-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathset005.tex
542 lines (486 loc) · 20.3 KB
/
set005.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
\documentclass{article}
\usepackage[total={7in,10in}]{geometry}
% basic
\usepackage{comment}
\makeatletter
\@ifclassloaded{revtex4-2}{}{
\@ifclassloaded{standalone}{}{
\@ifclassloaded{beamer}{}{
\usepackage{geometry} % only use geometry outside of RevTeX and TeXit
}
}
}
\makeatother
\usepackage{microtype}
\usepackage[dvipsnames]{xcolor}
\usepackage{titlesec}
% programmability
\usepackage{xparse}
\usepackage{xtemplate}
\usepackage{ifthen}
\usepackage{xintexpr}
\usepackage{mathcommand}
% Support for CJK characters
\ifthenelse{\equal{\meaning\pdftexbanner}{\meaning\someundefinednonsense}}{
\ifthenelse{\equal{\meaning\luatexbanner}{\meaning\someundefinednonsense}}{
% xelatex
\usepackage[UTF8]{ctex}
}{
% lualatex
}
}{
% pdflatex
\usepackage{CJKutf8}
\AddToHook{begindocument/end}{\CJK{UTF8}{gbsn}}
\AddToHook{enddocument}{\endCJK}
}
% fonts
\usepackage{amsfonts} % for \mathbb, \mathfrak
\usepackage{mathrsfs} % for \mathscr
\usepackage{bm}
\usepackage{upgreek}
\newcommand{\mbb}[1]{\mathbb{#1}}
\newcommand{\mfk}[1]{\mathfrak{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\trm}[1]{\textrm{#1}}
\newcommand{\mbf}[1]{\mathbf{#1}}
\newcommand{\tbf}[1]{\textbf{#1}}
%\newcommand{\mit}[1]{\mathit{#1}}
\newcommand{\msf}[1]{\mathsf{#1}}
\newcommand{\mcal}[1]{\mathcal{#1}}
\newcommand{\mscr}[1]{\mathscr{#1}}
%\newcommand{\mtt}[1]{\mathtt{#1}}
\newcommand{\tit}[1]{\textit{#1}}
\newcommand{\ttt}[1]{\texttt{#1}}
\newcommand{\bs}[1]{\boldsymbol{#1}}
% basic utilities
\usepackage{mathtools}
\usepackage{amsthm}
\usepackage{verbatim}
\usepackage{lipsum}
% extensions
\usepackage{cancel} % \cancel
\usepackage{tensor} % \tensor, \indices
\usepackage{fixdif} % \d
\usepackage[shortlabels]{enumitem} % options to enumerate and itemize environments
\usepackage{dcolumn} % align numbers by decimal point in tabular
\usepackage{hyperref} % \url, \href, and add hyperlinks to crossrefs
\usepackage{scalerel} % \scalerel, \stretchrel, \scaleto, \stretchto
\usepackage[notquote]{hanging} % \hangpara
\usepackage{chngcntr} % \counterwithin, \counterwithout
\usepackage{slashed} % \slashed
\makeatletter
\@ifclassloaded{beamer}{
% https://tex.stackexchange.com/a/24491
\setitemize{label=\usebeamerfont*{itemize item}%
\usebeamercolor[fg]{itemize item}
\usebeamertemplate{itemize item}}
}{}
\makeatother
% beamer style
\makeatletter
\@ifclassloaded{beamer}{
\usetheme{Boadilla}
\usefonttheme{serif}
\setbeamertemplate{footline}{% https://tex.stackexchange.com/a/67000
\leavevmode%
\hbox{%
\begin{beamercolorbox}[wd=.2\paperwidth,ht=2.25ex,dp=1ex,center]{author in head/foot}%
\usebeamerfont{author in head/foot}\insertshortauthor
\end{beamercolorbox}%
\begin{beamercolorbox}[wd=.8\paperwidth,ht=2.25ex,dp=1ex,center]{title in head/foot}%
\usebeamerfont{title in head/foot}\insertshorttitle\hspace*{3em}
\insertframenumber{} / \inserttotalframenumber\hspace*{1ex}
\end{beamercolorbox}
}%
\vskip0pt%
}
}{}
% floats
\usepackage{listings}
\lstdefinestyle{mystyle}{
basicstyle=\ttfamily\scriptsize,
tabsize=2,
showspaces=false,
showstringspaces=false,
extendedchars=true
}
\lstset{style=mystyle}
\makeatletter
\@ifclassloaded{revtex4-2}{
% https://tex.stackexchange.com/a/597712
\usepackage[caption=false]{subfig}
\usepackage{ragged2e}
\DeclareCaptionJustification{justified}{\justifying}
}{
\usepackage{caption} % not compatible with RevTeX
\usepackage{subfig}
}
\makeatother
\usepackage{graphicx} % \includegraphics
\usepackage{booktabs} % \toprule, \midrule, \bottomrule
\setlength{\tabcolsep}{12pt}
% fancy tools
\usepackage[version=4]{mhchem}
\usepackage{chemfig}
\usepackage{chemmacros}
\usepackage{physics2}
\usephysicsmodule[empty={}]{diagmat}
\usephysicsmodule{doubleprod}
\usephysicsmodule{xmat}
\usepackage[separate-uncertainty=true,multi-part-units=single]{siunitx}
\sisetup{range-phrase=--, range-units=single} % use -- for ranges, unit appears only once
\catcode`\%=12\relax
\DeclareSIUnit[number-unit-product=]\percent{%}
\catcode`\%=14\relax % use \percent in \SI{}{}
\DeclareSIUnit[number-unit-product=\,]\fahrenheit{\SIUnitSymbolDegree F} % \fahrenheit
% symbols
\usepackage{amssymb}
\usepackage[nointegrals]{wasysym}
\usepackage[safe]{tipa}
\usepackage{pifont}
\newcommand{\cmark}{\text{\ding{51}}}
\newcommand{\xmark}{\text{\ding{55}}}
\newcommand{\bN}{\mbb{N}}
\newcommand{\bC}{\mbb{C}}
\newcommand{\bR}{\mbb{R}}
\newcommand{\bQ}{\mbb{Q}}
\newcommand{\bZ}{\mbb{Z}}
\newcommand{\alp}{\alpha}
\newcommand{\gma}{\gamma}
\newcommand{\Gma}{\Gamma}
\newcommand{\dlt}{\delta}
\newcommand{\Dlt}{\Delta}
\newcommand{\eps}{\epsilon}
\newcommand{\veps}{\varepsilon}
\newcommand{\vphi}{\varphi}
\newcommand{\tht}{\theta}
\newcommand{\Tht}{\Theta}
\newcommand{\kap}{\kappa}
\newcommand{\lmd}{\lambda}
\newcommand{\Lmd}{\Lambda}
\newcommand{\sgm}{\sigma}
\newcommand{\Sgm}{\Sigma}
\newcommand{\omg}{\omega}
\newcommand{\Omg}{\Omega}
\newcommand{\divby}{\divisionsymbol}
\newcommand{\ceq}{\coloneqq}
\newcommand{\eqc}{\eqqcolon}
\renewmathcommand{\i}{\mrm{i}}
\newcommand{\e}{\mrm{e}}
\newcommand{\st}{\trm{s.t.}}
\NewChemParticle{\muon}{\chemmu}
\NewChemParticle{\tauon}{\chemtau}
\NewChemParticle{\eneu}{\chemnu_{\!\!e}}
\NewChemParticle{\mneu}{\chemnu_{\!\!\chemmu}}
\NewChemParticle{\tneu}{\chemnu_{\!\!\chemtau}}
\NewChemParticle{\pion}{\chempi}
\NewChemParticle{\etaon}{\chemeta}
% for drawing
\usepackage{tikz-cd}
\usepackage{circuitikz}
\usepackage{pgfplots}
\usepackage{tikz-3dplot}
%\usepackage{tikz-feynhand}
\usetikzlibrary{intersections}
\usetikzlibrary{decorations.markings}
\usetikzlibrary{decorations.pathmorphing}
\usetikzlibrary{arrows.meta}
\usetikzlibrary{calc}
\usetikzlibrary{bending}
\usetikzlibrary{patterns}
\usetikzlibrary{positioning}
\usetikzlibrary{math}
\usetikzlibrary{pgfplots.units}
\usetikzlibrary{angles}
\usetikzlibrary{shapes.geometric}
\usetikzlibrary{shadings}
\pgfplotsset{
compat=newest,
ylabel style={rotate=-90},
trig format=rad
}
% https://tex.stackexchange.com/a/685953
\makeatletter
\patchcmd\pgfpatharc{\pgfutil@in@}{%
\pgfmathiftrigonometricusesdeg{}{%
\pgfmathradians@{\pgf@temp@a}\let\pgf@temp@a\pgfmathresult
\pgfmathradians@{\pgf@temp@b}\let\pgf@temp@b\pgfmathresult
\def\pgfmath@trig@format@choice{0}
}\pgfutil@in@}{}{\PatchFailed}
\makeatother
% more shortcuts
\newcommand{\mcl}{\mathclap}
\newcommand{\mll}{\mathllap}
\newcommand{\mrl}{\mathrlap}
\newcommand{\fr}{\frac}
\newcommand{\dfr}{\dfrac}
\newcommand{\tfr}{\tfrac}
\newcommand{\opn}{\operatorname}
\newcommand{\bhat}[1]{\hat{\bs{\mbf{#1}}}}
\newcommand{\fs}{\slashed}
\newcommand{\hatfs}[1]{{\hat{\phantom{#1}}\mathllap{\fs{#1}}}}
\newcommand{\func}[3]{#1\colon#2\to#3} % \func{f}{A}{B} => f:A->B
\newcommand{\vfunc}[5]{\func{#1}{#2}{#3},\quad#4\longmapsto#5} % \vfunc{f}{A}{B}{a}{b} => f:A->B, a|->b
\newcommand{\fc}[2]{#1\mathchoice{\!}{\!}{}{}\p{#2}} % \fc{f}{x} => f(x)
\newcommand{\bfc}[2]{#1\mathchoice{\!}{\!}{}{}\b{#2}} % \bfc{f}{x} => f[x]
\newcommand{\Bfc}[2]{#1\mathchoice{\!}{\!}{}{}\B{#2}} % \bfc{f}{x} => f{x}
\newcommand{\opc}[2]{\fc{\opn{#1}}{#2}} % \opc{sgn}{x} => sgn(x)
\newcommand{\bopc}[2]{\bfc{\opn{#1}}{#2}} % \bopc{sgn}{x} => sgn[x]
\newcommand{\Bopc}[2]{\Bfc{\opn{#1}}{#2}} % \bopc{sgn}{x} => sgn{x}
\newcommand{\set}[2]{\left\{#1\;\middle|\;#2\right\}} % \set{x}{S} => {x|S}
\newcommand{\tp}[3][]{
\ifthenelse{\equal{#1}{}}
{\fr{\partial#2}{\partial#3}}{\p{\fr{\partial#2}{\partial#3}}_{#1}}
} % \tp[a]{f}{x} => (df/dx)_a, \tp{f}{x} => df/dx
\newcommand{\abar}[2]{\left.#1\right|_{#2}} % \abar{f}{a} => f|_a
\newcommand{\order}[1]{\fc{\mrm{O}}{#1}} % \order{x} => O(x)
% parentheses
\renewmathcommand\p[1]{\left(#1\right)}
\newcommand\B[1]{\left\{#1\right\}}
\newcommand\V[1]{\left\lVert#1\right\rVert}
\renewmathcommand\b[1]{\left[#1\right]}
\renewmathcommand\v[1]{\left|#1\right|}
\renewmathcommand\a[1]{\left\langle#1\right\rangle}
\newcommand\floor[1]{\left\lfloor#1\right\rfloor}
\newcommand\ceil[1]{\left\lceil#1\right\rceil}
\newcommand\round[1]{\left\lfloor#1\right\rceil}
\newcommand\bra[1]{\left<#1\right|}
\newcommand\ket[1]{\left|#1\right>}
\newcommand\braket[2]{\left<#1\middle|#2\right>}
\newcommand\mel[3]{\left<#1\middle|#2\middle|#3\right>}
\newcommand\bbra[1]{\left[#1\right|}
\newcommand\bket[1]{\left|#1\right]}
\newcommand\bbraket[2]{\left[#1\middle|#2\right]}
\newcommand\bmel[3]{\left[#1\middle|#2\middle|#3\right]}
\newcommand\bmela[3]{\left[#1\middle|#2\middle|#3\right>}
\newcommand\amelb[3]{\left<#1\middle|#2\middle|#3\right]}
% operators
\DeclareMathOperator{\sech}{sech}
\DeclareMathOperator{\csch}{csch}
\DeclareMathOperator{\arsinh}{arsinh}
\DeclareMathOperator{\arcosh}{arcosh}
\DeclareMathOperator{\artanh}{artanh}
\DeclareMathOperator{\arcoth}{arcoth}
\DeclareMathOperator{\arsech}{arsech}
\DeclareMathOperator{\arcsch}{arcsch}
\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\nint}{nint}
\DeclareMathOperator{\PV}{PV}
\let\Re\relax
\let\Im\relax
\DeclareMathOperator{\Re}{Re}
\DeclareMathOperator{\Im}{Im}
\DeclareMathOperator{\Tr}{Tr}
\DeclareMathOperator*{\bigTr}{Tr}
\DeclareMathOperator*{\bigdet}{det}
\DeclareMathOperator*{\argmax}{arg\,max}
\DeclareMathOperator*{\argmin}{arg\,min}
\DeclareMathOperator*{\Res}{Res}
\DeclareMathOperator*{\supp}{supp}
\letdif\dt{delta}
\letdif\Dt{Delta}
% Lie groups and others
\renewmathcommand\O[1]{\fc{\mrm O}{#1}}
\newcommand\SO[1]{\fc{\mrm{SO}}{#1}}
\newcommand\U[1]{\fc{\mrm U}{#1}}
\newcommand\SU[1]{\fc{\mrm{SU}}{#1}}
\newcommand\GL[1]{\fc{\mrm{GL}}{#1}}
\newcommand\SL[1]{\fc{\mrm{SL}}{#1}}
\newcommand\Spin[1]{\fc{\mrm{Spin}}{#1}}
\newcommand\Pin[1]{\fc{\mrm{Pin}}{#1}}
\newcommand\Cl[1]{\fc{\mrm{Cl}}{#1}}
\renewmathcommand\o[1]{\fc{\mfk o}{#1}}
\newcommand\so[1]{\fc{\mfk{so}}{#1}}
\newcommand\su[1]{\fc{\mfk{su}}{#1}}
\newcommand\gl[1]{\fc{\mfk{gl}}{#1}}
\renewmathcommand\sl[1]{\fc{\mfk{sl}}{#1}}
\newcommand\spin[1]{\fc{\mfk{spin}}{#1}}
\newcommand\pin[1]{\fc{\mfk{pin}}{#1}}
% theorems
\makeatletter
\@ifclassloaded{beamer}{}{
\newtheorem{theorem}{Theorem}
\newtheorem{proposition}{Theorem}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
}
\makeatother
% displaystyle matrices
\makeatletter
\def\env@dmatrix{
\hskip-\arraycolsep
\let\@ifnextchar\new@ifnextchar
\extrarowheight=2ex
\array{*\c@MaxMatrixCols{>{\displaystyle}c}}
}
\newenvironment{dmatrix}{\env@dmatrix}{\endarray\hskip-\arraycolsep}
\newenvironment{pdmatrix}{\left(\env@dmatrix}{\endmatrix\right)}
\newenvironment{bdmatrix}{\left[\env@dmatrix}{\endmatrix\right]}
\newenvironment{Bdmatrix}{\left\{\env@dmatrix}{\endmatrix\right\}}
\newenvironment{vdmatrix}{\left|\env@dmatrix}{\endmatrix\right|}
\newenvironment{Vdmatrix}{\left\lVert\env@dmatrix}{\endmatrix\right\rVert}
\makeatother
\newcounter{para}
\newcommand\mypara{\par\refstepcounter{para}(\thepara)\space}
\titleformat{\section}[block]{\Large\bfseries\filcenter}{}{0em}{}
\renewcommand\thesection{}
\renewcommand\thesubsection{\protect\setcounter{equation}{0}\protect\setcounter{para}{0}第 \arabic{subsection} 题}
\title{hs\_phys\_probs 005}
\author{詹有丘}
\date{}
\begin{document}
\maketitle
\subsection{喷流}
有时对黑洞等天体的观测中能发现喷流:
沿着天体的自转轴有两束反方向运动的高速发光物质喷出.
今对某天体的喷流进行观测.
天体相对于地球的运动速度大小远小于喷流的速度大小, 因此忽略不计.
喷流离天体的距离足够远, 因此忽略广义相对论效应.
\tit{本题中, 凡涉及方向, 指天体到地球连线与所说方向的夹角.}
\mypara
天体到地球的距离为 $D$.
两束喷流在天球 (不计地球自转) 上运动的角速度大小分别为 $\mu_\mrm a$ 和 $\mu_\mrm r$ ($\mu_\mrm r\le\mu_\mrm a$).
求天体的自转轴的方向.
\mypara
天体以恒定角速度进动.
喷流的光谱中某谱线波长为 $\lmd_0$ (光源静止系中).
其因 Doppler 效应而变化的范围, 在两束喷流中分别是 $\b{\lmd_{\mrm a1},\lmd_{\mrm a2}}$
和 $\b{\lmd_{\mrm r1},\lmd_{\mrm r2}}$.
求天体的进动角速度的方向.
\tit{注}: 已知量有冗余.
\mypara
假设在喷流与地球相对静止的情况下, 其发光是各向同性的, 光谱为 $I_\nu\d\nu\propto\nu^\alp\d\nu$,
且其视光度 (特定频率范围内通过瞳孔/光圈的总电磁功率) 为 $S_0$.
求速率为 $\beta c$, 方向为 $\tht$ 的一束喷流的视光度.
\newpage
\section{参考答案}
\subsection{喷流}
\mypara
设喷流的速度大小为 $\beta c$, 方向为 $\tht$.
在喷流运动了 $\Dlt t'$ 的时间前后各向地球发出一束光线. 如图~\ref{fig:jets} 所示.
\begin{figure}[h!]
\centering
\begin{tikzpicture}[scale=0.5]
\begin{scope}[decoration={markings,mark=at position 0.5 with {\arrow{>}}}]
\draw[postaction={decorate}] (-3,-2) node[left] {天体} -- node[midway,below right] {喷流} (0,0);
\draw[postaction={decorate}] (0,0) -- (3,2);
\draw[postaction={decorate}] (0,0) -- (10,0);
\draw[postaction={decorate}] (3,2) -- node[midway,below] {光线} (10,2);
\end{scope}
\node at (10,1) {地球};
\draw[|<->|] (-3,0) -- node[midway,left] {$\Dt y$} (-3,2);
\draw[|<->|] (-0.2,0.3) -- node[midway, above left] {$\beta c\Dt t'$} ++(3,2);
\node[above right,xshift=15] at (0,0) {$\tht$};
\end{tikzpicture}
\caption{}
\label{fig:jets}
\end{figure}
两束光线到达地球的时间分别为 $D/c$ 和 $\Dt t'+\p{D-\beta c\Dt t'\cos\tht}/c$.
由此获得时间差
\[\Dt t=\Dt t'-\beta\Dt t'\cos\tht.\]
这两束光线的距离为 $\Dt y=\beta c\Dt t'\sin\tht$, 因此喷流的视速率为
\[\fr{\Dt y}{\Dt t}=\fr{\beta\sin\tht}{1-\beta\cos\tht}c.\]
对于锐角 $\tht$, 这是接近喷流. 对于远离喷流, 只需替换 $\tht\to\pi-\tht$ 即可.
因此可以获得两束喷流在天球上的角速度大小:
\[\mu_\mrm a=\fr1D\fr{\Dt y}{\Dt t}=\fr{\beta\sin\tht}{1-\beta\cos\tht}\fr cD,\quad
\mu_\mrm r=\fr{\beta\sin\tht}{1+\beta\cos\tht}\fr cD.\]
由此反解 $\beta,\tht$, 获得
\[\tan\tht=\fr{2D}c\fr{\mu_\mrm a\mu_\mrm r}{\mu_a-\mu_\mrm r},\quad
\beta\cos\tht=\fr{\mu_\mrm a-\mu_\mrm r}{\mu_\mrm a+\mu_\mrm r}.\]
\mypara
设进动角速度的方向为 $\vphi$, 其与自转轴的夹角为 $\psi$.
在进动的过程中, $\tht$ 的变化范围是 $\b{\v{\vphi-\psi},\vphi+\psi}$.
应用 Doppler 效应的公式时, 注意角度是观察者系中的, 于是得到
\[\lmd=\gma\p{1-\beta\cos\tht}\lmd_0,\]
其中 $\gma\ceq\p{1-\beta^2}^{-1/2}$.
因此,
\[\lmd_{\mrm a1,2}=\p{1-\beta\fc\cos{\vphi\mp\psi}}\gma\lmd_0,\quad
\lmd_{\mrm b1,2}=\p{1+\beta\fc\cos{\vphi\pm\psi}}\gma\lmd_0.\]
题中所说已知量的冗余可以看出指的是 $\lmd_{\mrm a2}+\lmd_{\mrm b1}=\lmd_{\mrm a1}+\lmd_{\mrm b2}$,
因此这里的 4 个方程只有 3 个独立.
由这些方程反解 $\beta,\vphi,\psi$, 可以解得
\[\vphi=\fr12\p{
\arccos\fr{\lmd_{\mrm b1}-\lmd_{\mrm a2}}{\sqrt{\p{\lmd_{\mrm b1}+\lmd_{\mrm a2}}^2-4\lmd_0^2}}
\pm\arccos\fr{\lmd_{\mrm b2}-\lmd_{\mrm a1}}{\sqrt{\p{\lmd_{\mrm b2}+\lmd_{\mrm a1}}^2-4\lmd_0^2}}
}.\]
式中 ``$\pm$'' 对应于两个物理上可能的解.
还可以加上 $\pi$ 的整数倍获得更多的解, 但最终只会有两个不同的锐角解.
\mypara
该问题涉及多个效应: 光行差, 宏观 Doppler 效应, 以及微观 Doppler 效应.
光行差指光的传播方向变化, 导致立体角变化;
宏观 Doppler 效应指的是先后到达地球的光线时间差不等于发出它们的时间差;
微观 Doppler 效应指的是光线的频率的变化, 导致每个光子的能量变化.
具体思路是, 将视光度表达为
\[S_\mrm{obs}\d t_\mrm{obs}=\int_\text{特定频率范围}\int_\text{光圈张成的立体角}
\fc{I_\mrm{obs}}{\nu,\Omg}\d\nu\d\Omg\d t_\mrm{obs},\]
其中 $I_\mrm{obs}\d\nu_\mrm{obs}$ 是观察者系中单位立体角的功率随频率的分布,
$\Omg$ 是 $\p{\tht,\vphi}$ 的缩写, $\d\Omg=\sin\tht\d\tht\d\vphi$.
这里需要注意的是, 积分范围是与参考系无关的
(因为 $S_\mrm{rest}$ 是在假设喷流与地球相对静止的情况下得到的),
所以实际上被积变量 $\nu,\Omg$ 可以任意替换名字,
比如说可以换成 $\nu_\mrm{rest},\Omg_\mrm{rest}$, 只需要保证积分范围和被积函数不变即可;
但是\tbf{不能}说 $\d\nu_\mrm{obs}=\d\nu_\mrm{rest}$.
然后, 研究光行差效应可获得 $\d\Omg_\mrm{obs}$ 与 $\d\Omg_\mrm{rest}$ 的关系;
研究宏观 Doppler 效应可获得 $\d t_\mrm{obs}$ 与 $\d t_\mrm{rest}$ 的关系;
研究微观 Doppler 效应可获得 $I_\mrm{obs}\d\Omg_\mrm{obs}\d t_\mrm{obs}$
与 $I_\mrm{rest}\d\Omg_\mrm{rest}\d t_\mrm{rest}$ 的关系.
利用 Lorentz 不变量 (光子数不变)
\[\fc{N_\mrm{obs}}{\nu_\mrm{obs},\Omg_\mrm{obs}}\d\nu_\mrm{obs}\d\Omg_\mrm{obs}\d t_\mrm{obs}
=\fc{N_\mrm{rest}}{\nu_\mrm{rest},\Omg_\mrm{rest}}\d\nu_\mrm{rest}\d\Omg_\mrm{rest}\d t_\mrm{rest}\]
即可最终获得 $S_\mrm{obs}$ 与 $S_\mrm{rest}$ 的关系,
其中 $N_\mrm{obs}\d\nu_\mrm{obs}$ 是单位立体角内单位时间发出的光子数随频率的分布.
首先考虑光行差. 利用速度合成公式, 可以容易得到,
对于在观察者系中出射角 (出射方向与运动方向的夹角) 为 $\tht_\mrm{obs}$ 的光线, 在静止系中其出射角为
\[\cos\tht_\mrm{rest}=\fr{\cos\tht_\mrm{obs}-\beta}{1-\beta\cos\tht_\mrm{obs}}.\]
于是, 可以计算得立体角 (注意 $\vphi_\mrm{obs}=\vphi_\mrm{rest}$)
\[\d\Omg_\mrm{rest}=\sin\tht_\mrm{rest}\d\tht_\mrm{rest}\d\vphi_\mrm{rest}
=\fr{\sin\tht_\mrm{obs}\d\tht_\mrm{obs}\d\vphi_\mrm{obs}}{\gma^2\p{1-\beta\cos\tht_\mrm{obs}}^2}
=\dlt^2\d\Omg_\mrm{obs},\]
其中 $\dlt\ceq\gma^{-1}\p{1-\beta\cos\tht_\mrm{obs}}^{-1}$ 是 Doppler 因子.
然后考虑宏观 Doppler 效应. \tbf{不能}由钟慢效应简单得到 $\d t_\mrm{obs}=\gma^{-1}\d t_\mrm{rest}$.
要理解这一点, 可以这么考虑: 光源每单位时间发射一定数量的光子, 这定义了一个频率 $f_\mrm{rest}$.
单位时间内, 观察者又会看到一定数量的光子, 这是另一个频率 $f_\mrm{obs}$.
这两个频率之间的关系 $f_\mrm{obs}=\dlt f_\mrm{rest}$ 就是 Doppler 效应.
而 $\d t_\mrm{rest}$ 的意义是, 静止系中发射一定数量
$f_\mrm{rest}\d t_\mrm{rest}$ 的光子所需要的总时间, 它会反比于这个频率.
所以得到 $\d t_\mrm{obs}=\dlt^{-1}\d t_\mrm{rest}$.
最后探讨微观 Doppler 效应.
我们知道
\[\fc{I_\mrm{rest}}{\nu,\Omg}\d\nu=h\nu\fc{N_\mrm{rest}}{\nu,\Omg}\d\nu,\quad
\fc{I_\mrm{obs}}{\nu,\Omg}\d\nu=h\nu\fc{N_\mrm{obs}}{\nu,\Omg}\d\nu,\]
其中 $h\nu$ 是频率为 $\nu$ 的单个光子的能量.
另一方面, 题目给出了 $\fc{I_\mrm{rest}}{\nu,\Omg}\propto\nu^\alp$, 于是可知
\[\fc{N_\mrm{rest}}{\nu,\Omg}=K\nu^{\alp-1},\]
其中 $K$ 是比例常数.
由 Doppler 效应知 $\nu_\mrm{obs}=\dlt\nu_\mrm{rest}$, 因此由光子数的 Lorentz 不变性可知
\begin{align*}
\fc{N_\mrm{obs}}{\nu_\mrm{obs},\Omg_\mrm{obs}}\d\nu_\mrm{obs}\d\Omg_\mrm{obs}\d t_\mrm{obs}
&=\fc{N_\mrm{rest}}{\nu_\mrm{rest},\Omg_\mrm{rest}}\d\nu_\mrm{rest}\d\Omg_\mrm{rest}\d t_\mrm{rest}\\
&=K\nu_\mrm{rest}^{\alp-1}\d\nu_\mrm{rest}\d\Omg_\mrm{rest}\d t_\mrm{rest}\\
&=\dlt^{-\alp}K\nu_\mrm{obs}^{\alp-1}\d\nu_\mrm{obs}\d\Omg_\mrm{rest}\d t_\mrm{rest}\\
&=\dlt^{-\alp}\fc{N_\mrm{rest}}{\nu_\mrm{obs},\Omg_\mrm{obs}}\d\nu_\mrm{obs}\d\Omg_\mrm{rest}\d t_\mrm{rest}.
\end{align*}
综合三种效应, 可以得到
\begin{align*}
\fc{I_\mrm{obs}}{\nu_\mrm{obs},\Omg_\mrm{obs}}\d\nu_\mrm{obs}\d\Omg_\mrm{obs}\d t_\mrm{obs}
&=h\nu_\mrm{obs}\fc{N_\mrm{obs}}{\nu_\mrm{obs},\Omg_\mrm{obs}}\d\nu_\mrm{obs}\d\Omg_\mrm{obs}\d t_\mrm{obs}\\
&=\dlt^{-\alp}h\nu_\mrm{obs}\fc{N_\mrm{rest}}{\nu_\mrm{obs},\Omg_\mrm{obs}}\d\nu_\mrm{obs}\d\Omg_\mrm{rest}\d t_\mrm{rest}\\
&=\dlt^{-\alp}\fc{I_\mrm{rest}}{\nu_\mrm{obs},\Omg_\mrm{obs}}\d\nu_\mrm{obs}\,\dlt^2\d\Omg_\mrm{obs}\d t_\mrm{rest}.
\end{align*}
现在, 两边对 $\nu_\mrm{obs},\Omg_\mrm{obs}$ 积分, 然后除以 $\d t_\mrm{obs}$, 可得
\begin{align*}
S_\mrm{obs}&=\fr1{\d t_\mrm{obs}}\int\fc{I_\mrm{obs}}{\nu,\Omg}\d\nu\d\Omg\d t_\mrm{obs}\\
&=\dlt^{2-\alp}\fr1{\d t_\mrm{obs}}\int\fc{I_\mrm{rest}}{\nu,\Omg}\d\nu\d\Omg\d t_\mrm{rest}\\
&=\dlt^{3-\alp}\fr1{\d t_\mrm{rest}}\int\fc{I_\mrm{rest}}{\nu,\Omg}\d\nu\d\Omg\d t_\mrm{rest}\\
&=\dlt^{3-\alp}S_\mrm{rest}.
\end{align*}
这里 $S_\mrm{rest}$ 就是题目中所给的 $S_0$. 因此,
\[S_\mrm{obs}=\p{1-\beta^2}^{\p{3-\alp}/2}\p{1-\beta\cos\tht}^{\alp-3}S_0.\]
\tit{另}: 可利用结论: $I/\nu^3$ 是 Lorentz 不变量, 其中 $I\d\nu$ 是单位立体角的功率随频率的分布.
于是可以直接获得
\[I_\mrm{obs}=I_\mrm{rest}\p{\fr{\nu_\mrm{obs}}{\nu_\mrm{rest}}}^3
=\dlt^3I_\mrm{rest}=\dlt^3K\nu_\mrm{rest}^\alp=\dlt^{3-\alp}K\nu_\mrm{obs}^\alp.\]
获得跟上一种解法相同的结果 (因子 $\dlt^{3-\alp}$).
\end{document}