96, 97, 98, 99, 100, 101, 102, 103, 104], "pfeclat": [97, 238], "pfpgrowth": [97, 239], "pfpgrowthplu": [97, 240], "pfpmc": [97, 241], "psgrowth": [97, 242], "parallelpfpgrowth": [97, 101], "cpfpminer": [98, 243], "cugpfmin": 99, "gpfminerbit": 99, "maxpfgrowth": [100, 244], "topkpfp": [103, 245], "kpfpminer": [104, 246], "recurringpattern": [105, 106], "rpgrowth": [106, 248], "relativefrequentpattern": [107, 108], "rsfpgrowth": [108, 251], "relativehighutilitypattern": [109, 110], "rhuim": [110, 252], "sequentialpatternmin": [112, 113, 114], "spade": [113, 256], "spam": [113, 257], "prefixspan": [113, 258], "bide": [114, 259], "stableperiodicfrequentpattern": [115, 116, 117], "sppeclat": [116, 260], "sppgrowth": [116, 261], "sppgrowthdump": 116, "tspin": [117, 262], "subgraphmin": [118, 119, 120], "dfscode": [119, 120], "edg": [119, 120], "extendededg": [119, 120], "frequentsubgraph": [119, 120], "gspan": 119, "sparsetriangularmatrix": [119, 120], "vertex": [119, 120], "dfsthread": 120, "tkg": 120, "uncertainfaulttolerantfrequentpattern": 121, "vbftmine": 121, "uncertainfrequentpattern": [122, 123], "cufptre": [123, 266], "pufgrowth": [123, 267], "tufp": [123, 268], "tubep": [123, 269], "tube": [123, 270], "ufgrowth": [123, 271], "uveclat": [123, 272], "uncertaingeoreferencedfrequentpattern": [124, 125], "gfpgrowth": [125, 275], "uncertainperiodicfrequentpattern": [126, 127], "upfpgrowth": [127, 277], "upfpgrowthplu": [127, 278], "weightedfrequentneighbourhoodpattern": [128, 129], "swfpgrowth": [129, 281], "weightedfrequentpattern": [130, 131], "wfim": [131, 283], "weightedfrequentregularpattern": [132, 133], "wfrimin": [133, 285], "weighteduncertainfrequentpattern": [134, 135], "wufim": 135, "recur": 140, "rel": [141, 249], "sequenti": [142, 255], "stabl": 143, "uncertain": [144, 145, 146, 276], "weight": [147, 148, 149], "neighbourhood": 147, "regular": 149, "top": [175, 212, 237], "k": [175, 212, 237], "welcom": 214, "s": 214, "document": 214, "indic": 214, "tabl": 214, "timeseri": 223, "databas": [255, 264, 265, 276], "tempor": 264, "transact": 265}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "sphinx": 56}}) \ No newline at end of file