Skip to content

Latest commit

 

History

History
 
 

two_stage

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PRTR Two-stage Cascade Transformers

Implementation of the two stage variant in PRTR: Pose Recognition with Cascade Transformers.

Main Results

Results on MPII val

Arch Input Size Head Shoulder Elbow Wrist Hip Knee Ankle Mean Mean@0.1
prtr_res50 256x256 94.577 93.088 83.109 74.079 84.733 74.732 69.367 82.865 22.602
prtr_res50 384x384 96.010 94.124 86.586 79.940 86.464 81.604 74.563 86.310 28.704
prtr_res50 512x512 96.555 95.007 88.597 83.383 88.731 84.002 79.121 88.493 34.036
prtr_res101 256x256 94.816 93.461 84.728 76.853 87.000 79.730 72.768 84.975 25.517
prtr_res101 384x384 96.282 94.990 88.307 82.353 88.125 83.639 77.445 87.916 31.642
prtr_res101 512x512 96.828 95.839 90.234 84.633 89.302 85.049 80.043 89.409 37.198
prtr_res152 256x256 96.146 94.480 86.108 78.515 87.658 81.826 74.634 86.313 26.885
prtr_res152 384x384 96.419 94.871 88.444 82.627 88.575 84.143 78.365 88.215 32.160
prtr_hrnet_w32 256x256 96.794 95.584 89.603 83.143 88.731 83.739 78.012 88.584 33.206
prtr_hrnet_w32 384x384 97.340 96.009 90.557 84.479 89.700 85.533 78.956 89.526 35.410

Results on COCO val2017 (with DETR bbox)

Backbone Input Size AP AP .50 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
prtr_res50 384x288 68.2 88.2 75.2 63.2 76.2 76.0 92.9 82.4 70.9 83.3
prtr_res50 512x384 71.0 89.3 78.0 66.4 78.8 78.0 93.5 84.1 73.0 85.1
prtr_res101 384x288 70.1 88.8 77.6 65.7 77.4 77.5 93.6 84.1 72.8 84.2
prtr_res101 512x384 72.0 89.3 79.4 67.3 79.7 79.2 93.8 85.4 74.3 86.1
prtr_hrnet_w32 384x288 73.1 89.4 79.8 68.8 80.4 79.8 93.8 85.6 75.3 86.2
prtr_hrnet_w32 512x384 73.3 89.2 79.9 69.0 80.9 80.2 93.6 85.7 75.5 86.8
deform_prtr_res50 384x288 70.8 88.5 77.5 66.8 78.3 78.3 93.2 84.1 73.4 85.1
deform_prtr_res101 384x288 71.0 88.7 77.8 66.9 78.4 78.4 93.3 84.3 73.6 85.3

Results on COCO test-dev2017

Backbone Input Size # Params GFlops AP AP .50 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
prtr_res50 384x288 41.5M 11.0 67.4 89.3 75.6 62.9 74.8 75.2 93.8 82.4 70.2 82.1
prtr_res50 512x384 41.5M 18.8 69.6 90.2 77.4 65.1 77.0 77.0 94.4 83.9 72.0 83.9
prtr_res101 384x288 60.4M 19.1 68.8 89.9 76.9 64.7 75.8 76.6 94.4 83.7 71.8 83.0
prtr_res101 512x384 60.4M 33.4 70.6 90.3 78.5 66.2 77.7 78.1 94.6 84.9 73.2 84.6
prtr_hrnet_w32 384x288 57.2M 21.6 71.7 90.6 79.6 67.6 78.4 78.8 94.7 85.7 74.4 84.8
prtr_hrnet_w32 512x384 57.2M 37.8 72.1 90.4 79.6 68.1 79.0 79.4 94.7 85.8 74.8 85.7
deform_prtr_res50 384x288 46.3M 29.1 69.3 89.5 76.9 65.5 76.3 77.3 94.1 83.9 72.4 83.9
deform_prtr_res101 384x288 65.2M 37.3 69.3 89.7 76.8 65.7 76.1 77.3 94.3 83.8 72.7 83.6

Note

Getting Started

This project is developed on Ubuntu 18.04 with CUDA 10.2.

Installation

  1. Install pytorch >= v1.4.0 following official instruction. We recommend using conda virtual environment.
  2. Clone this repo, and we'll call the directory two_stage as ${POSE_ROOT}.
  3. Install dependencies:
    pip install -r requirements.txt
    
  4. Download pretrained HRNet weight hrnetv2_w32_imagenet_pretrained.pth and put it into ${POSE_ROOT}/models/pytorch/imagenet/
  5. (Optional) If you want to use the deformable_pose_transformer model, please build the Deformable Attention module:
    cd ${POSE_ROOT}/lib/models/ops/ && bash make.sh
    

Model zoo

Please download our pretrained models from OneDrive.

${POSE_ROOT}
 `-- models
     `-- pytorch
         |-- imagenet
         |   `-- hrnetv2_w32_imagenet_pretrained.pth
         |-- pose_coco
         |   |-- deform_pose_transformer_res101_384x288.pth
         |   |-- deform_pose_transformer_res50_384x288.pth
         |   |-- pose_transformer_hrnet_w32_384x288.pth
         |   |-- pose_transformer_hrnet_w32_512x384.pth
         |   |-- pose_transformer_res101_384x288.pth
         |   |-- pose_transformer_res101_512x384.pth
         |   |-- pose_transformer_res50_384x288.pth
         |   `-- pose_transformer_res50_512x384.pth
         `-- pose_mpii
             |-- pose_transformer_hrnet_w32_256x256.pth
             |-- pose_transformer_hrnet_w32_384x384.pth
             |-- pose_transformer_res101_256x256.pth
             |-- pose_transformer_res101_384x384.pth
             |-- pose_transformer_res101_512x512.pth
             |-- pose_transformer_res152_256x256.pth
             |-- pose_transformer_res152_384x384.pth
             |-- pose_transformer_res50_256x256.pth
             |-- pose_transformer_res50_384x384.pth
             `-- pose_transformer_res50_512x512.pth

Data preparation

MPII and COCO dataset are supported. Please follow the data downloading and processing guide in HRNet-Human-Pose-Estimation. After that, please download COCO person detection bboxes generated by DETR from OneDrive and put them in ${POSE_ROOT}/data/coco/person_detection_results.

${POSE_ROOT}
|-- data
`-- |-- coco
    `-- |-- annotations
        |   |-- person_keypoints_train2017.json
        |   `-- person_keypoints_val2017.json
        |-- person_detection_results
        |   |-- COCO_test-dev2017_detr_detections.json
        |   `-- COCO_val2017_detr_detections.json
        `-- images
            |-- train2017
            |   |-- 000000000009.jpg
            |   |-- 000000000025.jpg
            |   |-- 000000000030.jpg
            |   |-- ... 
            `-- val2017
                |-- 000000000139.jpg
                |-- 000000000285.jpg
                |-- 000000000632.jpg
                |-- ... 

Visualization

We provide a notebook file visualization.ipynb which helps to visualize the outputs of the model. pose_transformer_hrnet_w32_384x288.pth and COCO dataset are needed for it to work properly.

Training and Testing

Testing on MPII dataset

python tools/test.py \
    --cfg experiments/mpii/transformer/w32_256x256_adamw_lr1e-4.yaml \
    TEST.MODEL_FILE models/pytorch/pose_mpii/pose_transformer_w32_256x256.pth

Training on MPII dataset

python tools/train.py \
    --cfg experiments/mpii/hrnet/w32_256x256_adamw_lr1e-4.yaml

Testing on COCO val2017 dataset

python tools/test.py \
    --cfg experiments/coco/transformer/w32_384x288_adamw_lr1e-4.yaml \
    TEST.MODEL_FILE models/pytorch/pose_coco/pose_transformer_w32_384x288.pth \
    TEST.USE_GT_BBOX False

Training on COCO train2017 dataset

python tools/train.py \
    --cfg experiments/coco/transformer/w32_384x288_adamw_lr1e-4.yaml

Tracing model stats (Flops, number of params, activations)

python tools/trace.py \
    --cfg experiments/coco/transformer/w32_384x288_adamw_lr1e-4.yaml

Train logs

All the training logs can be downloaded from OneDrive. Log for model_name.pth is named as model_name.log.