-
Notifications
You must be signed in to change notification settings - Fork 4.2k
/
Copy pathAcademy.cs
615 lines (538 loc) · 21.8 KB
/
Academy.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
using UnityEngine;
using System.Collections.Generic;
using UnityEngine.Serialization;
#if UNITY_EDITOR
using UnityEditor;
#endif
using MLAgents.InferenceBrain;
using Barracuda;
/**
* Welcome to Unity Machine Learning Agents (ML-Agents).
*
* The ML-Agents toolkit contains four entities: Academy, Agent, Communicator and
* Python API. The academy and connected agents live within
* a learning environment (herein called Environment), while the communicator
* manages the communication between the learning environment and the Python
* API. For more information on each of these entities, in addition to how to
* set-up a learning environment and train the behavior of characters in a
* Unity scene, please browse our documentation pages on GitHub:
* https://github.com/Unity-Technologies/ml-agents/blob/master/docs/
*/
namespace MLAgents
{
/// <summary>
/// Wraps the environment-level parameters that are provided within the
/// Editor. These parameters can be provided for training and inference
/// modes separately and represent screen resolution, rendering quality and
/// frame rate.
/// </summary>
[System.Serializable]
public class EnvironmentConfiguration
{
[Tooltip("Width of the environment window in pixels.")]
public int width;
[Tooltip("Height of the environment window in pixels.")]
public int height;
[Tooltip("Rendering quality of environment. (Higher is better quality.)")]
[Range(0, 5)]
public int qualityLevel;
[Tooltip("Speed at which environment is run. (Higher is faster.)")]
[Range(1f, 100f)]
public float timeScale;
[Tooltip("Frames per second (FPS) engine attempts to maintain.")]
public int targetFrameRate;
/// Initializes a new instance of the
/// <see cref="EnvironmentConfiguration"/> class.
/// <param name="width">Width of environment window (pixels).</param>
/// <param name="height">Height of environment window (pixels).</param>
/// <param name="qualityLevel">
/// Rendering quality of environment. Ranges from 0 to 5, with higher.
/// </param>
/// <param name="timeScale">
/// Speed at which environment is run. Ranges from 1 to 100, with higher
/// values representing faster speed.
/// </param>
/// <param name="targetFrameRate">
/// Target frame rate (per second) that the engine tries to maintain.
/// </param>
public EnvironmentConfiguration(
int width, int height, int qualityLevel,
float timeScale, int targetFrameRate)
{
this.width = width;
this.height = height;
this.qualityLevel = qualityLevel;
this.timeScale = timeScale;
this.targetFrameRate = targetFrameRate;
}
}
/// <summary>
/// An Academy is where Agent objects go to train their behaviors.
/// Currently, this class is expected to be extended to
/// implement the desired academy behavior.
/// </summary>
/// <remarks>
/// When an academy is run, it can either be in inference or training mode.
/// The mode is determined by the presence or absence of a Communicator. In
/// the presence of a communicator, the academy is run in training mode where
/// the states and observations of each agent are sent through the
/// communicator. In the absence of a communicator, the academy is run in
/// inference mode where the agent behavior is determined by the Policy
/// attached to it.
/// </remarks>
[HelpURL("https://github.com/Unity-Technologies/ml-agents/blob/master/" +
"docs/Learning-Environment-Design-Academy.md")]
public abstract class Academy : MonoBehaviour
{
private const string k_ApiVersion = "API-11";
/// Temporary storage for global gravity value
/// Used to restore oringal value when deriving Academy modifies it
private Vector3 m_OriginalGravity;
/// Temporary storage for global fixedDeltaTime value
/// Used to restore original value when deriving Academy modifies it
private float m_OriginalFixedDeltaTime;
/// Temporary storage for global maximumDeltaTime value
/// Used to restore original value when deriving Academy modifies it
private float m_OriginalMaximumDeltaTime;
// Fields provided in the Inspector
[FormerlySerializedAs("maxSteps")]
[SerializeField]
[Tooltip("The engine-level settings which correspond to rendering " +
"quality and engine speed during Training.")]
EnvironmentConfiguration m_TrainingConfiguration =
new EnvironmentConfiguration(80, 80, 1, 100.0f, -1);
[FormerlySerializedAs("inferenceConfiguration")]
[SerializeField]
[Tooltip("The engine-level settings which correspond to rendering " +
"quality and engine speed during Inference.")]
EnvironmentConfiguration m_InferenceConfiguration =
new EnvironmentConfiguration(1280, 720, 5, 1.0f, 60);
/// <summary>
/// Contains a mapping from parameter names to float values. They are
/// used in <see cref="AcademyReset"/> and <see cref="AcademyStep"/>
/// to modify elements in the environment at reset time.
/// </summary>
/// <remarks>
/// Default reset parameters are specified in the academy Editor, and can
/// be modified when training by passing a config
/// dictionary at reset.
/// </remarks>
[SerializeField]
[Tooltip("List of custom parameters that can be changed in the " +
"environment when it resets.")]
public ResetParameters resetParameters;
public CommunicatorObjects.CustomResetParametersProto customResetParameters;
// Fields not provided in the Inspector.
/// <summary>
/// Returns whether or not the communicator is on.
/// </summary>
/// <returns>
/// <c>true</c>, if communicator is on, <c>false</c> otherwise.
/// </returns>
public bool IsCommunicatorOn
{
get { return Communicator != null; }
}
/// If true, the Academy will use inference settings. This field is
/// initialized in <see cref="Awake"/> depending on the presence
/// or absence of a communicator. Furthermore, it can be modified during
/// training via <see cref="SetIsInference"/>.
bool m_IsInference = true;
/// The number of episodes completed by the environment. Incremented
/// each time the environment is reset.
int m_EpisodeCount;
/// The number of steps completed within the current episode. Incremented
/// each time a step is taken in the environment. Is reset to 0 during
/// <see cref="AcademyReset"/>.
int m_StepCount;
/// The number of total number of steps completed during the whole simulation. Incremented
/// each time a step is taken in the environment.
int m_TotalStepCount;
/// Flag that indicates whether the inference/training mode of the
/// environment was switched by the training process. This impacts the
/// engine settings at the next environment step.
bool m_ModeSwitched;
/// Pointer to the communicator currently in use by the Academy.
public ICommunicator Communicator;
private bool m_Initialized;
private List<ModelRunner> m_ModelRunners = new List<ModelRunner>();
// Flag used to keep track of the first time the Academy is reset.
bool m_FirstAcademyReset;
// The Academy uses a series of events to communicate with agents
// to facilitate synchronization. More specifically, it ensure
// that all the agents performs their steps in a consistent order (i.e. no
// agent can act based on a decision before another agent has had a chance
// to request a decision).
// Signals to all the Agents at each environment step so they can use
// their Policy to decide on their next action.
public event System.Action DecideAction;
// Signals to all the listeners that the academy is being destroyed
public event System.Action DestroyAction;
// Signals to all the agents at each environment step along with the
// Academy's maxStepReached, done and stepCount values. The agents rely
// on this event to update their own values of max step reached and done
// in addition to aligning on the step count of the global episode.
public event System.Action<int> AgentSetStatus;
// Signals to all the agents at each environment step so they can reset
// if their flag has been set to done (assuming the agent has requested a
// decision).
public event System.Action AgentResetIfDone;
// Signals to all the agents at each environment step so they can send
// their state to their Policy if they have requested a decision.
public event System.Action AgentSendState;
// Signals to all the agents at each environment step so they can act if
// they have requested a decision.
public event System.Action AgentAct;
// Signals to all the agents each time the Academy force resets.
public event System.Action AgentForceReset;
/// <summary>
/// MonoBehavior function called at the very beginning of environment
/// creation. Academy uses this time to initialize internal data
/// structures, initialize the environment and check for the existence
/// of a communicator.
/// </summary>
void Awake()
{
LazyInitialization();
}
public void LazyInitialization()
{
if (!m_Initialized)
{
InitializeEnvironment();
m_Initialized = true;
}
}
// Used to read Python-provided environment parameters
private static int ReadArgs()
{
var args = System.Environment.GetCommandLineArgs();
var inputPort = "";
for (var i = 0; i < args.Length; i++)
{
if (args[i] == "--port")
{
inputPort = args[i + 1];
}
}
return int.Parse(inputPort);
}
/// <summary>
/// Initializes the environment, configures it and initialized the Academy.
/// </summary>
private void InitializeEnvironment()
{
m_OriginalGravity = Physics.gravity;
m_OriginalFixedDeltaTime = Time.fixedDeltaTime;
m_OriginalMaximumDeltaTime = Time.maximumDeltaTime;
InitializeAcademy();
// Try to launch the communicator by using the arguments passed at launch
try
{
Communicator = new RpcCommunicator(
new CommunicatorInitParameters
{
port = ReadArgs()
});
}
catch
{
#if UNITY_EDITOR
Communicator = new RpcCommunicator(
new CommunicatorInitParameters
{
port = 5004
});
#endif
}
if (Communicator != null)
{
// We try to exchange the first message with Python. If this fails, it means
// no Python Process is ready to train the environment. In this case, the
//environment must use Inference.
try
{
var unityRLInitParameters = Communicator.Initialize(
new CommunicatorInitParameters
{
version = k_ApiVersion,
name = gameObject.name,
environmentResetParameters = new EnvironmentResetParameters
{
resetParameters = resetParameters,
customResetParameters = customResetParameters
}
});
Random.InitState(unityRLInitParameters.seed);
}
catch
{
Communicator = null;
}
if (Communicator != null)
{
Communicator.QuitCommandReceived += OnQuitCommandReceived;
Communicator.ResetCommandReceived += OnResetCommand;
Communicator.RLInputReceived += OnRLInputReceived;
}
}
// If a communicator is enabled/provided, then we assume we are in
// training mode. In the absence of a communicator, we assume we are
// in inference mode.
SetIsInference(!IsCommunicatorOn);
DecideAction += () => { };
DestroyAction += () => { };
AgentSetStatus += i => { };
AgentResetIfDone += () => { };
AgentSendState += () => { };
AgentAct += () => { };
AgentForceReset += () => { };
ConfigureEnvironment();
}
static void OnQuitCommandReceived()
{
#if UNITY_EDITOR
EditorApplication.isPlaying = false;
#endif
Application.Quit();
}
private void OnResetCommand(EnvironmentResetParameters newResetParameters)
{
UpdateResetParameters(newResetParameters);
ForcedFullReset();
}
void OnRLInputReceived(UnityRLInputParameters inputParams)
{
m_IsInference = !inputParams.isTraining;
}
private void UpdateResetParameters(EnvironmentResetParameters newResetParameters)
{
if (newResetParameters.resetParameters != null)
{
foreach (var kv in newResetParameters.resetParameters)
{
resetParameters[kv.Key] = kv.Value;
}
}
customResetParameters = newResetParameters.customResetParameters;
}
/// <summary>
/// Configures the environment settings depending on the training/inference
/// mode and the corresponding parameters passed in the Editor.
/// </summary>
void ConfigureEnvironment()
{
if (m_IsInference)
{
ConfigureEnvironmentHelper(m_InferenceConfiguration);
Monitor.SetActive(true);
}
else
{
ConfigureEnvironmentHelper(m_TrainingConfiguration);
Monitor.SetActive(false);
}
}
/// <summary>
/// Helper method for initializing the environment based on the provided
/// configuration.
/// </summary>
/// <param name="config">
/// Environment configuration (specified in the Editor).
/// </param>
static void ConfigureEnvironmentHelper(EnvironmentConfiguration config)
{
Screen.SetResolution(config.width, config.height, false);
QualitySettings.SetQualityLevel(config.qualityLevel, true);
Time.timeScale = config.timeScale;
Time.captureFramerate = 60;
Application.targetFrameRate = config.targetFrameRate;
}
/// <summary>
/// Initializes the academy and environment. Called during the waking-up
/// phase of the environment before any of the scene objects/agents have
/// been initialized.
/// </summary>
public virtual void InitializeAcademy()
{
}
/// <summary>
/// Specifies the academy behavior at every step of the environment.
/// </summary>
public virtual void AcademyStep()
{
}
/// <summary>
/// Specifies the academy behavior when being reset (i.e. at the completion
/// of a global episode).
/// </summary>
public virtual void AcademyReset()
{
}
/// <summary>
/// Returns the <see cref="m_IsInference"/> flag.
/// </summary>
/// <returns>
/// <c>true</c>, if current mode is inference, <c>false</c> if training.
/// </returns>
public bool GetIsInference()
{
return m_IsInference;
}
/// <summary>
/// Sets the <see cref="m_IsInference"/> flag to the provided value. If
/// the new flag differs from the current flag value, this signals that
/// the environment configuration needs to be updated.
/// </summary>
/// <param name="isInference">
/// Environment mode, if true then inference, otherwise training.
/// </param>
public void SetIsInference(bool isInference)
{
if (m_IsInference != isInference)
{
m_IsInference = isInference;
// This signals to the academy that at the next environment step
// the engine configurations need updating to the respective mode
// (i.e. training vs inference) configuration.
m_ModeSwitched = true;
}
}
/// <summary>
/// Returns the current episode counter.
/// </summary>
/// <returns>
/// Current episode number.
/// </returns>
public int GetEpisodeCount()
{
return m_EpisodeCount;
}
/// <summary>
/// Returns the current step counter (within the current episode).
/// </summary>
/// <returns>
/// Current step count.
/// </returns>
public int GetStepCount()
{
return m_StepCount;
}
/// <summary>
/// Returns the total step counter.
/// </summary>
/// <returns>
/// Total step count.
/// </returns>
public int GetTotalStepCount()
{
return m_TotalStepCount;
}
/// <summary>
/// Forces the full reset. The done flags are not affected. Is either
/// called the first reset at inference and every external reset
/// at training.
/// </summary>
void ForcedFullReset()
{
EnvironmentReset();
AgentForceReset?.Invoke();
m_FirstAcademyReset = true;
}
/// <summary>
/// Performs a single environment update to the Academy, and Agent
/// objects within the environment.
/// </summary>
void EnvironmentStep()
{
if (m_ModeSwitched)
{
ConfigureEnvironment();
m_ModeSwitched = false;
}
if (!m_FirstAcademyReset)
{
ForcedFullReset();
}
AgentSetStatus?.Invoke(m_StepCount);
using (TimerStack.Instance.Scoped("AgentResetIfDone"))
{
AgentResetIfDone?.Invoke();
}
using (TimerStack.Instance.Scoped("AgentSendState"))
{
AgentSendState?.Invoke();
}
using (TimerStack.Instance.Scoped("DecideAction"))
{
DecideAction?.Invoke();
}
using (TimerStack.Instance.Scoped("AcademyStep"))
{
AcademyStep();
}
using (TimerStack.Instance.Scoped("AgentAct"))
{
AgentAct?.Invoke();
}
m_StepCount += 1;
m_TotalStepCount += 1;
}
/// <summary>
/// Resets the environment, including the Academy.
/// </summary>
void EnvironmentReset()
{
m_StepCount = 0;
m_EpisodeCount++;
AcademyReset();
}
/// <summary>
/// MonoBehaviour function that dictates each environment step.
/// </summary>
void FixedUpdate()
{
EnvironmentStep();
}
/// <summary>
/// Creates or retrieves an existing ModelRunner that uses the same
/// NNModel and the InferenceDevice as provided.
/// </summary>
/// <param name="model"> The NNModel the ModelRunner must use </param>
/// <param name="brainParameters"> The brainParameters used to create
/// the ModelRunner </param>
/// <param name="inferenceDevice"> The inference device (CPU or GPU)
/// the ModelRunner will use </param>
/// <returns> The ModelRunner compatible with the input settings</returns>
public ModelRunner GetOrCreateModelRunner(
NNModel model, BrainParameters brainParameters, InferenceDevice inferenceDevice)
{
var modelRunner = m_ModelRunners.Find(x => x.HasModel(model, inferenceDevice));
if (modelRunner == null)
{
modelRunner = new ModelRunner(
model, brainParameters, inferenceDevice);
m_ModelRunners.Add(modelRunner);
}
return modelRunner;
}
/// <summary>
/// Cleanup function
/// </summary>
protected virtual void OnDestroy()
{
Physics.gravity = m_OriginalGravity;
Time.fixedDeltaTime = m_OriginalFixedDeltaTime;
Time.maximumDeltaTime = m_OriginalMaximumDeltaTime;
// Signal to listeners that the academy is being destroyed now
DestroyAction?.Invoke();
foreach (var mr in m_ModelRunners)
{
mr.Dispose();
}
// TODO - Pass worker ID or some other identifier,
// so that multiple envs won't overwrite each others stats.
TimerStack.Instance.SaveJsonTimers();
}
}
}