Skip to content

Latest commit

 

History

History
71 lines (53 loc) · 2.06 KB

README.md

File metadata and controls

71 lines (53 loc) · 2.06 KB

Learn by Observation: Imitation Learning for Drone Patrolling from Videos of A Human Navigator

This is the code that we use to train and evaluate. The following figures are the the evaluation results. (first row: DroNet [1]; second row: TrailNet [2]; Third row: our UAVPatrolNet )

image,img

Get Start

The most current dataset and videos

www.yfan.site/UAVPatrol/html

Requirements

This code has been tested on Ubuntu 18.04, and on Python 3.6.

Dependencies:

  • TensorFlow 1.15.0
  • Keras 2.2.4
  • Keras-contrib 2.0.8
  • tensorflow-estimator
  • tensorflow-probability
  • tensorflow-tensorboard
  • NumPy
  • OpenCV
  • scikit-learn
  • Python gflags

Usage

  1. Download the model:

    https://drive.google.com/drive/folders/19kA3OYej9iVE7fa6RWJ9X2Trh1kumlYj?usp=sharing
    
  2. Run the test code, predict_UAVPatrolNet.py,predict_DroNet.pyandpredict_TrailNet.py

    python predict_whichNet.py [Flags]
    

    Check configuration parameters in common_flags.py

  3. Run the accuracy evaluation code, evaluate_UAVPatrolNet.py,evaluate_DroNet.pyandevaluate_TrailNet.py

    python evaluate_whichNet.py [Flags]
    
  4. Format of our Patrol Dataset (download at yfan.site/UAVPatrol.html ).

    validation_dir/
        direction/
            images/
            direction_n_filted.txt
        translation/
            images/    
            translation.txt
        ...
    test_dir/
        testingset1/
            images/
    

TODO:

Clean up and upload the training code.

Reference:

[1]. A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D. Scaramuzza, “Dronet: Learning to fly by driving,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1088–1095, 2018.

[2]. N. Smolyanskiy, A. Kamenev, J. Smith, and S. Birchfield, “Toward low-flying autonomous mav trail navigation using deep neural networks for environmental awareness,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017, pp. 4241–4247.